

ARTIFICIAL
INTELLIGENCE

FOR GAMES
Second Edition

IAN MILLINGTON and JOHN FUNGE

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

Copyright © 2009 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all
instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. All trademarks that appear or are otherwise referred to in this work belong to their respective owners. Neither Morgan
Kaufmann Publishers nor the authors and other contributors of this work have any relationship or affiliation with such
trademark owners nor do such trademark owners confirm, endorse or approve the contents of this work. Readers, however,
should contact the appropriate companies for more information regarding trademarks and any related registrations.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865
843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier
homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining
Permissions.”

Library of Congress Cataloging-in-Publication Data
Millington, Ian.

Artificial intelligence for games / Ian Millington, John Funge. – 2nd ed.
p. cm.

Includes index.
ISBN 978-0-12-374731-0 (hardcover : alk. paper)

1. Computer games–Programming. 2. Computer animation. 3. Artificial intelligence.
I. Funge, John David, 1968- II. Title.

QA76.76.C672M549 2009
006.3–dc22

2009016733

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-374731-0

For information on all Morgan Kaufmann publications
visit our Website at www.mkp.com or www.elsevierdirect.com

Typeset by : diacriTech, India

Printed in the United States of America
09 10 11 12 13 5 4 3 2 1

For Conor – I.M.

For Xiaoyuan – J.F.

About the Authors

Ian Millington is a partner of Icosagon Ltd. (www.icosagon.com), a consulting company devel-
oping next-generation AI technologies for entertainment, modeling, and simulation. Previously
he founded Mindlathe Ltd., the largest specialist AI middleware company in computer games,
working on a huge range of game genres and technologies. He has a long background in AI,
including PhD research in complexity theory and natural computing. He has published academic
and professional papers and articles on topics ranging from paleontology to hypertext.

John Funge (www.jfunge.com) recently joined Netflix to start and lead the new Game Platforms
group. Previously, John co-founded AiLive and spent nearly ten years helping to create a successful
company that is now well known for its pioneering machine learning technology for games. AiLive
co-created the Wii MotionPlus hardware and has established its LiveMove products as the industry
standard for automatic motion recognition. At AiLive John also worked extensively on LiveAI, a
real-time behavior capture product that is being used by the former lead game designer of Guitar
Hero and Rock Band to create a new genre of game. John is also an Assistant Adjunct Professor
at the University of California, Santa Cruz (UCSC) where he teaches a Game AI course that he
proposed, designed and developed. John has a PhD from the University of Toronto and an MSc
from the University of Oxford. He holds several patents, is the author of numerous technical
papers, and wrote two previous books on Game AI.

iv

Contents

About the Authors iv

Acknowledgments xix

Preface xxi

About the Website xxiii

Part I

AI and Games 1

Chapter

1 Introduction 3

1.1 What Is AI? 4

1.1.1 Academic AI 5

1.1.2 Game AI 7

1.2 Model of Game AI 8

1.2.1 Movement 9

1.2.2 Decision Making 10

1.2.3 Strategy 10

1.2.4 Infrastructure 11

1.2.5 Agent-Based AI 11

1.2.6 In the Book 12

1.3 Algorithms, Data Structures, and
Representations 12

1.3.1 Algorithms 12

1.3.2 Representations 15

v

vi Contents

1.4 On the Website 16
1.4.1 Programs 16
1.4.2 Libraries 17

1.5 Layout of the Book 18

Chapter

2 Game AI 19

2.1 The Complexity Fallacy 19
2.1.1 When Simple Things Look Good 19
2.1.2 When Complex Things Look Bad 20
2.1.3 The Perception Window 21
2.1.4 Changes of Behavior 21

2.2 The Kind of AI in Games 22
2.2.1 Hacks 22
2.2.2 Heuristics 23
2.2.3 Algorithms 24

2.3 Speed and Memory 25
2.3.1 Processor Issues 25
2.3.2 Memory Concerns 28
2.3.3 PC Constraints 29
2.3.4 Console Constraints 29

2.4 The AI Engine 31
2.4.1 Structure of an AI Engine 32
2.4.2 Toolchain Concerns 33
2.4.3 Putting It All Together 34

Part II

Techniques 37

Chapter

3 Movement 39

3.1 The Basics of Movement Algorithms 40
3.1.1 Two-Dimensional Movement 41
3.1.2 Statics 42
3.1.3 Kinematics 45

3.2 Kinematic Movement Algorithms 49
3.2.1 Seek 49

Contents vii

3.2.2 Wandering 53
3.2.3 On the Website 55

3.3 Steering Behaviors 55
3.3.1 Steering Basics 55
3.3.2 Variable Matching 56
3.3.3 Seek and Flee 56
3.3.4 Arrive 59
3.3.5 Align 62
3.3.6 Velocity Matching 66
3.3.7 Delegated Behaviors 67
3.3.8 Pursue and Evade 68
3.3.9 Face 71
3.3.10 Looking Where You’re Going 72
3.3.11 Wander 73
3.3.12 Path Following 76
3.3.13 Separation 82
3.3.14 Collision Avoidance 84
3.3.15 Obstacle and Wall Avoidance 90
3.3.16 Summary 95

3.4 Combining Steering Behaviors 95
3.4.1 Blending and Arbitration 96
3.4.2 Weighted Blending 96
3.4.3 Priorities 103
3.4.4 Cooperative Arbitration 107
3.4.5 Steering Pipeline 108

3.5 Predicting Physics 120
3.5.1 Aiming and Shooting 121
3.5.2 Projectile Trajectory 121
3.5.3 The Firing Solution 123
3.5.4 Projectiles with Drag 126
3.5.5 Iterative Targeting 128

3.6 Jumping 134
3.6.1 Jump Points 135
3.6.2 Landing Pads 138
3.6.3 Hole Fillers 143

3.7 Coordinated Movement 144
3.7.1 Fixed Formations 144
3.7.2 Scalable Formations 146
3.7.3 Emergent Formations 146
3.7.4 Two-Level Formation Steering 147
3.7.5 Implementation 151

viii Contents

3.7.6 Extending to More than Two Levels 157
3.7.7 Slot Roles and Better Assignment 159
3.7.8 Slot Assignment 162
3.7.9 Dynamic Slots and Plays 166
3.7.10 Tactical Movement 168

3.8 Motor Control 171
3.8.1 Output Filtering 172
3.8.2 Capability-Sensitive Steering 174
3.8.3 Common Actuation Properties 175

3.9 Movement in the Third Dimension 178
3.9.1 Rotation in Three Dimensions 178
3.9.2 Converting Steering Behaviors to Three Dimensions 180
3.9.3 Align 180
3.9.4 Align to Vector 181
3.9.5 Face 183
3.9.6 Look Where You’re Going 186
3.9.7 Wander 186
3.9.8 Faking Rotation Axes 188

Exercises 192

Chapter

4 Pathfinding 197

4.1 The Pathfinding Graph 198
4.1.1 Graphs 198
4.1.2 Weighted Graphs 199
4.1.3 Directed Weighted Graphs 202
4.1.4 Terminology 203
4.1.5 Representation 203

4.2 Dijkstra 204
4.2.1 The Problem 205
4.2.2 The Algorithm 206
4.2.3 Pseudo-Code 210
4.2.4 Data Structures and Interfaces 212
4.2.5 Performance of Dijkstra 214
4.2.6 Weaknesses 214

4.3 A* 215
4.3.1 The Problem 216
4.3.2 The Algorithm 216
4.3.3 Pseudo-Code 220
4.3.4 Data Structures and Interfaces 223

Contents ix

4.3.5 Implementation Notes 228
4.3.6 Algorithm Performance 228
4.3.7 Node Array A* 229
4.3.8 Choosing a Heuristic 231

4.4 World Representations 237
4.4.1 Tile Graphs 239
4.4.2 Dirichlet Domains 241
4.4.3 Points of Visibility 244
4.4.4 Navigation Meshes 246
4.4.5 Non-Translational Problems 251
4.4.6 Cost Functions 251
4.4.7 Path Smoothing 251

4.5 Improving on A* 255

4.6 Hierarchical Pathfinding 255
4.6.1 The Hierarchical Pathfinding Graph 256
4.6.2 Pathfinding on the Hierarchical Graph 259
4.6.3 Hierarchical Pathfinding on Exclusions 262
4.6.4 Strange Effects of Hierarchies on Pathfinding 263
4.6.5 Instanced Geometry 265

4.7 Other Ideas in Pathfinding 271
4.7.1 Open Goal Pathfinding 272
4.7.2 Dynamic Pathfinding 272
4.7.3 Other Kinds of Information Reuse 273
4.7.4 Low Memory Algorithms 273
4.7.5 Interruptible Pathfinding 274
4.7.6 Pooling Planners 275

4.8 Continuous Time Pathfinding 276
4.8.1 The Problem 276
4.8.2 The Algorithm 277
4.8.3 Implementation Notes 281
4.8.4 Performance 281
4.8.5 Weaknesses 282

4.9 Movement Planning 282
4.9.1 Animations 282
4.9.2 Movement Planning 283
4.9.3 Example 286
4.9.4 Footfalls 287

Exercises 288

x Contents

Chapter

5 Decision Making 293

5.1 Overview of Decision Making 293

5.2 Decision Trees 295
5.2.1 The Problem 295
5.2.2 The Algorithm 295
5.2.3 Pseudo-Code 300
5.2.4 On the Website 302
5.2.5 Knowledge Representation 303
5.2.6 Implementation Nodes 303
5.2.7 Performance of Decision Trees 304
5.2.8 Balancing the Tree 304
5.2.9 Beyond the Tree 305
5.2.10 Random Decision Trees 306

5.3 State Machines 309
5.3.1 The Problem 311
5.3.2 The Algorithm 311
5.3.3 Pseudo-Code 311
5.3.4 Data Structures and Interfaces 312
5.3.5 On the Website 315
5.3.6 Performance 316
5.3.7 Implementation Notes 316
5.3.8 Hard-Coded FSM 316
5.3.9 Hierarchical State Machines 318
5.3.10 Combining Decision Trees and State Machines 331

5.4 Behavior Trees 334
5.4.1 Implementing Behavior Trees 340
5.4.2 Pseudo-Code 340
5.4.3 Decorators 345
5.4.4 Concurrency and Timing 351
5.4.5 Adding Data to Behavior Trees 361
5.4.6 Reusing Trees 365
5.4.7 Limitations of Behavior Trees 370

5.5 Fuzzy Logic 371
5.5.1 A Warning 371
5.5.2 Introduction to Fuzzy Logic 371
5.5.3 Fuzzy Logic Decision Making 381
5.5.4 Fuzzy State Machines 390

Contents xi

5.6 Markov Systems 395
5.6.1 Markov Processes 396
5.6.2 Markov State Machine 398

5.7 Goal-Oriented Behavior 401
5.7.1 Goal-Oriented Behavior 402
5.7.2 Simple Selection 404
5.7.3 Overall Utility 406
5.7.4 Timing 408
5.7.5 Overall Utility GOAP 413
5.7.6 GOAP with IDA* 418
5.7.7 Smelly GOB 425

5.8 Rule-Based Systems 427
5.8.1 The Problem 428
5.8.2 The Algorithm 433
5.8.3 Pseudo-Code 433
5.8.4 Data Structures and Interfaces 434
5.8.5 Implementation Notes 441
5.8.6 Rule Arbitration 441
5.8.7 Unification 443
5.8.8 Rete 445
5.8.9 Extensions 455
5.8.10 Where Next 459

5.9 Blackboard Architectures 459
5.9.1 The Problem 459
5.9.2 The Algorithm 460
5.9.3 Pseudo-Code 461
5.9.4 Data Structures and Interfaces 462
5.9.5 Performance 464
5.9.6 Other Things Are Blackboard Systems 465

5.10 Scripting 466
5.10.1 Language Facilities 467
5.10.2 Embedding 468
5.10.3 Choosing a Language 468
5.10.4 A Language Selection 470
5.10.5 Rolling Your Own 474
5.10.6 Scripting Languages and Other AI 479

5.11 Action Execution 480
5.11.1 Types of Action 480
5.11.2 The Algorithm 484
5.11.3 Pseudo-Code 485
5.11.4 Data Structures and Interfaces 487

xii Contents

5.11.5 Implementation Notes 489
5.11.6 Performance 490
5.11.7 Putting It All Together 490

Chapter

6 Tactical and Strategic AI 493

6.1 Waypoint Tactics 494
6.1.1 Tactical Locations 494
6.1.2 Using Tactical Locations 502
6.1.3 Generating the Tactical Properties of a Waypoint 507
6.1.4 Automatically Generating the Waypoints 512
6.1.5 The Condensation Algorithm 513

6.2 Tactical Analyses 518
6.2.1 Representing the Game Level 518
6.2.2 Simple Influence Maps 519
6.2.3 Terrain Analysis 525
6.2.4 Learning with Tactical Analyses 527
6.2.5 A Structure for Tactical Analyses 528
6.2.6 Map Flooding 533
6.2.7 Convolution Filters 538
6.2.8 Cellular Automata 549

6.3 Tactical Pathfinding 553
6.3.1 The Cost Function 553
6.3.2 Tactic Weights and Concern Blending 555
6.3.3 Modifying the Pathfinding Heuristic 557
6.3.4 Tactical Graphs for Pathfinding 557
6.3.5 Using Tactical Waypoints 558

6.4 Coordinated Action 559
6.4.1 Multi-Tier AI 559
6.4.2 Emergent Cooperation 565
6.4.3 Scripting Group Actions 568
6.4.4 Military Tactics 573

Exercises 576

Chapter

7 Learning 579

7.1 Learning Basics 579
7.1.1 Online or Offline Learning 579
7.1.2 Intra-Behavior Learning 580
7.1.3 Inter-Behavior Learning 581

Contents xiii

7.1.4 A Warning 581
7.1.5 Over-Learning 582
7.1.6 The Zoo of Learning Algorithms 582
7.1.7 The Balance of Effort 582

7.2 Parameter Modification 583
7.2.1 The Parameter Landscape 583
7.2.2 Hill Climbing 585
7.2.3 Extensions to Basic Hill Climbing 588
7.2.4 Annealing 591

7.3 Action Prediction 596
7.3.1 Left or Right 596
7.3.2 Raw Probability 596
7.3.3 String Matching 597
7.3.4 N -Grams 597
7.3.5 Window Size 601
7.3.6 Hierarchical N -Grams 602
7.3.7 Application in Combat 605

7.4 Decision Learning 606
7.4.1 Structure of Decision Learning 606
7.4.2 What Should You Learn? 607
7.4.3 Four Techniques 607

7.5 Naive Bayes Classifiers 608
7.5.1 Implementation Notes 612

7.6 Decision Tree Learning 613
7.6.1 ID3 613
7.6.2 ID3 with Continuous Attributes 622
7.6.3 Incremental Decision Tree Learning 626

7.7 Reinforcement Learning 631
7.7.1 The Problem 631
7.7.2 The Algorithm 632
7.7.3 Pseudo-Code 635
7.7.4 Data Structures and Interfaces 636
7.7.5 Implementation Notes 637
7.7.6 Performance 637
7.7.7 Tailoring Parameters 638
7.7.8 Weaknesses and Realistic Applications 641
7.7.9 Other Ideas in Reinforcement Learning 644

