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6.864, Fall 2005: Problem Set 3 
Total points: 110 regular points 

Due date: 5 pm, 1st November 2005 
Late policy: 5 points off for every day late, 0 points if handed in after 5pm on November 4th 2005 

Question 1 (15 points) 

Clarissa Linguistica decides to build a log-linear model for language modeling. She has a training sample 
(xi, yi) for i = 1 . . . n, where each xi is a prefix of a document (e.g., xi = “Yesterday, George Bush said”) 
and yi is the next word seen after this prefix (e.g., yi = “that”). As usual in log-linear models, she defines a 
function �̄(x, y) that maps any x, y pair to a vector in Rd. Given parameter values d¯ , the model defines �� R

�̄(x,y)�̄· e 
P (y|x, )̄ = �


�̄(x,y�)�̄· 
y��V e 

�̄(x, y) is the inner product between the where V is the vocabulary, i.e., the set of possible words; and ·

�(x, y). 

Given the training set, the training procedure returns parameters 

¯¯ and�vectors 

¯ , where )�L(= arg max

�2 
k )̄ = �
 log P (yi|xi, ̄ ) −� C
L(

i k 

and C > 0 is some constant.


Clarissa makes the (rather odd) choice of her first two features in the model:


 

�1(x, y) = 
1 
0 

if y = model and previous word in x is the 
otherwise 


 

�2(x, y) = 
1 
0 

if y = model and previous word in x is the 
otherwise 

So �1(x, y) and �2(x, y) are identical features.


Question (15 points): Show that for any training set, with �1 and �2 defined as above, the optimal parame

ters � �¯ satisfy the property that � �1 2 . 

Question 2 (15 points) 

Nathan L. Pedant now decides to build a bigram language model using log-linear models. He gathers a 
training sample (xi, yi) for i = 1 . . . n. Given a vocabulary of words V , each xi and each yi is a member of 
V . Each (xi, yi) pair is a bigram extracted from the corpus, where the word yi is seen following xi in the 
corpus. 

Nathan’s model is similar to Clarissa’s, except he chooses the optimal parameters 
where 

�̄ to be (� Larg max 

L(
̄ ) = �
 log P (yi|xi, 
i 
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The features in his model are of the following form: 

 

1 if y = model and x = the 
�i(x, y) = 

0 otherwise 

i.e., the features track pairs of words. To be more specific, he creates one feature of the form 

 

1 if y = w2 and x = w1
�i(x, y) = 

0 otherwise 

for every (w1, w2) in V × V . 

Question (15 points): Assume that the training corpus contains all possible bigrams: i.e., for all w1, w2 � V 
there is some i such that xi = w1 and yi = w2. The optimal parameter estimates �̄ define a probability �

�̄ for any bigram . Show that for any pair, we have )� w , w w , w1 2 1 2P (y = w2|x = w1, 

x = w1, ) =

Count(w1, w2) 

Count(w1) 
P (y = w2|

where Count(w1, w2) = number of times (xi, yi) = (w1, w2), and Count(w1) = number of times xi = w1. 

Question 3 (15 points) 

Clarissa now decides to build a bigram language model that is fancier than Nathan’s. She again has a training 
sample (xi, yi) for i = 1 . . . n where each (xi, yi) pair is a bigram. She introduces an additional “hidden” 
variable h which can take any one of the values 1 . . . k. The log-linear model has the form 

�̄(x,h,y)�̄· e 
P (y, h|x, (1)

�̄(x,h�,y�)�̄· 
y��V ,h��1...k e 

where �̄(x, h, y) is a feature-vector. 

Clarissa defines a new likelihood function, 

� � k 
� 

xi, log P (yi, h|xi , (2)L( log P (yi|
i i h=1 

¯ takes the form in Eq. 1. )�where P (yi, h|xi, 

Question (15 points): Recall that we showed in lecture that the gradient of L(
models is 

� 

¯ for regular log-linear )�

�L � � 
¯ ¯ xi, y ) (3)xi,xi, yi) − P (y |=


i i y� 

Derive a similar expression for 
�L � 

where L(¯ is as defined in Eq. 2. You should write the gradient in terms of )� �̄ and P (y, h|x, ¯ (in a similar )�

way that Eq. 3 is written in terms of �̄ and P (y|x, ¯ ).)�




� 
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Question 4 (15 points) 

In class, we introduced several measures of similarity between probability distributions. The table below 
summarizes three of these measures: KL divergence, information radius (IRad) and L1 norm. In the follow
ing questions, you will analyze properties of these similarity measures. 