7.8 Artificial Neural Networks 646
7.8.1 Overview 647
7.8.2 The Problem 649

xiv Contents

7.8.3 The Algorithm 650

7.8.4 Pseudo-Code 654

7.8.5 Data Structures and Interfaces 655

7.8.6 Implementation Caveats 657

7.8.7 Performance 658

7.8.8 Other Approaches 658

Exercises 662

Chapter

8 Board Games 667

8.1 Game Theory 668

8.1.1 Types of Games 668

8.1.2 The Game Tree 669

8.2 Minimaxing 671

8.2.1 The Static Evaluation Function 672

8.2.2 Minimaxing 674

8.2.3 The Minimaxing Algorithm 675

8.2.4 Negamaxing 678

8.2.5 AB Pruning 681

8.2.6 The AB Search Window 684

8.2.7 Negascout 686

8.3 Transposition Tables and Memory 689

8.3.1 Hashing Game States 689

8.3.2 What to Store in the Table 692

8.3.3 Hash Table Implementation 693

8.3.4 Replacement Strategies 694

8.3.5 A Complete Transposition Table 695

8.3.6 Transposition Table Issues 696

8.3.7 Using Opponent’s Thinking Time 696

8.4 Memory-Enhanced Test Algorithms 697

8.4.1 Implementing Test 697

8.4.2 The MTD Algorithm 699

8.4.3 Pseudo-Code 700

8.5 Opening Books and Other Set Plays 701

8.5.1 Implementing an Opening Book 702

8.5.2 Learning for Opening Books 702

8.5.3 Set Play Books 703

Contents xv

8.6 Further Optimizations 703
8.6.1 Iterative Deepening 704
8.6.2 Variable Depth Approaches 705

8.7 Turn-Based Strategy Games 706
8.7.1 Impossible Tree Size 706
8.7.2 Real-Time AI in a Turn-Based Game 708

Exercises 708

Part III

Supporting Technologies 711

Chapter

9 Execution Management 713

9.1 Scheduling 714
9.1.1 The Scheduler 714
9.1.2 Interruptible Processes 722
9.1.3 Load-Balancing Scheduler 724
9.1.4 Hierarchical Scheduling 726
9.1.5 Priority Scheduling 728

9.2 Anytime Algorithms 731

9.3 Level of Detail 732
9.3.1 Graphics Level of Detail 732
9.3.2 AI LOD 732
9.3.3 Scheduling LOD 733
9.3.4 Behavioral LOD 734
9.3.5 Group LOD 740
9.3.6 In Summary 743

Exercises 744

Chapter

10 World Interfacing 745

10.1 Communication 745

10.2 Getting Knowledge Efficiently 746
10.2.1 Polling 746
10.2.2 Events 747
10.2.3 Determining What Approach to Use 748

xvi Contents

10.3 Event Managers 748
10.3.1 Implementation 750
10.3.2 Event Casting 753
10.3.3 Inter-Agent Communication 755

10.4 Polling Stations 756
10.4.1 Pseudo-Code 756
10.4.2 Performance 757
10.4.3 Implementation Notes 757
10.4.4 Abstract Polling 758

10.5 Sense Management 759
10.5.1 Faking It 760
10.5.2 What Do We Know? 760
10.5.3 Sensory Modalities 761
10.5.4 Region Sense Manager 767
10.5.5 Finite Element Model Sense Manager 775

Exercises 783

Chapter

11 Tools and Content Creation 785
11.0.1 Toolchains Limit AI 786
11.0.2 Where AI Knowledge Comes from 786

11.1 Knowledge for Pathfinding and Waypoint Tactics 786
11.1.1 Manually Creating Region Data 787
11.1.2 Automatic Graph Creation 789
11.1.3 Geometric Analysis 790
11.1.4 Data Mining 793

11.2 Knowledge for Movement 795
11.2.1 Obstacles 795
11.2.2 High-Level Staging 797

11.3 Knowledge for Decision Making 798
11.3.1 Object Types 798
11.3.2 Concrete Actions 798

11.4 The Toolchain 799
11.4.1 Data-Driven Editors 799
11.4.2 AI Design Tools 800
11.4.3 Remote Debugging 801
11.4.4 Plug-Ins 802

Exercises 802

Contents xvii

Part IV

Designing Game AI 805

Chapter

12 Designing Game AI 807

12.1 The Design 807
12.1.1 Example 808
12.1.2 Evaluating the Behaviors 809
12.1.3 Selecting Techniques 811
12.1.4 The Scope of One Game 813

12.2 Shooters 814
12.2.1 Movement and Firing 814
12.2.2 Decision Making 816
12.2.3 Perception 817
12.2.4 Pathfinding and Tactical AI 818
12.2.5 Shooter-Like Games 818

12.3 Driving 820
12.3.1 Movement 821
12.3.2 Pathfinding and Tactical AI 822
12.3.3 Driving-Like Games 823

12.4 Real-Time Strategy 823
12.4.1 Pathfinding 824
12.4.2 Group Movement 825
12.4.3 Tactical and Strategic AI 825
12.4.4 Decision Making 826

12.5 Sports 827
12.5.1 Physics Prediction 827
12.5.2 Playbooks and Content Creation 828

12.6 Turn-Based Strategy Games 828
12.6.1 Timing 829
12.6.2 Helping the Player 830

Chapter

13 AI-Based Game Genres 831

13.1 Teaching Characters 831
13.1.1 Representing Actions 832
13.1.2 Representing the World 832
13.1.3 Learning Mechanism 833

xviii Contents

13.1.4 Predictable Mental Models and Pathological States 835

13.2 Flocking and Herding Games 836
13.2.1 Making the Creatures 836
13.2.2 Tuning Steering for Interactivity 837
13.2.3 Steering Behavior Stability 838
13.2.4 Ecosystem Design 838

Appendix

References 841

A.1 Books, Periodicals, and Papers 841

A.2 Games 842

Index 847

Acknowledgments

Although our names are on the cover, this book contains relatively little that originated with us,
but on the other hand it contains relatively few references. When the first edition of this book was
written Game AI wasn’t as hot as it is today: it had no textbooks, no canonical body of papers,
and few well-established citations for the origins of its wisdom.

Game AI is a field where techniques, gotchas, traps, and inspirations are shared more often
on the job than in landmark papers. We have drawn the knowledge in this book from a whole
web of developers, stretching out from here to all corners of the gaming world. Although they
undoubtedly deserve it, we’re at a loss how better to acknowledge the contribution of these
unacknowledged innovators.

There are people with whom we have worked closely who have had a more direct influence
on our AI journey. For Ian that includes his PhD supervisor Prof. Aaron Sloman and the team of
core AI programmers he worked with at Mindlathe: Marcin Chady, who is credited several times
for inventions in this book; Stuart Reynolds; Will Stones; and Ed Davis. For John the list includes
his colleagues and former colleagues at AiLive: Brian Cabral, Wolff (Daniel) Dobson, Nigel Duffy,
Rob Kay, Yoichiro Kawano, Andy Kempling, Michael McNally, Ron Musick, Rob Powers, Stuart
Reynolds (again), Xiaoyuan Tu, Dana Wilkinson, Ian Wright, and Wei Yen.

Writing a book is a mammoth task that includes writing text, producing code, creating illustra-
tions, acting on reviews, and checking proofs. We would therefore especially like to acknowledge
the hard work and incisive comments of the review team: Toby Allen, Jessica D. Bayliss, Marcin
Chady (again), David Eberly, John Laird, and Brian Peltonen. We have missed one name from the
list: the late, and sorely missed, Eric Dybsand, who also worked on the reviewing of this book, and
we’re proud to acknowledge that the benefit we gained from his comments are yet another part
of his extensive legacy to the field.

We are particularly grateful for the patience of the editorial team led by Tim Cox at Morgan
Kauffman, aided and abetted by Paul Gottehrer and Jessie Evans, with additional wisdom and
series guidance from Dave Eberly.

Late nights and long days aren’t a hardship when you love what you do. So without doubt the
people who have suffered the worst of the writing process are our families. Ian thanks his wife
Mel for the encouragement to start this and the support to see it through. John also thanks his
wife Xiaoyuan and dedicates his portion of the book to her for all her kind and loving support
over the years.

xix

xx Acknowledgments

Ian would like to dedicate the book to his late friend and colleague Conor Brennan. For two
years during the writing of the first edition he’d constantly ask if it was out yet, and whether he
could get a copy. Despite Conor’s lack of all technical knowledge Ian continually promised him
one on the book’s publication. Conor sadly died just a few weeks before the first edition went to
press.

Conor enjoyed having his name in print. He would proudly show off a mention in Pete
Slosberg’s book Beer for Pete’s Sake. It would have appealed to his wry sense of humor to receive
the dedication of a book whose contents would have baffled him.

Changes to the second edition

One of the things about the first edition of this book that regularly gets very good feedback is
the idea that the book contains a palette of lots of different approaches. This gives readers the
general sense that doing AI in games is about drawing together a bag of useful tools for a specific
project. One developer said, “I love the fact you understand games are about more than just A*
and flocking.”

That general philosophy is carried into the new edition of this book. The major new addition
is of exercises at the end of all the chapters that describe tools and techniques. These exercises are
in response to the widespread use of the book in Game AI courses around the world. Courses
like the one John proposed, designed, developed, and teaches once a year at the University of
California, Santa Cruz. In fact, many of the exercises came out of that course and we are grateful
to the students who over the years have taken CMPS146 – Game AI for all the helpful feedback.

If you’re an instructor teaching a course with Game AI content, solutions to many of the
exercises are available to you online. To gain access to the solutions please send an email to
solutions@ai4g.com. Be sure to include a link to your homepage and the course website so that we
can verify your status.

Preface

In this second edition of the book John joins Ian as a co-author. We have both had long careers in
the world of game AI, but two memories that stand out from Ian’s career provide the philosophical
underpinnings for the book.

The first memory takes place in a dingy computer lab on the top floor of the computer
science building at Birmingham University in the UK. Ian was halfway through the first year of his
Artificial Intelligence degree, and he had only been in the department for a couple of weeks after
transferring from a Mathematics major. Catching up on a semester of work was, unexpectedly,
great fun, and a great bunch of fellow students was eager to help him learn about Expert Systems,
Natural Language Processing, Philosophy of Mind, and the Prolog programming language.

One of his fellow students had written a simple text-based adventure game in Prolog. Ian
was not new to game programming—he was part of the 8-bit bedroom coding scene through his
teenage years, and by this time had written more than ten games himself. But this simple game
completely captivated him. It was the first time he’d seen a finite state machine (FSM) in action.
There was an Ogre, who could be asleep, dozing, distracted, or angry. And you could control his
emotions through hiding, playing a flute, or stealing his dinner.

All thoughts of assignment deadlines were thrown to the wind, and a day later Ian had his
own game in C written with this new technique. It was a mind-altering experience, taking him to
an entirely new understanding of what was possible. The enemies he’d always coded were stuck
following fixed paths or waited until the player came close before homing right in. In the FSM
he saw the prospect of modeling complex emotional states, triggers, and behaviors. And he knew
Game AI was what he wanted to do.

Ian’s second memory is more than ten years later. Using some technology developed to simulate
military tactics, he had founded a company called Mindlathe, dedicated to providing artificial
intelligence middleware to games and other real-time applications. It was more than two years
into development, and the company was well into the process of converting prototypes and legacy
code into a robust AI engine. Ian was working on the steering system, producing a formation
motion plug-in.

On screen he had a team of eight robots wandering through a landscape of trees. Using
techniques in this book, they stayed roughly in formation while avoiding collisions and taking
the easiest route through more difficult terrain. The idea occurred to Ian to combine this with
an existing demo they had of characters using safe tactical locations to hide in. With a few lines
of code he had the formation locked to tactical locations. Rather than robots trying to stay in a

xxi

xxii Preface

V formation, they tried to stick to safe locations, moving forward only if they would otherwise get
left behind. Immediately the result was striking: the robots dashed between cover points, moving
one at a time, so the whole group made steady progress through the forest, but each individual
stayed in cover as long as possible.

The memory persists, not because of that idea, but because it was the fastest and most striking
example of something we will see many times in this book: that incredibly realistic results can be
gained from intelligently combining very simple algorithms.

Both memories, along with our many years of experience have taught us that, with a good
toolbox of simple AI techniques, you can build stunningly realistic game characters—characters
with behaviors that would take far longer to code directly and would be far less flexible to changing
needs and player tactics.

This book is an outworking of our experience. It doesn’t tell you how to build a sophisticated
AI from the ground up. It gives you a huge range of simple (and not so simple) AI techniques that
can be endlessly combined, reused, and parameterized to generate almost any character behavior
that you can conceive.

This is the way we, and most of the developers we know, build game AI. Those who do it
long-hand each time are a dying breed. As development budgets soar, as companies get more risk
averse, and as technology development costs need to be spread over more titles, having a reliable
toolkit of tried-and-tested techniques is the only sane choice.

We hope you’ll find an inspiring palette of techniques in this book that will keep you in realistic
characters for decades to come.

About the Website

This book is associated with a website, at www.ai4g.com, that contains a library of source code
that implements the techniques found in this book. The library is designed to be relatively easy to
read and includes copious comments and demonstration programs.

xxiii

This page intentionally left blank

Part I

AI and Games

This page intentionally left blank

1
Introduction

ame development lives in its own technical world. It has its own idioms, skills, andG challenges. That’s one of the reasons it is so much fun to work on. There’s a reasonably
good chance of being the first person to meet and beat a new programming challenge.

Despite numerous efforts to bring it into line with the rest of the development industry,
going back at least 15 years, the style of programming in a game is still very different from
that in any other sphere of development. There is a focus on speed, but it isn’t very similar to
programming for embedded or control applications. There is a focus on clever algorithms, but
it doesn’t share the same rigor as database server engineering. It draws techniques from a huge
range of different sources, but almost without exception modifies them beyond resemblance. And,
to add an extra layer of intrigue, developers make their modifications in different ways, leaving
algorithms unrecognizable from studio to studio.

As exciting and challenging as this may be, it makes it difficult for developers to get the
information they need. Ten years ago, it was almost impossible to get hold of information about
techniques and algorithms that real developers used in their games. There was an atmosphere of
secrecy, even alchemy, about the coding techniques in top studios. Then came the Internet and an
ever-growing range of websites, along with books, conferences, and periodicals. It is now easier
than ever to teach yourself new techniques in game development.

This book is designed to help you master one element of game development: artificial intelli-
gence (AI). There have been many articles published about different aspects of game AI: websites
on particular techniques, compilations in book form, some introductory texts, and plenty of
lectures at development conferences. But this book covers it all, as a coherent whole.

We have developed many AI modules for lots of different genres of games. We’ve developed
AI middleware tools that have a lot of new research and clever content. We work on research and
development for next-generation AI, and we get to do a lot with some very clever technologies.

Copyright © 2009 by Elsevier Inc. All rights reserved. 3

4 Chapter 1 Introduction

However, throughout this book we’ve tried to resist the temptation to pass off how we think it
should be done as how it is done. Our aim has been to tell it like it is (or for those next-generation
technologies, to tell you how most people agree it will be).

The meat of this book covers a wide range of techniques for game AI. Some of them are barely
techniques, more like a general approach or development style. Some are full-blown algorithms
and others are shallow introductions to huge fields well beyond the scope of this book. In these
cases we’ve tried to give enough technique to understand how and why an approach may be useful
(or not).

We’re aiming this book at a wide range of readers: from hobbyists or students looking to get
a solid understanding of game AI through to professionals who need a comprehensive reference
to techniques they may not have used before.

Before we get into the techniques themselves, this chapter introduces AI, its history, and the
way it is used. We’ll look at a model of AI to help fit the techniques together, and we’ll give some
background on how the rest of the book is structured.

1.1 What Is AI?

Artificial intelligence is about making computers able to perform the thinking tasks that humans
and animals are capable of.

We can already program computers to have superhuman abilities in solving many problems:
arithmetic, sorting, searching, and so on. We can even get computers to play some board games
better than any human being (Reversi or Connect 4, for example). Many of these problems were
originally considered AI problems, but as they have been solved in more and more comprehensive
ways, they have slipped out of the domain of AI developers.

But there are many things that computers aren’t good at which we find trivial: recognizing
familiar faces, speaking our own language, deciding what to do next, and being creative. These
are the domain of AI: trying to work out what kinds of algorithms are needed to display these
properties.

In academia, some AI researchers are motivated by philosophy: understanding the nature
of thought and the nature of intelligence and building software to model how thinking might
work. Some are motivated by psychology: understanding the mechanics of the human brain and
mental processes. Others are motivated by engineering: building algorithms to perform human-
like tasks. This threefold distinction is at the heart of academic AI, and the different mind-sets are
responsible for different subfields of the subject.

As games developers, we are primarily interested in only the engineering side: building algo-
rithms that make game characters appear human or animal-like. Developers have always drawn
from academic research, where that research helps them get the job done.

It is worth taking a quick overview of the AI work done in academia to get a sense of what
exists in the subject and what might be worth plagiarizing. We don’t have the room (or the interest
and patience) to give a complete walk-through of academic AI, but it will be helpful to look at
what kinds of techniques end up in games.

1.1 What Is AI? 5

1.1.1 Academic AI

You can, by and large, divide academic AI into three periods: the early days, the symbolic era, and
the modern era. This is a gross oversimplification, of course, and the three overlap to some extent,
but we find it a useful distinction.

The Early Days

The early days include the time before computers, where philosophy of mind occasionally made
forays into AI with such questions as: “What produces thought?” “Could you give life to an
inanimate object?” “What is the difference between a cadaver and the human it previously was?”
Tangential to this was the popular taste in mechanical robots, particularly in Victorian Europe.
By the turn of the century, mechanical models were created that displayed the kind of animated,
animal-like behaviors that we now employ game artists to create in a modeling package.

In the war effort of the 1940s, the need to break enemy codes and to perform the calculations
required for atomic warfare motivated the development of the first programmable computers.
Given that these machines were being used to perform calculations that would otherwise be done
by a person, it was natural for programmers to be interested in AI. Several computing pioneers
(such as Turing, von Neumann, and Shannon) were also pioneers in early AI. Turing, in particular,
has become an adopted father to the field, as a result of a philosophical paper he published in
1950 [Turing, 1950].

The Symbolic Era

From the late 1950s through to the early 1980s the main thrust of AI research was “symbolic”
systems. A symbolic system is one in which the algorithm is divided into two components: a
set of knowledge (represented as symbols such as words, numbers, sentences, or pictures) and a
reasoning algorithm that manipulates those symbols to create new combinations of symbols that
hopefully represent problem solutions or new knowledge.

An expert system, one of the purest expressions of this approach, is the most famous AI
technique. It has a large database of knowledge and applies rules to the knowledge to discover
new things. Other symbolic approaches applicable to games include blackboard architectures,
pathfinding, decision trees, state machines, and steering algorithms. All of these and many more
are described in this book.

A common feature of symbolic systems is a trade-off: when solving a problem the more
knowledge you have, the less work you need to do in reasoning. Often, reasoning algorithms
consist of searching: trying different possibilities to get the best result. This leads us to the golden
rule of AI: search and knowledge are intrinsically linked. The more knowledge you have, the less
searching for an answer you need; the more search you can do (i.e., the faster you can search), the
less knowledge you need.

It was suggested by researchers Newell and Simon in 1976 that this is the way all intelligent
behavior arises. Unfortunately, despite its having several solid and important features, this theory

6 Chapter 1 Introduction

has been largely discredited. Many people with a recent education in AI are not aware that, as an
engineering trade-off, knowledge versus search is unavoidable. Recent work on the mathematics
of problem solving has proved this theoretically [Wolpert and Macready, 1997], and AI engineers
have always known it.

The Modern Era

Gradually through the 1980s and into the early 1990s, there was an increasing frustration with
symbolic approaches. The frustration came from various directions. From an engineering point
of view, the early successes on simple problems didn’t seem to scale to more difficult problems
or handle the uncertainty and complexity of the real world. It seemed easy to develop AI that
understood (or appeared to understand) simple sentences, but developing an understanding of a
full human language seemed no nearer.

There was also an influential philosophical argument made that symbolic approaches weren’t
biologically plausible. The proponents argued that you can’t understand how a human being plans
a route by using a symbolic route planning algorithm any more than you can understand how
human muscles work by studying a forklift truck.

The effect was a move toward natural computing: techniques inspired by biology or other
natural systems. These techniques include neural networks, genetic algorithms, and simulated
annealing. It is worth noting, however, that some of the techniques that became fashionable in the
1980s and 1990s were invented much earlier. Neural networks, for example, predate the symbolic
era; they were first suggested in 1943 [McCulloch and Pitts, 1943]. Unfortunately, the objective
performance of some of these techniques never matched the evangelising rhetoric of their most
ardent proponents.

Gradually, mainstream AI researchers realized that the key ingredient of this new approach
was not so much the connection to the natural world, but the ability to handle uncertainity
and the importance it placed on solving real-world problems. They understood that techniques
such as neural networks could be explained mathematically in terms of a rigorous probablistic
and statistical framework. Free from the necessity for any natural interpretation, the probablistic
framework could be extended to found the core of modern statistical AI that includes Bayes nets,
support-vector machines (SVMs), and Gaussian processes.

Engineering

The sea change in academic AI is more than a fashion preference. It has made AI a key technol-
ogy that is relevant to solving real-world problems. Google’s search technology, for example, is
underpinned by this new approach to AI. It is no coincidence that Peter Norvig is both Google’s
Director of Research and the co-author (along with his former graduate advisor, professor Stuart
Russell) of the canonical reference for modern academic AI [Russell and Norvig, 2002].

Unfortunately, there was a tendency for a while to throw the baby out with the bath water and
many people bought the hype that symbolic approaches were dead. The reality for the practical
application of AI is that there is no free lunch, and subsequent work has shown that no single

1.1 What Is AI? 7

approach is better than any other. The only way any algorithm can outperform another is to focus
on a specific set of problems. The narrower the problem domain you focus on, the easier it will
be for the algorithm to shine—which, in a roundabout way, brings us back to the golden rule of
AI: search (trying possible solutions) is the other side of the coin to knowledge (knowledge about
the problem is equivalent to narrowing the number of problems your approach is applicable to).

There is now a concerted effort among some of the top statistical AI researchers to create
a unified framework for symbolic and probabilistic computation. It is also important to realize
that engineering applications of statistical computing always use symbolic technology. A voice
recognition program, for example, converts the input signals using known formulae into a format
where the neural network can decode it. The results are then fed through a series of symbolic
algorithms that look at words from a dictionary and the way words are combined in the language.
A stochastic algorithm optimizing the order of a production line will have the rules about pro-
duction encoded into its structure, so it can’t possibly suggest an illegal timetable: the knowledge
is used to reduce the amount of search required.

We’ll look at several statistical computing techniques in this book, useful for specific problems.
We have enough experience to know that for games they are often unnecessary: the same effect
can often be achieved better, faster, and with more control using a simpler approach. Although
it’s changing, overwhelmingly the AI used in games is still symbolic technology.

1.1.2 Game AI

Pac-Man [Midway Games West, Inc., 1979] was the first game many people remember playing
with fledgling AI. Up to that point there had been Pong clones with opponent-controlled bats
(that basically followed the ball up and down) and countless shooters in the Space Invaders mold.
But Pac-Man had definite enemy characters that seemed to conspire against you, moved around
the level just as you did, and made life tough.

Pac-Man relied on a very simple AI technique: a state machine (which we’ll cover later in
Chapter 5). Each of the four monsters (later called ghosts after a disastrously flickering port to the
Atari 2600) was either chasing you or running away. For each state they took a semi-random route
at each junction. In chase mode, each had a different chance of chasing the player or choosing a
random direction. In run-away mode, they either ran away or chose a random direction. All very
simple and very 1979.

Game AI didn’t change much until the mid-1990s. Most computer-controlled characters prior
to then were about as sophisticated as a Pac-Man ghost.

Take a classic like Golden Axe [SEGA Entertainment, Inc., 1987] eight years later. Enemy
characters stood still (or walked back and forward a short distance) until the player got close to
them, whereupon they homed in on the player. Golden Axe had a neat innovation with enemies
that would rush past the player and then switch to homing mode, attacking from behind. The
sophistication of the AI is only a small step from Pac-Man.

In the mid-1990s AI began to be a selling point for games. Games like Beneath a Steel Sky
[Revolution Software Ltd., 1994] even mentioned AI on the back of the box. Unfortunately, its
much-hyped“Virtual Theatre”AI system simply allowed characters to walk backward and forward
through the game—hardly a real advancement.

8 Chapter 1 Introduction

Goldeneye 007 [Rare Ltd., 1997] probably did the most to show gamers what AI could
do to improve gameplay. Still relying on characters with a small number of well-defined states,
Goldeneye added a sense simulation system: characters could see their colleagues and would
notice if they were killed. Sense simulation was the topic of the moment, with Thief: The Dark
Project [Looking Glass Studios, Inc., 1998] and Metal Gear Solid [Konami Corporation, 1998]
basing their whole game design on the technique.

In the mid-1990s real-time strategy (RTS) games also were beginning to take off. Warcraft
[Blizzard Entertainment, 1994] was one of the first times pathfinding was widely noticed in action
(it had actually been used several times before). AI researchers were working with emotional
models of soldiers in a military battlefield simulation in 1998 when they saw Warhammer: Dark
Omen [Mindscape, 1998] doing the same thing. It was also one of the first times people saw
robust formation motion in action.

Recently, an increasing number of games have made AI the point of the game. Creatures
[Cyberlife Technology Ltd., 1997] did this in 1997, but games like The Sims [Maxis Software, Inc.,
2000] and Black and White [Lionhead Studios Ltd., 2001] have carried on the torch. Creatures
still has one of the most complex AI systems seen in a game, with a neural network-based brain
for each creature (that admittedly can often look rather stupid in action).

Now we have a massive diversity of AI in games. Many genres are still using the simple AI
of 1979 because that’s all they need. Bots in first person shooters have seen more interest from
academic AI than any other genre. RTS games have co-opted much of the AI used to build training
simulators for the military (to the extent that Full Spectrum Warrior [Pandemic Studios, 2004]
started life as a military training simulator).

Sports games and driving games in particular have their own AI challenges, some of which
remain largely unsolved (dynamically calculating the fastest way around a race track, for exam-
ple), while role-playing games (RPGs) with complex character interactions still implemented as
conversation trees feel overdue for some better AI. A number of lectures and articles in the last
five or six years have suggested improvements that have not yet materialized in production games.

The AI in most modern games addresses three basic needs: the ability to move characters, the
ability to make decisions about where to move, and the ability to think tactically or strategically.
Even though we’ve gone from using state-based AI everywhere (they are still used in most places)
to a broad range of techniques, they all fulfil the same three basic requirements.

1.2 Model of Game AI

In this book there is a vast zoo of techniques. It would be easy to get lost, so it’s important to
understand how the bits fit together.

To help, we’ve used a consistent structure to understand the AI used in a game. This isn’t the
only possible model, and it isn’t the only model that would benefit from the techniques in this
book. But to make discussions clearer, we will think of each technique as fitting into a general
structure for making intelligent game characters.

Figure 1.1 illustrates this model. It splits the AI task into three sections: movement, decision
making, and strategy. The first two sections contain algorithms that work on a character-by-

1.2 Model of Game AI 9

AI gets given processor time

AI has implications for
related technologies

AI gets turned into on-screen action

AI gets its
information

Character AI

Group AI

Execution management

Content creation

Decision making

W
or

ld
 in

te
rf

ac
e

Movement

Animation Physics

Scripting

Strategy

Figure 1.1 The AI model

character basis, and the last section operates on a whole team or side. Around these three AI
elements is a whole set of additional infrastructure.

Not all game applications require all levels of AI. Board games like Chess or Risk require only
the strategy level; the characters in the game (if they can even be called that) don’t make their own
decisions and don’t need to worry about how to move.

On the other hand, there is no strategy at all in very many games. Characters in a platform
game, such as Jak and Daxter [Naughty Dog, Inc., 2001], or the first Oddworld [Oddworld
Inhabitants, Inc., 1997] game are purely reactive, making their own simple decisions and acting
on them. There is no coordination that makes sure the enemy characters do the best job of
thwarting the player.

1.2.1 Movement

Movement refers to algorithms that turn decisions into some kind of motion. When an enemy
character without a gun needs to attack the player in Super Mario Sunshine [Nintendo Enter-
tainment, Analysis and Development, 2002], it first heads directly for the player. When it is close
enough, it can actually do the attacking. The decision to attack is carried out by a set of movement
algorithms that home in on the player’s location. Only then can the attack animation be played
and the player’s health be depleted.

Movement algorithms can be more complex than simply homing in. A character may need
to avoid obstacles on the way or even work their way through a series of rooms. A guard in
some levels of Splinter Cell [Ubisoft Montreal Studios, 2002] will respond to the appearance of
the player by raising an alarm. This may require navigating to the nearest wall-mounted alarm
point, which can be a long distance away and may involve complex navigation around obstacles
or through corridors.

10 Chapter 1 Introduction

Lots of actions are carried out using animation directly. If a Sim, in The Sims, is sitting by the
table with food in front of him and wants to carry out an eating action, then the eating animation
is simply played. Once the AI has decided that the character should eat, no more AI is needed (the
animation technology used is not covered in this book). If the same character is by the back door
when he wants to eat, however, movement AI needs to guide him to the chair (or to some other
nearby source of food).

1.2.2 Decision Making

Decision making involves a character working out what to do next. Typically, each character has
a range of different behaviors that they could choose to perform: attacking, standing still, hiding,
exploring, patroling, and so on. The decision making system needs to work out which of these
behaviors is the most appropriate at each moment of the game. The chosen behavior can then be
executed using movement AI and animation technology.

At its simplest, a character may have very simple rules for selecting a behavior. The farm
animals in various levels of the Zelda games will stand still unless the player gets too close,
whereupon they will move away a small distance.

At the other extreme, enemies in Half-Life 2 [Valve, 2004] display complex decision making,
where they will try a number of different strategies to reach the player: chaining together inter-
mediate actions such as throwing grenades and laying down suppression fire in order to achieve
their goals.