Similarity Measure 
KL divergence 
IRad 
L1 norm 

Definition 
D(p||q) = i pi log pi 

qi 

D(p|| p+q ) + D(q|| p+q )2 2 

i |pi − qi| 

1. Show that IRad is bounded by 2 log 2 

2. Show that the KL divergence is not symmetric by finding an example of two distributions p and q for 
which D(p||q) ∗= D(q||p) 

3. Describe the performance of these measures in the presence of low counts. 

Question 6 (50 points) 

(50 points) 

In this question, you will explore corpus-based approaches to lexical semantics. More concretely, you 
will implement and evaluate a method for clustering verbs based on their distributional properties. In this 
experiment, the context of a verb is represented by its object. 

To train your method, you are provided with a file verb-object.gz, which contains a list of (verb, object) 
pairs extracted from the Wall Street Journal corpus. For example, the first line of verb-object.gz is 
“Take Stage 5”. This means that the verb “take” was observed with object “Stage” five times. 

•	 You will first have to construct a word-by-word matrix P that captures the distribution of verbs over 
their objects. The dimensionality of P is |V | × |N |, where |V | is the number of verbs in the corpus 
and |N | is the number of nouns. The entry Pi,j gives the conditional probability that verb vi has object 
nj (i.e., P (nj |vi)). Note that each row pθi of the matrix P defines the conditional distribution P (.|vi). 

•	 Define a similarity measure sim(vi, vj ) that gives the similarity between verbs vi and vj . Specifically, 
sim(vi, vj ) should give the cosine similarity between the distribution vectors pθi and pθj (i.e. the cosine 
of the angle between the vectors). 

In order for us to test this part of the algorithm, your code should provide the following inter
face: 

–	 Read in a file containing pairs of verbs “verb1 verb2”, one pair per line. 

–	 Print sim(verb1, verb2) to standard output, one value per line. 

We will provide development data for this part in the form of two files: sim.in, which contains verb 
pairs as described above, and sim.out, which contains the corresponding similarities. 

•	 You should cluster the verbs using the complete link algorithm. Your code should provide a clustering 
function cluster(k) where k specifies the desired number of clusters. 



While the complete link algorithm can be implemented in O(|V |2 log |V |) steps, your implementation 
does not have to be that efficient. However, you may want to store some intermediate similarity 
computations to speed up your program. 

NB: It may be possible for two similarity measures to be equal for different pairs of words, 
in which case a tie-break is necessary. You should break ties by using string comparison, as 
follows: 

–	 Define the string comparison str1 φ str2 to be true iff at least one of the following is true 

� str1[1] (the ASCII value for the first character) is strictly greater than str2[1]. If str is the 
empty string, substitute −1 for str[1]. 

�	 str1[1] = str2[1] and str1[2, n1] φ str2[2, n2], where str[2, n] is the substring of str that 
excludes the first character. 

–	 If sim(verb1, verb2) = sim(verb3, verb4) 

� Assume, without loss of generality, that verb1 φ verb2 and verb3 φ verb4. 

� Merge the clusters containing verb1 and verb2 if verb1verb2 φ verb3 verb4, where str1str2 

indicates concatenation of str1 and str2.


� Merge the clusters containing verb3 and verb4 otherwise.


If your language has a built-in string comparison operator, it will most likely be defined as φ above. For 
example, str1φstr2 is the same as str1.compareTo(str2) > 0 in Java, $str1 cmp $str2 > 0 
in Perl, and str1 > str2 in Python. 

We will provide development data for this part in the form of two files: cluster1 and cluster2, 
which represent the output of cluster(2). Each file will contain the list of verbs in the corresponding 
cluster, one verb per line. 

•	 You will evaluate your clustering approach using the pseudoword disambiguation task. Our corpus 
contains twenty synthetic pairs of synonyms (see file synrev). Each pair was created by substitut
ing half of the occurrences of the given verb in the corpus with its reverse (e.g., “kill” � “llik”). 
You should define a function comp(word1, word2) that returns the number of cluster merging steps 
required to place word1 and word2 in the same cluster. 

In order for us to test this part of the assignment, please create a file pseudoword-comp that 
contains 20 lines of the form “word reversedword comp(word, reversedword)” for example, 
“kill llik 123” 