Some decisions may require movement AI to carry them out. A melee (hand-to-hand) attack
action will require the character to get close to its victim. Others are handled purely by animation
(the Sim eating, for example) or simply by updating the state of the game directly without any
kind of visual feedback (when a country AI in Sid Meier’s Civilization III [Firaxis Games, 2001]
elects to research a new technology, for example, it simply happens with no visual feedback).

1.2.3 Strategy

You can go a long way with movement AI and decision making AI, and most action-based three-
dimensional (3D) games use only these two elements. But to coordinate a whole team, some
strategic AI is required.

In the context of this book, strategy refers to an overall approach used by a group of characters.
In this category are AI algorithms that don’t control just one character, but influence the behavior
of a whole set of characters. Each character in the group may (and usually will) have their own
decision making and movement algorithms, but overall their decision making will be influenced
by a group strategy.

In the original Half-Life [Valve, 1998], enemies worked as a team to surround and eliminate
the player. One would often rush past the player to take up a flanking position. This has been
followed in more recent games such as Tom Clancy’s Ghost Recon [Red Storm Entertainment,
Inc., 2001] with increasing sophistication in the kinds of strategic actions that a team of enemies
can carry out.

1.2 Model of Game AI 11

1.2.4 Infrastructure

AI algorithms on their own are only half of the story, however. In order to actually build AI for
a game, we’ll need a whole set of additional infrastructure. The movement requests need to be
turned into action in the game by using either animation or, increasingly, physics simulation.

Similarly, the AI needs information from the game to make sensible decisions. This is some-
times called “perception” (especially in academic AI): working out what information the character
knows. In practice, it is much broader than just simulating what each character can see or hear,
but includes all interfaces between the game world and the AI. This world interfacing is often a
large proportion of the work done by an AI programmer, and in our experience it is the largest
proportion of the AI debugging effort.

Finally, the whole AI system needs to be managed so it uses the right amount of processor
time and memory. While some kind of execution management typically exists for each area of the
game (level of detail algorithms for rendering, for example), managing the AI raises a whole set
of techniques and algorithms of its own.

Each of these components may be thought of as being out of the remit of the AI developer.
Sometimes they are (in particular, the animation system is almost always part of the graph-
ics engine), but they are so crucial to getting the AI working that they can’t be avoided
altogether. In this book we have covered each infrastructure component except animation in
some depth.

1.2.5 Agent-Based AI

We don’t use the term “agents” very much in this book, even though the model we’ve described is
an agent-based model.

In this context, agent-based AI is about producing autonomous characters that take in infor-
mation from the game data, determine what actions to take based on the information, and carry
out those actions.

It can be seen as bottom-up design: you start by working out how each character will behave
and by implementing the AI needed to support that. The overall behavior of the whole game
is simply a function of how the individual character behaviors work together. The first two
elements of the AI model we use, movement and decision making, make up the AI for an agent in
the game.

In contrast, a non-agent-based AI seeks to work out how everything ought to act from the top
down and builds a single system to simulate everything. An example is the traffic and pedestrian
simulation in the cities of Grand Theft Auto 3 [DMA Design, 2001]. The overall traffic and
pedestrian flows are calculated based on the time of day and city region and are only turned into
individual cars and people when the player can see them.

The distinction is hazy, however. We’ll look at level of detail techniques that are very much top
down, while most of the character AI is bottom up. A good AI developer will mix and match any
reliable techniques that get the job done, regardless of the approach. That pragmatic approach is
the one we always follow. So in this book, we avoid using agent-based terminology. We prefer to
talk about game characters in general, however they are structured.

12 Chapter 1 Introduction

1.2.6 In the Book

In the text of the book each chapter will refer back to this model of AI, pointing out where it
fits in. The model is useful for understanding how things fit together and which techniques are
alternatives for others.

But the dividing lines aren’t always sharp; this is intended to be a general model, not a
straightjacket. In the final game code there are no joins. The whole set of AI techniques from each
category, as well as a lot of the infrastructure, will all operate seamlessly together.

Many techniques fulfill roles in more than one category. Pathfinding, for example, can be both
a movement and a decision making technique. Similarly, some tactical algorithms that analyze
the threats and opportunities in a game environment can be used as decision makers for a single
character or to determine the strategy of a whole team.

1.3 Algorithms, Data Structures,
and Representations

There are three key elements to implementing the techniques described in this book: the algorithm
itself, the data structures that the algorithm depends on, and the way the game world is represented
to the algorithm (often encoded as an appropriate data structure). Each element is dealt with
separately in the text.

1.3.1 Algorithms

Algorithms are step-by-step processes that generate a solution to an AI problem. We will look at
algorithms that generate routes through a game level to reach a goal, algorithms that work out
which direction to move in to intercept a fleeing enemy, algorithms that learn what the player will
do next, and many others.

Data structures are the other side of the coin to algorithms. They hold data in such a way
that an algorithm can rapidly manipulate it to reach a solution. Often, data structures need to
be particularly tuned for one particular algorithm, and their execution speeds are intrinsically
linked.

You will need to know a set of elements to implement and tune an algorithm, and these are
treated step by step in the text:

� The problem that the algorithm tries to solve

� A general description of how the solution works, including diagrams where they are needed

� A pseudo-code presentation of the algorithm

� An indication of the data structures required to support the algorithm, including pseudo-
code, where required

1.3 Algorithms, Data Structures, and Representations 13

� Particular implementation nodes

� Analysis of the algorithm’s performance: its execution speed, memory footprint, and
scalability

� Weaknesses in the approach

Often, a set of algorithms is presented that gets increasingly more efficient. The simpler
algorithms are presented to help you get a feeling for why the complex algorithms have their
structure. The stepping-stones are described a little more sketchily than the full system.

Some of the key algorithms in game AI have literally hundreds of variations. This book can’t
hope to catalog and describe them all. When a key algorithm is described, we will often give a
quick survey of the major variations in briefer terms.

Performance Characteristics

To the greatest extent possible, we have tried to include execution properties of the algorithm in
each case. Execution speed and memory consumption often depend on the size of the problem
being considered. We have used the standard O() notation to indicate the order of the most
significant element in this scaling.

An algorithm might be described as being O(n log n) in execution and O(n) in memory, where
n is usually some kind of component of the problem, such as the number of other characters in
the area or the number of power-ups in the level.

Any good text on general algorithm design will give a full mathematical treatment of how
O() values are arrived at and the implications they have for the real-world performance of an
algorithm. In this book we will omit derivations; they’re not useful for practical implementation.
We’ll rely instead on a general indication. Where a complete indication of the complexity is too
involved, we’ll indicate the approximate running time or memory in the text, rather than attempt
to derive an accurate O() value.

Some algorithms have confusing performance characteristics. It is possible to set up highly
improbable situations to deliberately make them perform poorly. In regular use (and certainly in
any use you’re likely to have in a game), they will have much better performance. When this is the
case, we’ve tried to indicate both the expected and the worst case results. You can probably ignore
the worst case value safely.

Pseudo-Code

Algorithms in this book are presented in pseudo-code for brevity and simplicity. Pseudo-code is a
fake programming language that cuts out any implementation details particular to one program-
ming language, but describes the algorithm in sufficient detail so that implementing it becomes
simple. The pseudo-code in this book has more of a programming language feel than some in pure
algorithm books (because the algorithms contained here are often intimately tied to surrounding
bits of software in a way that is more naturally captured with programming idioms).

14 Chapter 1 Introduction

In particular, many AI algorithms need to work with relatively sophisticated data structures:
lists, tables, and so on. In C++ these structures are available as libraries only and are accessed
through functions. To make what is going on clearer, the pseudo-code treats these data structures
transparently, simplifying the code significantly.

When creating the pseudo-code in this book, we’ve stuck to these conventions, where possible:

� Indentation indicates block structure and is normally preceded by a colon. There are no
including braces or “end” statements. This makes for much simpler code, with less redundant
lines to bloat the listings. Good programming style always uses indentation as well as other
block markers, so we may as well just use indentation.

� Functions are introduced by the keyword def, and classes are introduced by the keywords
class or struct. Inherited classes are given after the class name, in parentheses. Just as in
C++, the only difference between classes and structures is that structures are intended to
have their member variables accessed directly.

� Looping constructs are while a and for a in b. The for loop can iterate over any array. It
can also iterate over a series of numbers (in C++ style), using the syntax for a in 0..5. The
latter item of syntax is a range.

� Ranges always include their lowest value, but not their highest, so 1..4 includes the numbers
(1,2,3) only. Ranges can be open, such as 1.., which is all numbers greater than or equal
to 1; or ..4, which is identical to 0..4. Ranges can be decreasing, but notice that the highest
value is still not in the range: 4..0 is the set (3,2,1,0).1

� All variables are local to the function or method. Variables declared within a class definition,
but not in a method, are class instance variables.

� The single equal sign “=” is an assignment operator, whereas the double equal sign “==” is an
equality test.

� Boolean operators are “and,”“or,” and “not.”

� Class methods are accessed by name using a period between the instance variable and the
method—for example, instance.variable().

� The symbol “#” introduces a comment for the remainder of the line.

� Array elements are given in square brackets and are zero indexed (i.e., the first element of
array a is a[0]). A sub-array is signified with a range in brackets, so a[2..5] is the sub-array
consisting of the 3rd to 5th elements of the array a. Open range forms are valid: a[1..] is a
sub-array containing all but the first element of a.

� In general, we assume that arrays are equivalent to lists. We can write them as lists and freely
add and remove elements: if an array a is [0,1,2] and we write a += 3, then a will have the
value [0,1,2,3].

� Boolean values can be either “true” or “false.”

1. The justification for this interpretation is connected with the way that loops are normally used to iterate over an array.
Indices for an array are commonly expressed as the range 0..length(array), in which case we don’t want the last item in
the range. If we are iterating backward, then the range length(array)..0 is similarly the one we need. We were undecided
about this interpretation for a long time, but felt that the pseudo-code was more readable if it didn’t contain lots of “-1”
values.

1.3 Algorithms, Data Structures, and Representations 15

As an example, the following sample is pseudo-code for a simple algorithm to select the highest
value from an unsorted array:

def maximum(array):
max = array[0]
for element in array[1..]:

if element > max: max = element
return max

Occasionally, an algorithm-specific bit of syntax will be explained as it arises in the text.
Programming polymaths will probably notice that the pseudo-code has more than a passing

resemblance to the Python programming language, with Ruby-like structures popping up occa-
sionally and a seasoning of Lua. This is deliberate, insofar as Python is an easy-to-read language.
Nonetheless, they are still pseudo-code and not Python implementations, and any similarity is
not supposed to suggest a language or an implementation bias.2

1.3.2 Representations

Information in the game often needs to be turned into a suitable format for use by the AI. Often,
this means converting it to a different representation or data structure. The game might store the
level as sets of geometry and the character positions as 3D locations in the world.

The AI will often need to convert this information into formats suitable for efficient processing.
This conversion is a critical process because it often loses information (that’s the point: to simplify
out the irrelevant details), and you always run the risk of losing the wrong bits of data.

Representations are a key element of AI, and certain key representations are particularly
important in game AI. Several of the algorithms in the book require the game to be presented to
them in a particular format.

Although very similar to a data structure, we will often not worry directly about how the
representation is implemented, but instead will focus on the interface it presents to the AI code.
This makes it easier for you to integrate the AI techniques into your game, simply by creating the
right glue code to turn your game data into the representation needed by the algorithms.

For example, imagine we want to work out if a character feels healthy or not as part of some
algorithm for determining its actions. We might simply require a representation of the character
with a method we can call:

class Character:
Returns true if the character feels healthy,
and false otherwise.
def feelsHealthy()

2. In fact, while Python and Ruby are good languages for rapid prototyping, they are too slow for building the core AI engine
in a production game. They are sometimes used as scripting languages in a game, and we’ll cover their use in that context
in Chapter 5.

16 Chapter 1 Introduction

You may then implement this by checking against the character’s health score, by keeping a
Boolean“healthy” value for each character, or even by running a whole algorithm to determine the
character’s psychological state and its perception of its own health. As far as the decision making
routine is concerned, it doesn’t matter how the value is being generated.

The pseudo-code defines an interface (in the object-oriented sense) that can be implemented
in any way you choose.

When a representation is particularly important or tricky (and there are several that are), we
will describe possible implementations in some depth.

1.4 On the Website

The text of this book contains no C++ source code. This is deliberate. The algorithms given in
pseudo-code can simply be converted into any language you would like to use. As we’ll see, many
games have some AI written in C++ and some written in a scripting language. It is easier to
reimplement the pseudo-code into any language you choose than it would be if it were full of
C++ idioms.

The listings are also about half the length of the equivalent full C++ source code. In our
experience, full source code listings in the text of a book are rarely useful and often bloat the size
of the book dramatically.

Most developers use C++ (although a significant but rapidly falling number use C) for their
core AI code. In places some of the discussion of data structures and optimizations will assume
that you are using C++, because the optimizations are C++ specific.

Despite this, there are significant numbers using other languages such as Java, Lisp, Lua, Lingo,
ActionScript, or Python, particularly as scripting languages. We’ve personally worked with all these
languages at one point or another, so we’ve tried to be as implementation independent as possible
in the discussion of algorithms.

But you will want to implement this stuff; otherwise, what’s the point? And you’re more
than likely going to want to implement it in C++, so we’ve provided source code at the website
associated with this book (http://www.ai4g.com) rather than in the text. You can run this code
directly or use it as the basis of your own implementations. The code is commented and (if we do
say so ourselves) well structured.

The licence for this source code is very liberal, but make sure you do read the licence.txt file
on the website before you use it.

1.4.1 Programs

A range of executable programs is available at the website that illustrates topics in the book. The
book will occasionally refer to these programs. When you see the Program website icon in the

Program

left margin, it is a good idea to run the accompanying program. Lots of AI is inherently dynamic:
things move. It is much easier to see some of the algorithms working in this way than trying to
figure them out from screenshots.

1.4 On the Website 17

1.4.2 Libraries

The executables use the basic source code for each technique. This source code is available at

Library

the website and forms an elementary AI library that you can use and extend for your own
requirements. When an algorithm or data structure is implemented in the library, it will be
indicated by the Library website icon in the left margin.

Optimizations

The library source code on the website is suitable for running on any platform, including consoles,
with minimal changes. The executable software is designed for a PC running Windows only
(a complete set of requirements is given in the readme.txt file with the source code on the
website).

We have not included all the optimizations for some techniques that we would use in produc-
tion code. Many optimizations are very esoteric; they are aimed at getting around performance
bottlenecks particular to a given console, graphics engine, or graphics card. Some optimizations
can only be sensibly implemented in machine-specific assembly language (such as making the best
use of different processors on the PC), and most complicate the code so that the core algorithms
cannot be properly understood.

Our aim in this book is always that a competent developer can take the source code and use
it in a real game development situation, using their knowledge of standard optimization and
profiling techniques to make changes where needed. A less hard-core developer can use the source
code with minor modifications. In very many cases the code is sufficiently efficient to be used as
is, without further work.

Rendering and Maths

We’ve also included a simple rendering and mathematics framework for the executable programs
on the website. This can be used as is, but it is more likely that you will replace it with the math
and rendering libraries in your game engine.

Our implementation of these libraries is as simple as we could possibly make it. We’ve made
no effort to structure this for performance or its usability in a commercial game. But we hope
you’ll find it easy to understand and transparent enough that you can get right to the meat of the
AI code.

Updating the Code

Inevitably, code is constantly evolving. New features are added, and bugs are discovered and fixed.
We are constantly working on the AI code and would suggest that you may want to check back at
the website from time to time to see if there’s an update.

18 Chapter 1 Introduction

1.5 Layout of the Book

This book is split into five sections.
Part I introduces AI and games in Chapters 1 and 2, giving an overview of the book and the

challenges that face the AI developer in producing interesting game characters.
Part II is the meat of the technology in the book, presenting a range of different algorithms

and representations for each area of our AI model. It contains chapters on decision making and
movement and a specific chapter on pathfinding (a key element of game AI that has elements of
both decision making and movement). It also contains information on tactical and strategic AI,
including AI for groups of characters. There is a chapter on learning, a key frontier in game AI,
and finally a chapter on board game AI. None of these chapters attempts to connect the pieces into
a complete game AI. It is a pick and mix array of techniques that can be used to get the job done.

Part III looks at the technologies that enable the AI to do its job. It covers everything from
execution management to world interfacing and getting the game content into an AI-friendly
format.

Part IV looks at designing AI for games. It contains a genre-by-genre breakdown of the way
techniques are often combined to make a full game. If you are stuck trying to choose among
the range of different technique options, you can look up your game style here and see what is
normally done (then do it differently, perhaps). It also looks at a handful of AI-specific game
genres that seek to use the AI in the book as the central gameplay mechanic.

Finally, appendices provide references to other sources of information.

2
Game AI

efore going into detail with particular techniques and algorithms, it is worth spending aB little time thinking about what we need from our game’s AI. This chapter looks at the
high-level issues around game AI: what kinds of approaches work, what they need to take account
of, and how they can all be put together.

2.1 The Complexity Fallacy

It is a common mistake to think that the more complex the AI in a game, the better the characters
will look to the player. Creating good AI is all about matching the right behaviors to the right
algorithms. There is a bewildering array of techniques in this book, and the right one isn’t always
the most obvious choice.

Countless examples of difficult to implement, complex AI have come out looking stupid.
Equally, a very simple technique used well can be perfect.

2.1.1 When Simple Things Look Good

In the last chapter we mentioned Pac-Man [Midway Games West, Inc., 1979], one of the first
games with any form of character AI. The AI has two states: one normal state when the player is
collecting pips and another state when the player has eaten the power-up and is out for revenge.

In their normal state, each of the four ghosts (or monsters) moves in a straight line until it
reaches a junction. At a junction, they semi-randomly choose a route to move to next. Each ghost
chooses either to take the route that is in the direction of the player (as calculated by a simple

Copyright © 2009 by Elsevier Inc. All rights reserved. 19

20 Chapter 2 Game AI

offset to the player’s location, no pathfinding at work) or to take a random route. The choice
depends on the ghost: each has a different likelihood of doing one or the other.

This is about as simple as you can imagine an AI. Any simpler and the ghosts would be either
very predictable (if they always homed in) or purely random. The combination of the two gives
great gameplay. In fact, the different biases of each ghost are enough to make the four together a
significant opposing force—so much so that the AI to this day gets comments. For example, this
comment recently appeared on a website: “To give the game some tension, some clever AI was
programmed into the game. The ghosts would group up, attack the player, then disperse. Each
ghost had its own AI.”

Other players have reported strategies among the ghosts: “The four of them are programmed
to set a trap, with Blinky leading the player into an ambush where the other three lie in wait.”

The same thing has been reported by many other developers on their games. Chris Kingsley of
Rebellion talks about an unpublished Nintendo Game Boy title in which enemy characters home
in on the player, but sidestep at random intervals as they move forward. Players reported that
characters were able to anticipate their firing patterns and dodge out of the way. Obviously, they
couldn’t always anticipate it, but a timely sidestep at a crucial moment stayed in their minds and
shaped their perception of the AI.

2.1.2 When Complex Things Look Bad

Of course, the opposite thing can easily happen. A game that many looked forward to immensely
was Herdy Gerdy [Core Design Ltd., 2002], one of the games Sony used to tout the new gameplay
possibilities of their PlayStation 2 hardware before it was launched. The game is a herding game.
An ecosystem of characters is present in the game level. The player has to herd individuals of
different species into their corresponding pens. Herding had been used before and has since as
a component of a bigger game, but in Herdy Gerdy it constituted all of the gameplay. There is a
section on AI for this kind of game in Chapter 13.

Unfortunately, the characters neglected the basics of movement AI. It was easy to get them
caught on the scenery, and their collision detection could leave them stuck in irretrievable places.
The actual effect was one of frustration.

Unlike Herdy Gerdy, Black and White [Lionhead Studios Ltd., 2001] achieved significant sales
success. But at places it also suffered from great AI looking bad. The game involves teaching a
character what to do by a combination of example and feedback. When people first play through
the game, they often end up inadvertently teaching the creature bad habits, and it ends up being
unable to carry out even the most basic actions. By paying more attention to how the creature
works players are able to manipulate it better, but the illusion of teaching a real creature can
be gone.

Most of the complex things we’ve seen that looked bad never made it to the final game. It is a
perennial temptation for developers to use the latest techniques and the most hyped algorithms
to implement their character AI. Late in development, when a learning AI still can’t learn how to
steer a car around a track without driving off at every corner, the simpler algorithms invariably
come to the rescue and make it into the game’s release.

2.1 The Complexity Fallacy 21

Knowing when to be complex and when to stay simple is the most difficult element of the game
AI programmer’s art. The best AI programmers are those who can use a very simple technique to
give the illusion of complexity.

2.1.3 The Perception Window

Unless your AI is controlling an ever-present sidekick or a one-on-one enemy, chances are your
player will only come across a character for a short time.

This can be a significantly short time for disposable guards whose life purpose is to be shot.
More difficult enemies can be on-screen for a few minutes as their downfall is plotted and executed.

When we size someone up in real life, we naturally put ourselves into their shoes. We look at
their surroundings, the information they are gleaning from their environment, and the actions
they are carrying out. A guard standing in a dark room hears a noise: “I’d flick the light switch,”
we think. If the guard doesn’t do that, we think he’s stupid.

If we only catch a glimpse of someone for a short while, we don’t have enough time to
understand their situation. If we see a guard who has heard a noise suddenly turn away and move
slowly in the opposite direction, we assume the AI is faulty. The guard should have moved across
the room toward the noise. If we do hang around for a bit longer and see the guard head over
to a light switch by the exit, we will understand his action. Then again, the guard might not flick
on the light switch, and we take that as a sign of poor implementation. But the guard may know
that the light is inoperable, or he may have been waiting for a colleague to slip some cigarettes
under the door and thought the noise was a predefined signal. If we knew all that, we’d know the
action was intelligent after all.

This no-win situation is the perception window. You need to make sure that a character’s AI
matches its purpose in the game and the attention it will get from the player. Adding more AI to
incidental characters might endear you to the rare gamer who plays each level for several hours,
checking for curious behavior or bugs, but everyone else (including the publisher and the press)
may think your programming was sloppy.

2.1.4 Changes of Behavior

The perception window isn’t only about time. Think about the ghosts in Pac-Man again. They
might not give the impression of sentience, but they don’t do anything out of place. This is because
they rarely change behavior (the only occasion being their transformation when the player eats a
power-up).

Whenever a character in a game changes behavior, the change is far more noticeable than the
behavior itself. In the same way, when a character’s behavior should obviously change and doesn’t,
warning bells sound. If two guards are standing talking to each other and you shoot one down,
the other guard shouldn’t carry on the conversation!

A change in behavior almost always occurs when the player is nearby or has been spotted.
This is the same in platform games as it is in real-time strategy. A good solution is to keep only
two behaviors for incidental characters—a normal action and a player-spotted action.

22 Chapter 2 Game AI

2.2 The Kind of AI in Games

Games have always come under criticism for being poorly programmed (in a software engineering
sense): they use tricks, arcane optimizations, and unproven technologies to get extra speed or neat
effects. Game AI is no different. One of the biggest barriers between game AI people and AI
academics is what qualifies as AI.

In our experience, AI for a game is equal parts hacking (ad hoc solutions and neat effects),
heuristics (rules of thumb that only work in most, but not all, cases), and algorithms (the “proper”
stuff). Most of this book is aimed at the last group, because that’s the stuff we can examine
analytically, can use in multiple games, and can form the basis of an AI engine with.

But the first two categories are just as important and can breathe as much life into characters
as the most complicated algorithm.

2.2.1 Hacks

There’s a saying that goes “If it looks like a fish and smells like a fish, it’s probably a fish.” The
psychological correlate is behaviorism. We study behavior, and by understanding how a behavior
is constructed, we understand all we can about the thing that is behaving.

As a psychological approach it has its adherents but has been largely superseded (especially
with the advent of neuropsychology). This fall from fashion has influenced AI, too. Whereas at one
point it was quite acceptable to learn about human intelligence by making a machine to replicate
it, it is now considered poor science. And with good reason; after all, building a machine to play
Chess involves algorithms that look tens of moves ahead. Human beings are simply not capable
of this.

On the other hand, for in-game AI, behaviorism is often the way to go. We are not interested in
the nature of reality or mind; we want characters that look right. In most cases, this means starting
from human behaviors and trying to work out the easiest way to implement them in software.

Good AI in games usually works in this direction. Developers rarely build a great new algorithm
and then ask themselves,“So what can I do with this?” Instead, you start with a design for a chara-
cter and apply the most relevant tool to get the result.

This means that what qualifies as game AI may be unrecognizable as an AI technique. In the
previous chapter, we looked at the AI for Pac-Man ghosts—a simple random number generator
applied judiciously. Generating a random number isn’t an AI technique as such. In most languages
there are built-in functions to get a random number, so there is certainly no point giving an
algorithm for it! But it can work in a surprising number of situations.

Another good example of creative AI development is The Sims [Maxis Software, Inc., 2000].
While there are reasonably complicated things going on under the surface, a lot of the character
behavior is communicated with animation. In Star Wars: Episode 1 Racer [LucasArts Enter-
tainment Company LLC, 1999], characters who are annoyed will give a little sideswipe to other
characters. Quake II [id Software, Inc., 1997] has the “gesture” command where characters (and
players) can flip their enemy off. All these require no significant AI infrastructure. They don’t
need complicated cognitive models, learning, or genetic algorithms. They just need a simple bit
of code that performs an animation at the right point.

2.2 The Kind of AI in Games 23

Always be on the look out for simple things that can give the illusion of intelligence. If you want
engaging emotional characters, is it possible to add a couple of emotion animations (a frustrated
rub of the temple, perhaps, or a stamp of the foot) to your game design? Triggering these in the
right place is much easier than trying to represent the character’s emotional state through their
actions. Do you have a bunch of behaviors that the character will choose from? Will the choice
involve complex weighing of many factors? If so, it might be worth trying a version of the AI
that picks a behavior purely at random (maybe with different probabilities for each behavior).
You might be able to tell the difference, but your customers may not; so try it out on a quality
assurance guy.

2.2.2 Heuristics

A heuristic is a rule of thumb, an approximate solution that might work in many situations but is
unlikely to work in all.

Human beings use heuristics all the time. We don’t try to work out all the consequences of
our actions. Instead, we rely on general principles that we’ve found to work in the past (or that
we have been brainwashed with, equally). It might range from something as simple as “if you lose
something then retrace your steps” to heuristics that govern our life choices, such as “never trust
a used-car salesman.”

Heuristics have been codified and incorporated into some of the algorithms in this book, and
saying “heuristic” to an AI programmer often conjures up images of pathfinding or goal-oriented
behaviors. Still, many of the techniques in this book rely on heuristics that may not always
be explicit. There is a trade-off between speed and accuracy in areas such as decision making,
movement, and tactical thinking (including board game AI). When accuracy is sacrificed, it is
usually by replacing the search for a correct answer with a heuristic.

A wide range of heuristics can be applied to general AI problems that don’t require a particular
algorithm.

In our perennial Pac-Man example, the ghosts home in on the player by taking the route at a
junction that leads toward its current position. The route to the player might be quite complex;
it may involve turning back on oneself, and it might be ultimately fruitless if the player continues
to move. But the rule of thumb (move in the current direction of the player) works and provides
sufficient competence for the player to understand that the ghosts aren’t purely random in their
motion.

In Warcraft [Blizzard Entertainment, 1994] (and many other RTS games that followed) there
is a heuristic that moves a character forward slightly into ranged-weapon range if an enemy is a
fraction beyond the character’s reach. While this worked in most cases, it wasn’t always the best
option. Many players got frustrated as comprehensive defensive structures went walkabout when
enemies came close. Later, RTS games allowed the player to choose whether this behavior was
switched on or not.

In many strategic games, including board games, different units or pieces are given a single
numeric value to represent how“good”they are. This is a heuristic; it replaces complex calculations
about the capabilities of a unit with a single number. And the number can be defined by the
programmer in advance. The AI can work out which side is ahead simply by adding the numbers.

24 Chapter 2 Game AI

In an RTS it can find the best value offensive unit to build by comparing the number with the
cost. A lot of useful effects can be achieved just by manipulating the number.

There isn’t an algorithm or a technique for this. And you won’t find it in published AI research.
But it is the bread and butter of an AI programmer’s job.

Common Heuristics

A handful of heuristics appears over and over in AI and software in general. They are good starting
points when initially tackling a problem.

Most Constrained

Given the current state of the world, one item in a set needs to be chosen. The item chosen should
be the one that would be an option for the fewest number of states.

For example, a group of characters come across an ambush. One of the ambushers is wearing
phased force-field armor. Only the new, and rare, laser rifle can penetrate it. One character has
this rifle. When they select who to attack, the most constrained heuristic comes into play; it is rare
to be able to attack this enemy, so that is the action that should be taken.

Do the Most Difficult Thing First

The hardest thing to do often has implications for lots of other actions. It is better to do this first,
rather than find that the easy stuff goes well but is ultimately wasted. This is a case of the most
constrained heuristic, above.

For example, an army has two squads with empty slots. The computer schedules the creation
of five Orc warriors and a huge Stone Troll. It wants to end up with balanced squads. How should
it assign the units to squads? The Stone Troll is the hardest to assign, so it should be done first.

If the Orcs were assigned first, they would be balanced between the two squads, leaving room
for half a Troll in each squad, but nowhere for the Troll to go.

Try the Most Promising Thing First

If there are a number of options open to the AI, it is often possible to give each one a really rough-
and-ready score. Even if this score is dramatically inaccurate, trying the options in decreasing
score order will provide better performance than trying things purely at random.

2.2.3 Algorithms

And so we come to the final third of the AI programmer’s job: building algorithms to support
interesting character behavior. Hacks and heuristics will get you a long way, but relying on them
solely means you’ll have to constantly reinvent the wheel. General bits of AI, such as movement,
decision making, and tactical thinking all benefit from tried and tested methods that can be
endlessly reused.

2.3 Speed and Memory 25

This book is about this kind of technique, and the next part introduces a large number of
them. Just remember that for every situation where a complex algorithm is the best way to go,
there are likely to be at least five where a simpler hack or heuristic will get the job done.

2.3 Speed and Memory

The biggest constraint on the AI developer’s job is the physical limitations of the game’s machine.
Game AI doesn’t have the luxury of days of processing time and gigabytes of memory. Developers
often work to a speed and memory budget for their AI.

One of the major reasons why new AI techniques don’t achieve widespread use is their process-
ing time or memory requirements. What might look like a compelling algorithm in a simple demo
(such as the example programs on the website associated with this book) can slow a production
game to a standstill.

This section looks at low-level hardware issues related to the design and construction of AI
code. Most of what is contained here is general advice for all game code. If you’re up to date with
current game programming issues and just want to get to the AI, you can safely skip this section.

2.3.1 Processor Issues

The most obvious limitation on the efficiency of a game is the speed of the processor on which it is
running. As graphics technology has improved, there is an increasing tendency to move graphics
functions onto the graphics hardware. Typical processor bound activities, like animation and
collision detection, are being shared between GPU and CPU or moved completely to the graphics
chips.

This frees up a significant amount of processing power for AI and other new technologies
(physics most notably, although environmental audio is also more prominent now). The share
of the processing time dedicated to AI has grown in fits and starts over the last five years to
around 20% in many cases and over 50% in some. This is obviously good news for AI developers
wanting to apply more complicated algorithms, particularly to decision making and strategizing.
But, while incremental improvements in processor time help unlock new techniques, they don’t
solve the underlying problem. Many AI algorithms take a long time to run. A comprehensive
pathfinding system can take tens of milliseconds to run per character. Clearly, in an RTS with
1000 characters, there is no chance of running each frame for many years to come.

Complex AI that does work in games needs to be split into bite-size components that can be
distributed over multiple frames. The chapter on resource management shows how to accomplish
this. Applying these techniques to any AI algorithm can bring it into the realm of usability.

SIMD

As well as faster processing and increasing AI budgets, modern games CPUs have additional
features that help things move faster. Most have dedicated SIMD (single instruction, multiple

26 Chapter 2 Game AI

data) processing, a parallel programming technique where a single program is applied to several
items of data at the same time, just as it sounds. So, if each character needs to calculate the
Euclidean distance to its nearest enemy and the direction to run away, the AI can be written in
such a way that multiple characters (usually four on current hardware) can perform the calculation
at the same time.

There are several algorithms in this book that benefit dramatically from SIMD implementation
(the steering algorithms being the most obvious). But, in general, it is possible to speed up
almost all the algorithms with judicious use of SIMD. On consoles, SIMD may be performed in a
conceptually separate processing unit. In this case the communication between the main CPU and
the SIMD units, as well as the additional code to synchronize their operation, can often eliminate
the speed advantage of parallelizing a section of code.

In this book we’ve not provided SIMD implementations for algorithms. The use of SIMD is
very much dependent on having several characters doing the same thing at the same time. Data for
each set of characters must be stored together (rather than having all the data for each character
together, as is normal), so the SIMD units can find them as a whole. This leads to dramatic code
restructuring and a significant decrease in the readability of many algorithms. Since this book is
about techniques, rather than low-level coding, we’ll leave parallelization as an implementation
exercise, if your game needs it.

Multi-Core Processing and Hyper-Threading

Modern processors have several execution paths active at the same time. Code is passed into the
processor, dividing into several pipelines which execute in parallel. The results from each pipeline
are then recombined into the final result of the original code. When the result of one pipeline
depends on the result of another, this can involve backtracking and repeating a set of instructions.
There is a set of algorithms on the processor that works out how and where to split the code and
predicts the likely outcome of certain dependent operations; this is called branch prediction. This
design of processor is called super-scalar.

Normal threading is the process of allowing different bits of code to process at the same time.
Since in a serial computer this is not possible, it is simulated by rapidly switching backward and
forward between different parts of the code. At each switch (managed by the operating system
or manually implemented on many consoles), all the relevant data must also be switched. This
switching can be a slow process and can burn precious cycles.

Hyper-threading is an Intel trademark for using the super-scalar nature of the processor to
send different threads down different pipelines. Each pipeline can be given a different thread to
process, allowing threads to be genuinely processed in parallel.

The processors in current-generation consoles (PlayStation 3, Xbox 360, and so on) are all
multi-core. Newer PC processors from all vendors also have the same structure.

A multi-core processor effectively has multiple separate processing systems (each may be
super-scalar in addition). Different threads can be assigned to different processor cores, giving
the same kind of hyper-threading style speed ups (greater in fact, because there are even fewer
interdependencies between pipelines).

In either case, the AI code can take advantage of this parallelism by running AI for different
characters in different threads, to be assigned to different processing paths. On some platforms

2.3 Speed and Memory 27

(Intel-based PCs, for example), this simply requires an additional function call to set up. On
others (PlayStation 3, for example), it needs to be thought of early and to have the entire AI code
structured accordingly.

All indications are that there will be an increasing degree of parallelism in future hardware
platforms, particularly in the console space where it is cheaper to leverage processing power using
multiple simpler processors rather than a single behemoth CPU. It will not be called hyper-
threading (other than by Intel), but the technique is here to stay and will be a key component of
game development on all platforms until the end of the decade at least.

Virtual Functions/Indirection

There is one particular trade-off that is keenly felt among AI programmers: the trade-off between
flexibility and the use of indirect function calls.

In a conventional function call, the machine code contains the address of the code where
the function is implemented. The processor jumps between locations in memory and continues
processing at the new location (after performing various actions to make sure the function can
return to the right place). The super-scalar processor logic is optimized for this, and it can predict,
to some extent, how the jump will occur.

An indirect function call is a little different. It stores the location of the function’s code in
memory. The processor fetches the contents of the memory location and then jumps to the
location it specifies. This is how virtual function calls in C++ are implemented: the function
location is looked up in memory (in the virtual function table) before being executed.

This extra memory load adds a trivial amount of time to processing, but it plays havoc with
the branch predictor on the processor (and has negative effects on the memory cache, as we’ll
see below). Because the processor can’t predict where it will be going, it often stalls, waits for all
of its pipelines to finish what they are doing, and then picks up where it left off. This can also
involve additional clean-up code being run in the processor. Low-level timing shows that indirect
function calls are typically much more costly than direct function calls.

Traditional game development wisdom is to avoid unnecessary function calls of any kind,
particularly indirect function calls, but virtual function calls make code far more flexible. They
allow an algorithm to be developed that works in many different situations. A chase behavior,
for example, doesn’t need to know what it’s chasing, as long as it can get the location of its
target easily.

AI, in particular, benefits immensely from being able to slot in different behaviors. This is
called polymorphism in an object-oriented language: writing an algorithm to use a generic object
and allowing a range of different implementations to slot in.

We’ve used polymorphism throughout this book, and we’ve used it throughout many of the
game AI systems we’ve developed. We felt it was clearer to show algorithms in a completely
polymorphic style, even though some of the flexibility may be optimized out in the production
code. Several of the implementations in the source code on the website do this: removing the
polymorphism to give an optimized solution for a subset of problems.

It is a trade-off, and if you know what kinds of objects you’ll be working with in your
game, it can be worth trying to factor out the polymorphism in some algorithms (in pathfinding
particularly, we have seen speed ups this way).

28 Chapter 2 Game AI

Our viewpoint, which is not shared by all (or perhaps even most) developers, is that inefficien-
cies due to indirect function calls are not worth losing sleep over. If the algorithm is distributed
nicely over multiple frames, then the extra function call overhead will also be distributed and barely
noticeable. We know of at least one occasion where a game AI programmer has been berated for
using virtual functions that“slowed down the game”only to find that profiling showed they caused
no bottleneck at all.

2.3.2 Memory Concerns

Most AI algorithms do not require a large amount of memory. Memory budgets for AI are
typically around 1Mb on 32Mb consoles and 8Mb on 512Mb machines—ample storage for even
heavyweight algorithms such as terrain analysis and pathfinding. Massively multi-player online
games (MMOGs) typically require much more storage for their larger worlds but are run on
server farms with a far greater storage capacity (measured in gigabytes of RAM).

Cache

Memory size alone isn’t the only limitation on memory use. The time it takes to access memory
from the RAM and prepare it for use by the processor is significantly longer than the time it takes
for the processor to perform its operations. If processors had to rely on the main RAM, they’d be
constantly stalled waiting for data.

All modern processors use at least one level of cache: a copy of the RAM held in the processor
that can be very quickly manipulated. Cache is typically fetched in pages; a whole section of main
memory is streamed to the processor. It can then be manipulated at will. When the processor
has done its work, the cached memory is sent back to the main memory. The processor typically
cannot work on the main memory; all the memory it needs must be on cache. Systems with an
operating system may add additional complexity to this, as a memory request may have to pass
through an operating system routine that translates the request into a request for real or virtual
memory. This can introduce further constraints, as two bits of physical memory with a similar
mapped address might not be available at the same time (called an aliasing failure).

Multiple levels of cache work the same way as a single cache. A large amount of memory is
fetched to the lowest level cache, a subset of that is fetched to each higher level cache, and the
processor only ever works on the highest level.

If an algorithm uses data spread around memory, then it is unlikely that the right memory
will be in the cache from moment to moment. These cache misses are very costly in time. The
processor has to fetch a whole new chunk of memory into the cache for one or two instructions,
then it has to stream it all back out and request another block. A good profiling system will show
when cache misses are happening. In our experience, dramatic speed ups can be achieved by
making sure that all the data needed for one algorithm are kept in the same place.

In this book, for ease of understanding, we’ve used an object-oriented style to lay out the data.
All the data for a particular game object are kept together. This may not be the most cache-efficient
solution. In a game with 1000 characters, it may be better to keep all their positions together in
an array, so algorithms that make calculations based on their positions don’t need to constantly

2.3 Speed and Memory 29

jump around memory. As with all optimizations, profiling is everything, but a general level of
efficiency can be gained by programming with data coherency in mind.

2.3.3 PC Constraints

PCs are both the most powerful and weakest games machines. They can be frustrating for develop-
ers because of their lack of consistency. Where a console has fixed hardware, there is a bewildering
array of different configurations for PCs. Things are easier than they were: application program-
ming interfaces (APIs) such as DirectX insulate the developer from having to target specific
hardware, but the game still needs to detect feature support and speed and adjust accordingly.

Working with PCs involves building software that can scale from a casual gamer’s limited
system to the hard-core fan’s up-to-date hardware. For graphics, this scaling can be reasonably
simple; for example, for low-specification machines we switch off advanced rendering features.
A simpler shadow algorithm might be used, or pixel shaders might be replaced by simple texture
mapping. A change in graphics sophistication usually doesn’t change gameplay.

AI is different. If the AI gets less time to work, how should it respond? It can try to perform
less work. This is effectively the same as having more stupid AI and can affect the difficulty level of
the game. It is probably not acceptable to your quality assurance (QA) team or publisher to have
your game be dramatically easier on lower specification machines. Similarly, if we try to perform
the same amount of work, it might take longer. This can mean a lower frame rate, or it can mean
more frames between characters making decisions. Slow-to-react characters are also often easier
to play against and can cause the same problems with QA.

The solution used by most developers is to target AI at the lowest common denominator: the
minimum specification machine listed in the technical design document. The AI time doesn’t
scale at all with the capabilities of the machine. Faster machines simply use proportionally less of
their processing budget on AI.

There are many games, however, where scalable AI is feasible. Many games use AI to control
ambient characters: pedestrians walking along the sidewalk, members of the crowd cheering a
race, or flocks of birds swarming in the sky. This kind of AI is freely scalable: more characters can
be used when the processor time is available. The chapter on resource management covers some
techniques for the level of detail AI that can cope with this scalability.

2.3.4 Console Constraints

Consoles can be simpler to work with than a PC. You know exactly the machine you are targeting,
and you can usually see code in operation on your target machine. There is no future proofing
for new hardware or ever-changing versions of APIs to worry about.

Developers working with next-generation technology often don’t have the exact specs of the
final machine or a reliable hardware platform (initial development kits for the Xbox 360 were
little more than a dedicated emulator), but most console development has a fairly fixed target.

The technical requirements checklist (TRC) process, by which a console manufacturer places
minimum standards on the operation of a game, serves to fix things like frame rates (although

30 Chapter 2 Game AI

different territories may vary—PAL and NTSC, for example). This means that AI budgets can be
locked down in terms of a fixed number of milliseconds. In turn, this makes it much easier to
work out what algorithms can be used and to have a fixed target for optimization (provided that
the budget isn’t slashed at the last milestone to make way for the latest graphics technique used in
a competitor’s game).

On the other hand, consoles generally suffer from a long turnaround time. It is possible, and
pretty essential, to set up a PC development project so that tweaks to the AI can be compiled
and tested without performing a full game build. As you add new code, the behavior it supports
can be rapidly assessed. Often, this is in the form of cut-down mini-applications, although many
developers use shared libraries during development to avoid re-linking the whole game. You can
do the same thing on a console, of course, but the round trip to the console takes additional time.

AI with parameterized values that need a lot of tweaking (movement algorithms are notorious
for this, for example) almost requires some kind of in-game tweaking system for a console. Some
developers go further and allow their level design or AI creation tool to be directly connected
across a network from the development PC to the running game on a text console. This allows
direct manipulation of character behaviors and instant testing. The infrastructure needed to do
this varies, with some platforms (Nintendo’s GameCube comes to mind) making life considerably
more difficult. In all cases it is a significant investment of effort, however, and is well beyond
the scope of this book (not to mention a violation of several confidentiality agreements). This is
one area where middleware companies have begun to excel, providing robust tools for on-target
debugging and content viewing as part of their technology suites.

Working with Rendering Hardware

The biggest problem with older (i.e., previous generation) consoles is their optimization for
graphics. Graphics are typically the technology driver behind games, and with only a limited
amount of juice to put in a machine it is natural for a console vendor to emphasize graphic
capabilities.

The original Xbox architecture was a breath of fresh air in this respect, providing the first PC-
like console architecture: a PC-like main processor, an understandable (but non-PC-like) graphics
bus, and a familiar graphics chipset. At the other end of the spectrum, for the same generation, the
PlayStation 2 (PS2) was optimized for graphics rendering, unashamedly. To make best use of the
hardware you needed to parallelize as much of the rendering as possible, making synchronization
and communication issues very difficult to resolve. Several developers simply gave up and used
laughably simple AI in their first PS2 games. Throughout the console iteration, it continued to be
the thorn in the side of the AI developer working on a cross-platform title. Fortunately, with the
multi-core processor in PlayStation 3, fast AI processing is considerably easier to achieve.

Rendering hardware works on a pipeline model. Data go in at one end and are manipulated
through a number of different simple programs. At the end of the pipeline, the data are ready to
be rendered on-screen. Data cannot easily pass back up the pipeline, and where there is support
the quantity of data is usually tiny (a few tens of items of data, for example). Hardware can
be constructed to run this pipeline very efficiently; there is a simple and logical data flow, and
processing phases have no interaction except to transform their input data.

2.4 The AI Engine 31

AI doesn’t fit into this model; it is inherently branchy, as different bits of code run at different
times. It is also highly self-referential; the results of one operation feed into many others, and their
results feed back to the first set, and so on.

Even simple AI queries, such as determining where characters will collide if they keep moving,
are difficult to implement if all the geometry is being processed in dedicated hardware. Older
graphics hardware can support collision detection, but the collision prediction needed by AI code
is still a drag to implement. More complex AI is inevitably run on the CPU, but with this chip
being relatively underpowered on last-generation consoles, the AI was restricted to the kind of
budgets seen on 5- or even 10-year-old PCs.

Historically, all this has tended to limit the amount of AI done on consoles, in comparison
to a PC with equal processing power. The most exciting part of doing AI in the last 18 months
has been the availability of the current generation of consoles with their facility to run more
PC-like AI.

Handheld Consoles

Handheld consoles typically lag around 5 to 10 years behind the capabilities of full-sized consoles
and PCs. This is also true of the typical technologies used to build games for them. Just as AI came
into its own in the mid-1990s, the 2000s are seeing the rise of handhelds capable of advanced AI.

Most of the techniques in this book are suitable for use on current-generation handheld
devices (PlayStation Portable and beyond), with the same set of constraints as for any other
console.

On simpler devices (non-games-optimized mobile phones, TV set-top boxes, or low-
specification PDAs), you are massively limited by memory and processing power. In extreme
cases there isn’t enough juice in the machine to implement a proper execution management layer,
so any AI algorithm you use has to be fast. This limits the choice back to the kind of simple state
machines and chase-the-player behaviors we saw in the historical games of the last chapter.

2.4 The AI Engine

There has been a distinct change in the way games have been developed in the last 15 years. When
we started in the industry, a game was mostly built from scratch. Some bits of code were dragged
from previous projects, and some bits were reworked and reused, but most were written from
scratch.

A handful of companies used the same basic code to write multiple games, as long as the
games were a similar style and genre. Lucasarts’ SCUMM engine, for example, was a gradually
evolving game engine used to power many point-and-click adventure games.

Since then, the game engine has become ubiquitous, a consistent technical platform on which
a company builds most of its games. Some of the low-level stuff (like talking to the operating
system, loading textures, model file formats, and so on) is shared among all games, often with a
layer of genre-specific stuff on top. A company that produces both a third-person action adventure
and a space shooter might still use the same basic engine for both projects.

32 Chapter 2 Game AI

The way AI is developed has changed, also. Initially, the AI was written for each game and for
each character. For each new character in a game there would be a block of code to execute its
AI. The character’s behavior was controlled by a small program, and there was no need for the
decision making algorithms in this book.

Now there is an increasing tendency to have general AI routines in the game engine and to
allow the characters to be designed by level editors or technical artists. The engine structure is
fixed, and the AI for each character combines the components in an appropriate way.

So, building a game engine involves building AI tools that can be easily reused, combined,
and applied in interesting ways. To support this, we need an AI structure that makes sense over
multiple genres.

2.4.1 Structure of an AI Engine

In our experience, there are a few basic structures that need to be in place for a general AI system.
They conform to the model of AI given in Figure 2.1.

First, we must have some kind of infrastructure in two categories: a general mechanism for
managing AI behaviors (deciding which behavior gets to run when, and so on) and a world-
interfacing system for getting information into the AI. Every AI algorithm created needs to honor
these mechanisms.

Second, we must have a means to turn whatever the AI wants to do into action on-screen.
This consists of standard interfaces to a movement and an animation controller, which can turn
requests such as “pull lever 1” or “walk stealthily to position x, y” into action.

Third, a standard behavior structure must serve as a liaison between the two. It is almost
guaranteed that you will need to write one or two AI algorithms for each new game. Having

Execution management

Strategy

Decision making

Movement

Animation Physics

Content creation

Scripting

W
or

ld
 in

te
rf

ac
e

AI has implications for
related technologies

AI gets given processor time

AI gets its
information

AI gets turned into on-screen action

Character AI

Group AI

Figure 2.1 The AI model

2.4 The AI Engine 33

all AI conform to the same structure helps this immensely. New code can be in development
while the game is running, and the new AI can simply replace placeholder behaviors when it is
ready.

All this needs to be thought out in advance, of course. The structure needs to be in place before
you get well into your AI coding. Part III of this book discusses support technologies, which are
the first thing to implement in an AI engine. The individual techniques can then slot in.

We’re not going to harp on about this structure throughout the book. There are techniques
that we will cover that can work on their own, and all the algorithms are fairly independent. For
a demo, or a simple game, it might be sufficient to just use the technique.

The code on the website conforms to a standard structure for AI behaviors: each can be
given execution time, each gets information from a central messaging system, and each outputs
its actions in a standard format. The particular set of interfaces we’ve used shows our own
development bias. They were designed to be fairly simple, so the algorithms aren’t overburdened
by infrastructure code. By the same token, there are easy optimizations you will spot that we
haven’t implemented, again for the sake of clarity.

A full-size AI system may have a similar interface to the code on the website, but with numer-
ous speed and memory optimizations. Other AI engines on the market have a different structure,
and the graphics engine you are using will likely put additional constraints on your own imple-
mentation. As always, use the code on the website as a jumping-off point.

A good AI structure helps reduce reuse, debugging, and development time, but creating the
AI for a specific character involves bringing different techniques together in just the right way.
The configuration of a character can be done manually, but increasingly it requires some kind of
editing tool.

2.4.2 Toolchain Concerns

The complete AI engine will have a central pool of AI algorithms that can be applied to many
characters. The definition for a particular character’s AI will therefore consist of data (which
may include scripts in some scripting language), rather than compiled code. The data specify
how a character is put together: what techniques will be used and how those techniques are
parameterized and combined.

The data need to come from somewhere. Data can be manually created, but this is no better
than writing the AI by hand each time. Stable and reliable toolchains are a hot topic in game
development, as they ensure that the artists and designers can create the content in an easy way,
while allowing the content to be inserted into the game without manual help.

An increasing number of companies are developing AI components in their toolchain: editors
for setting up character behaviors and facilities in their level editor for marking tactical locations
or places to avoid.

Being toolchain driven has its own effects on the choice of AI techniques. It is easy to set
up behaviors that always act the same way. Steering behaviors (covered in Chapter 3) are a good
example: they tend to be very simple, they are easily parameterized (with the physical capabilities
of a character), and they do not change from character to character.

34 Chapter 2 Game AI

It is more difficult to use behaviors that have lots of conditions, where the character needs
to evaluate special cases. A rule-based system (covered in Chapter 5) needs to have complicated
matching rules defined. When these are supported in a tool they typically look like program code,
because a programming language is the most natural way to express them.

Many developers have these kind of programming constructs exposed in their level editing
tools. Level designers with some programming ability can write simple rules, triggers, or scripts
in the language, and the level editor handles turning them into data for the AI.

A different approach, used by several middleware packages, is to visually lay out conditions
and decisions. AI-Implant’s Maya module, for example, exposes complex Boolean conditions and
state machines through graphical controls.

2.4.3 Putting It All Together

The final structure of the AI engine might look something like Figure 2.2. Data are created in a
tool (the modeling or level design package or a dedicated AI tool), which is then packaged for
use in the game. When a level is loaded, the game AI behaviors are created from level data and
registered with the AI engine. During gameplay, the main game code calls the AI engine which
updates the behaviors, getting information from the world interface and finally applying their
output to the game data.

AI specific tools

Content creation

Modeling package

Level design tool

Packaged level data

Main game engine

Level loader

Per-frame
processing

AI engine

Behavior database

World interface

AI behavior
manager

AI data is used
to construct
characters

World interface
extracts relevant

game data

Game engine
calls AI each

frame

AI gets data
from the game

and from its
internal

information

Results of AI
are written back

to game data

Figure 2.2 AI schematic

2.4 The AI Engine 35

The techniques used depend heavily on the genre of the game being developed. We’ll cover
a wide range of techniques for many different genres. As you develop your game AI, you’ll need
to take a mix and match approach to get the behaviors you are looking for. The final chapter of
the book gives some hints on this; it looks at how the AI for games in the major genres are put
together piece by piece.

This page intentionally left blank

Part II

Techniques

This page intentionally left blank

3
Movement

ne of the most fundamental requirements of AI is to move characters around in the gameO sensibly. Even the earliest AI-controlled characters (the ghosts in Pac-Man, for example,
or the opposing bat in some Pong variants) had movement algorithms that weren’t far removed
from the games on the shelf today. Movement forms the lowest level of AI techniques in our
model, shown in Figure 3.1.

Execution management

Strategy

Decision making

Movement

Animation Physics

Content creation

Scripting

W
or

ld
 in

te
rf

ac
e

AI has implications for
related technologies

AI gets given processor time

AI gets its
information

AI gets turned into on-screen action

Character AI

Group AI

Figure 3.1 The AI model

Copyright © 2009 by Elsevier Inc. All rights reserved. 39

40 Chapter 3 Movement

Many games, including some with quite decent-looking AI, rely solely on movement algo-
rithms and don’t have any more advanced decision making. At the other extreme, some games
don’t need moving characters at all. Resource management games and turn-based games often
don’t need movement algorithms; once a decision is made where to move, the character can simply
be placed there.

There is also some degree of overlap between AI and animation; animation is also about
movement. This chapter looks at large-scale movement: the movement of characters around the
game level, rather than the movement of their limbs or faces. The dividing line isn’t always clear,
however. In many games animation can take control over a character, including some large-
scale movement. In-engine cutscenes, completely animated, are increasingly being merged into
gameplay; however, they are not AI driven and therefore aren’t covered here.

This chapter will look at a range of different AI-controlled movement algorithms, from the
simple Pac-Man level up to the complex steering behaviors used for driving a racing car or piloting
a spaceship in full three dimensions.

3.1 The Basics of Movement Algorithms

Unless you’re writing an economic simulator, chances are the characters in your game need to
move around. Each character has a current position and possibly additional physical properties
that control its movement. A movement algorithm is designed to use these properties to work out
where the character should be next.

All movement algorithms have this same basic form. They take geometric data about their
own state and the state of the world, and they come up with a geometric output representing the
movement they would like to make. Figure 3.2 shows this schematically. In the figure, the velocity
of a character is shown as optional because it is only needed for certain classes of movement
algorithms.

Some movement algorithms require very little input: the position of the character and the
position of an enemy to chase, for example. Others require a lot of interaction with the game
state and the level geometry. A movement algorithm that avoids bumping into walls, for example,
needs to have access to the geometry of the wall to check for potential collisions.

The output can vary too. In most games it is normal to have movement algorithms output a
desired velocity. A character might see its enemy immediately west of it, for example, and respond
that its movement should be westward at full speed. Often, characters in older games only had
two speeds: stationary and running (with maybe a walk speed in there, too). So the output was
simply a direction to move in. This is kinematic movement; it does not account for how characters
accelerate and slow down.

Recently, there has been a lot of interest in “steering behaviors.” Steering behaviors is the
name given by Craig Reynolds to his movement algorithms; they are not kinematic, but dynamic.
Dynamic movement takes account of the current motion of the character. A dynamic algorithm
typically needs to know the current velocities of the character as well as its position. A dynamic
algorithm outputs forces or accelerations with the aim of changing the velocity of the character.

3.1 The Basics of Movement Algorithms 41

Character

Position
(velocity)
Other state

Game

Other characters
Level geometry
Special locations
Paths
Other game state

Movement algorithm

Movement request

New velocity
or
Forces to apply

Movement request

Figure 3.2 The movement algorithm structure

Dynamics adds an extra layer of complexity. Let’s say your character needs to move from
one place to another. A kinematic algorithm simply gives the direction to the target; you move
in that direction until you arrive, whereupon the algorithm returns no direction: you’ve arrived.
A dynamic movement algorithm needs to work harder. It first needs to accelerate in the right
direction, and then as it gets near its target it needs to accelerate in the opposite direction,
so its speed decreases at precisely the correct rate to slow it to a stop at exactly the right
place. Because Craig’s work is so well known, in the rest of this chapter we’ll usually fol-
low the most common terminology and refer to all dynamic movement algorithms as steering
behaviors.

Craig Reynolds also invented the flocking algorithm used in countless films and games to
animate flocks of birds or herds of other animals. We’ll look at this algorithm later in the chap-
ter. Because flocking is the most famous steering behavior, all steering (in fact, all movement)
algorithms are sometimes wrongly called “flocking.”

3.1.1 Two-Dimensional Movement

Many games have AI that works in two dimensions. Although games rarely are drawn in two
dimensions any more, their characters are usually under the influence of gravity, sticking them to
the floor and constraining their movement to two dimensions.

A lot of movement AI can be achieved in just two dimensions, and most of the classic algo-
rithms are only defined for this case. Before looking at the algorithms themselves, we need to
quickly cover the data needed to handle two-dimensional (2D) maths and movement.

42 Chapter 3 Movement

Characters as Points

Although a character usually consists of a three-dimensional (3D) model that occupies some
space in the game world, many movement algorithms assume that the character can be treated as
a single point. Collision detection, obstacle avoidance, and some other algorithms use the size of
the character to influence their results, but movement itself assumes the character is at a single
point.

This is a process similar to that used by physics programmers who treat objects in the game as
a “rigid body” located at its center of mass. Collision detection and other forces can be applied to
anywhere on the object, but the algorithm that determines the movement of the object converts
them so it can deal only with the center of mass.

3.1.2 Statics

Characters in two dimensions have two linear coordinates representing the position of the object.
These coordinates are relative to two world axes that lie perpendicular to the direction of gravity
and perpendicular to each other. This set of reference axes is termed the orthonormal basis of the
2D space.

In most games the geometry is typically stored and rendered in three dimensions. The geom-
etry of the model has a 3D orthonormal basis containing three axes: normally called x , y , and z . It
is most common for the y-axis to be in the opposite direction of gravity (i.e., “up”) and for the x
and z axes to lie in the plane of the ground. Movement of characters in the game takes place along
the x and z axes used for rendering, as shown in Figure 3.3. For this reason this chapter will use
the x and z axes when representing movement in two dimensions, even though books dedicated
to 2D geometry tend to use x and y for the axis names.

y (up)

z x

Figure 3.3 The 2D movement axes and the 3D basis

3.1 The Basics of Movement Algorithms 43

z x2.2

1.5 radians

2

Character is at
x = 2.2
z = 2
orientation = 1.5

Figure 3.4 The positions of characters in the level

In addition to the two linear coordinates, an object facing in any direction has one orientation
value. The orientation value represents an angle from a reference axis. In our case we use a
counterclockwise angle, in radians, from the positive z-axis. This is fairly standard in game
engines; by default (i.e., with zero orientation) a character is looking down the z-axis.

With these three values the static state of a character can be given in the level, as shown in
Figure 3.4.

Algorithms or equations that manipulate this data are called static because the data do not
contain any information about the movement of a character.

We can use a data structure of the form:

1 struct Static:
2 position # a 2D vector
3 orientation # a single floating point value

We will use the term orientation throughout this chapter to mean the direction in which a
character is facing. When it comes to rendering characters, we will make them appear to face one
direction by rotating them (using a rotation matrix). Because of this, some developers refer to
orientation as rotation. We will use rotation in this chapter only to mean the process of changing
orientation; it is an active process.

2 1
2

Dimensions

Some of the math involved in 3D geometry is complicated. The linear movement in three dimen-
sions is quite simple and a natural extension of 2D movement, but representing an orientation
has tricky consequences that are better to avoid (at least until the end of the chapter).

As a compromise, developers often use a hybrid of 2D and 3D geometry which is known as
2 1

2 D, or four degrees of freedom.
In 2 1

2 D we deal with a full 3D position but represent orientation as a single value, as if we are in
two dimensions. This is quite logical when you consider that most games involve characters under

44 Chapter 3 Movement

the influence of gravity. Most of the time a character’s third dimension is constrained because it
is pulled to the ground. In contact with the ground, it is effectively operating in two dimensions,
although jumping, dropping off ledges, and using elevators all involve movement through the
third dimension.

Even when moving up and down, characters usually remain upright. There may be a slight
tilt forward while walking or running or a lean sideways out from a wall, but this tilting doesn’t
affect the movement of the character; it is primarily an animation effect. If a character remains
upright, then the only component of its orientation we need to worry about is the rotation about
the up direction.

This is precisely the situation we take advantage of when we work in 2 1
2 D, and the simpli-

fication in the math is worth the decreased flexibility in most cases.
Of course, if you are writing a flight simulator or a space shooter, then all the orientations

are very important to the AI, so you’ll have to go to complete three dimensions. At the other end
of the scale, if your game world is completely flat and characters can’t jump or move vertically
in any other way, then a strict 2D model is needed. In the vast majority of cases, 2 1

2 D is an
optimal solution. We’ll cover full 3D motion at the end of the chapter, but aside from that, all the
algorithms described in this chapter are designed to work in 2 1

2 D.

Math

In the remainder of this chapter we will assume that you are comfortable using basic vector
and matrix mathematics (i.e., addition and subtraction of vectors, multiplication by a scalar).
Explanations of vector and matrix mathematics, and their use in computer graphics, are beyond
the scope of this book. Other books in this series, such as Schneider and Eberly [2003], cover
mathematical topics in computer games to a much deeper level. The source code on the web-

Library

site provides implementations of all of these functions, along with implementations for other
3D types.

Positions are represented as a vector with x and z components of position. In 2 1
2 D, a y

component is also given.
In two dimensions we need only an angle to represent orientation. This is the scalar repre-

sentation. The angle is measured from the positive z-axis, in a right-handed direction about the
positive y-axis (counterclockwise as you look down on the x–z plane from above). Figure 3.4
gives an example of how the scalar orientation is measured.

It is more convenient in many circumstances to use a vector representation of orientation. In
this case the vector is a unit vector (it has a length of one) in the direction that the character is
facing. This can be directly calculated from the scalar orientation using simple trigonometry:

�ωv =
[

sin ωs

cos ωs

]
,

where ωs is the orientation as a scalar, and �ωv is the orientation expressed as a vector. We are
assuming a right-handed coordinate system here, in common with most of the game engines

3.1 The Basics of Movement Algorithms 45

1.5 radians
0.997
0.071

Figure 3.5 The vector form of orientation

we’ve worked on.1 If you use a left-handed system, then simply flip the sign of the x coordinate:

�ωv =
[− sin ωs

cos ωs

]
.

If you draw the vector form of the orientation, it will be a unit length vector in the direction
that the character is facing, as shown in Figure 3.5.

3.1.3 Kinematics

So far each character has had two associated pieces of information: its position and its orientation.
We can create movement algorithms to calculate a target velocity based on position and orientation
alone, allowing the output velocity to change instantly.

While this is fine for many games, it can look unrealistic. A consequence of Newton’s laws of
motion is that velocities cannot change instantly in the real world. If a character is moving in one
direction and then instantly changes direction or speed, it will look odd. To make smooth motion
or to cope with characters that can’t accelerate very quickly, we need either to use some kind of
smoothing algorithm or to take account of the current velocity and use accelerations to change it.

To support this, the character keeps track of its current velocity as well as position. Algorithms
can then operate to change the velocity slightly at each time frame, giving a smooth motion.

Characters need to keep track of both their linear and their angular velocities. Linear velocity
has both x and z components, the speed of the character in each of the axes in the orthonormal
basis. If we are working in 2 1

2 D, then there will be three linear velocity components, in x , y , and z .
The angular velocity represents how fast the character’s orientation is changing. This is given

by a single value: the number of radians per second that the orientation is changing.

1. Left-handed coordinates work just as well with all the algorithms in this chapter. See Eberly [2003] for more details of the
difference and how to convert between them.

46 Chapter 3 Movement

We will call angular velocity rotation, since rotation suggests motion. Linear velocity will
normally be referred to as simply velocity. We can therefore represent all the kinematic data for a
character (i.e., its movement and position) in one structure:

1 struct Kinematic:
2 position # a 2 or 3D vector
3 orientation # a single floating point value
4 velocity # another 2 or 3D vector
5 rotation # a single floating point value

Steering behaviors operate with these kinematic data. They return accelerations that will
change the velocities of a character in order to move them around the level. Their output is a set
of accelerations:

1 struct SteeringOutput:
2 linear # a 2 or 3D vector
3 angular # a single floating point value

Independent Facing

Notice that there is nothing to connect the direction that a character is moving and the direction
it is facing. A character can be oriented along the x-axis but be traveling directly along the z-axis.
Most game characters should not behave in this way; they should orient themselves so they move
in the direction they are facing.

Many steering behaviors ignore facing altogether. They operate directly on the linear compo-
nents of the character’s data. In these cases the orientation should be updated so that it matches
the direction of motion.

This can be achieved by directly setting the orientation to the direction of motion, but this
can mean the orientation changes abruptly.

A better solution is to move it a proportion of the way toward the desired direction: to smooth
the motion over many frames. In Figure 3.6, the character changes its orientation to be halfway
toward its current direction of motion in each frame. The triangle indicates the orientation, and
the gray shadows show where the character was in previous frames, to indicate its motion.

Frame 1 Frame 2 Frame 3 Frame 4

Figure 3.6 Smoothing facing direction of motion over multiple frames

3.1 The Basics of Movement Algorithms 47

Updating Position and Orientation

If your game has a physics simulation layer, it will be used to update the position and orientation
of characters. If you need to update them manually, however, you can use a simple algorithm of
the form:

1 struct Kinematic:
2

3 ... Member data as before ...
4

5 def update(steering, time):
6

7 # Update the position and orientation
8 position += velocity * time +
9 0.5 * steering.linear * time * time

10 orientation += rotation * time +
11 0.5 * steering.angular * time * time
12

13 # and the velocity and rotation
14 velocity += steering.linear * time
15 orientation += steering.angular * time

The updates use high-school physics equations for motion. If the frame rate is high, then the
update time passed to this function is likely to be very small. The square of this time is likely to
be even smaller, and so the contribution of acceleration to position and orientation will be tiny.
It is more common to see these terms removed from the update algorithm, to give what’s known
as the Newton-Euler-1 integration update:

1 struct Kinematic:
2

3 ... Member data as before ...
4

5 def update (steering, time):
6

7 # Update the position and orientation
8 position += velocity * time
9 orientation += rotation * time

10

11 # and the velocity and rotation
12 velocity += steering.linear * time
13 orientation += steering.angular * time

48 Chapter 3 Movement

This is the most common update used for games. Note that in both blocks of code we’ve
assumed that we can do normal mathematical operations with vectors, such as addition and
multiplication by a scalar. Depending on the language you are using, you may have to replace
these primitive operations with function calls.

The Game Physics [Eberly, 2004] book in the Morgan Kaufmann Interactive 3D Technology
series, and Ian’s Game Physics Engine Development [Millington, 2007], also in that series, have a
complete analysis of different update methods and cover the complete range of physics tools for
games (as well as detailed implementations of vector and matrix operations).

Variable Frame Rates

Note that we have assumed that velocities are given in units per second rather than per frame.
Older games often used per-frame velocities, but that practice has largely died out. Almost all
games (even those on a console) are now written to support variable frame rates, so an explicit
update time is used.

If the character is known to be moving at 1 meter per second and the last frame was of
20 milliseconds’ duration, then they will need to move 20 millimeters.

Forces and Actuation

In the real world we can’t simply apply an acceleration to an object and have it move. We apply
forces, and the forces cause a change in the kinetic energy of the object. They will accelerate, of
course, but the acceleration will depend on the inertia of the object. The inertia acts to resist the
acceleration; with higher inertia, there is less acceleration for the same force.

To model this in a game, we could use the object’s mass for the linear inertia and the moment
of inertia (or inertia tensor in three dimensions) for angular acceleration.

We could continue to extend the character data to keep track of these values and use a more
complex update procedure to calculate the new velocities and positions. This is the method used
by physics engines: the AI controls the motion of a character by applying forces to it. These forces
represent the ways in which the character can affect its motion. Although not common for human
characters, this approach is almost universal for controlling cars in driving games: the drive force
of the engine and the forces associated with the steering wheels are the only ways in which the AI
can control the movement of the car.

Because most well-established steering algorithms are defined with acceleration outputs, it is
not common to use algorithms that work directly with forces. Usually, the movement controller
considers the dynamics of the character in a post-processing step called actuation.

Actuation takes as input a desired change in velocity, the kind that would be directly applied
in a kinematic system. The actuator then calculates the combination of forces that it can apply to
get as near as possible to the desired velocity change.

At the simplest level this is just a matter of multiplying the acceleration by the inertia to give
a force. This assumes that the character is capable of applying any force, however, which isn’t
always the case (a stationary car can’t accelerate sideways, for example). Actuation is a major

3.2 Kinematic Movement Algorithms 49

topic in AI and physics integration, and we’ll return to actuation at some length in Section 3.8 of
this chapter.

3.2 Kinematic Movement Algorithms

Kinematic movement algorithms use static data (position and orientation, no velocities) and
output a desired velocity. The output is often simply an on or off and a target direction, moving at
full speed or being stationary. Kinematic algorithms do not use acceleration, although the abrupt
changes in velocity might be smoothed over several frames.

Many games simplify things even further and force the orientation of a character to be in the
direction it is traveling. If the character is stationary, it faces either a pre-set direction or the last
direction it was moving in. If its movement algorithm returns a target velocity, then that is used
to set its orientation.

This can be done simply with the function:

1 def getNewOrientation(currentOrientation, velocity):
2

3 # Make sure we have a velocity
4 if velocity.length() > 0:
5

6 # Calculate orientation using an arc tangent of
7 # the velocity components.
8 return atan2(-static.x, static.z)
9

10 # Otherwise use the current orientation
11 else: return currentOrientation

We’ll look at two kinematic movement algorithms: seeking (with several of its variants) and
wandering. Building kinematic movement algorithms is extremely simple, so we’ll only look at
these two as representative samples before moving on to dynamic movement algorithms, the bulk
of this chapter.

We can’t stress enough, however, that this brevity is not because they are uncommon or
unimportant. Kinematic movement algorithms still form the bread and butter of movement
systems in most games. The dynamic algorithms in the rest of the book are becoming more
widespread, but they are still a minority.

3.2.1 Seek

A kinematic seek behavior takes as input the character’s and its target’s static data. It calculates the
direction from the character to the target and requests a velocity along this line. The orientation
values are typically ignored, although we can use the getNewOrientation function above to face
in the direction we are moving.

50 Chapter 3 Movement

The algorithm can be implemented in a few lines:

1 class KinematicSeek:
2 # Holds the static data for the character and target
3 character
4 target
5

6 # Holds the maximum speed the character can travel
7 maxSpeed
8

9 def getSteering():
10

11 # Create the structure for output
12 steering = new KinematicSteeringOutput()
13

14 # Get the direction to the target
15 steering.velocity =
16 target.position - character.position
17

18 # The velocity is along this direction, at full speed
19 steering.velocity.normalize()
20 steering.velocity *= maxSpeed
21

22 # Face in the direction we want to move
23 character.orientation =
24 getNewOrientation(character.orientation,
25 steering.velocity)
26

27 # Output the steering
28 steering.rotation = 0
29 return steering

where the normalize method applies to a vector and makes sure it has a length of one. If the vector
is a zero vector, then it is left unchanged.

Data Structures and Interfaces

We use the Staticdata structure as defined at the start of the chapter and a KinematicSteeringOut-
put structure for output. The KinematicSteeringOutput structure has the following form:

1 struct KinematicSteeringOutput:
2 velocity
3 rotation

3.2 Kinematic Movement Algorithms 51

In this algorithm rotation is never used; the character’s orientation is simply set based on their
movement. You could remove the call to getNewOrientation if you want to control orientation
independently somehow (to have the character aim at a target while moving, as in Tomb Raider
[Core Design Ltd., 1996], for example).

Performance

The algorithm is O(1) in both time and memory.

Flee

If we want the character to run away from the target, we can simply reverse the second line of the
getSteering method to give:

1 # Get the direction away from the target
2 steering.velocity = character.position - target.position

The character will then move at maximum velocity in the opposite direction.

Arriving

The algorithm above is intended for use by a chasing character; it will never reach its goal, but
continues to seek. If the character is moving to a particular point in the game world, then this
algorithm may cause problems. Because it always moves at full speed, it is likely to overshoot
an exact spot and wiggle backward and forward on successive frames trying to get there. This
characteristic wiggle looks unacceptable. We need to end stationary at the target spot.

To avoid this problem we have two choices. We can just give the algorithm a large radius
of satisfaction and have it be satisfied if it gets closer to its target than that. Alternatively, if we
support a range of movement speeds, then we could slow the character down as it reaches its
target, making it less likely to overshoot.

The second approach can still cause the characteristic wiggle, so we benefit from blending both
approaches. Having the character slow down allows us to use a much smaller radius of satisfaction
without getting wiggle and without the character appearing to stop instantly.

We can modify the seek algorithm to check if the character is within the radius. If so, it doesn’t
worry about outputting anything. If it is not, then it tries to reach its target in a fixed length of
time. (We’ve used a quarter of a second, which is a reasonable figure. You can tweak the value
if you need to.) If this would mean moving faster than its maximum speed, then it moves at its
maximum speed. The fixed time to target is a simple trick that makes the character slow down as
it reaches its target. At 1 unit of distance away it wants to travel at 4 units per second. At a quarter
of a unit of distance away it wants to travel at 1 unit per second, and so on. The fixed length of
time can be adjusted to get the right effect. Higher values give a more gentle deceleration, and
lower values make the braking more abrupt.

52 Chapter 3 Movement

The algorithm now looks like the following:

1 class KinematicArrive:
2 # Holds the static data for the character and target
3 character
4 target
5

6 # Holds the maximum speed the character can travel
7 maxSpeed
8

9 # Holds the satisfaction radius
10 radius
11

12 # Holds the time to target constant
13 timeToTarget = 0.25
14

15 def getSteering():
16

17 # Create the structure for output
18 steering = new KinematicSteeringOutput()
19

20 # Get the direction to the target
21 steering.velocity =
22 target.position - character.position
23

24 # Check if we’re within radius
25 if steering.velocity.length() < radius:
26

27 # We can return no steering request
28 return None
29

30 # We need to move to our target, we’d like to
31 # get there in timeToTarget seconds
32 steering.velocity /= timeToTarget
33

34 # If this is too fast, clip it to the max speed
35 if steering.velocity.length() > maxSpeed:
36 steering.velocity.normalize()
37 steering.velocity *= maxSpeed
38

39 # Face in the direction we want to move
40 character.orientation =

3.2 Kinematic Movement Algorithms 53

41 getNewOrientation(character.orientation,
42 steering.velocity)
43

44 # Output the steering
45 steering.rotation = 0
46 return steering

We’ve assumed a length function that gets the length of a vector.

3.2.2 Wandering

A kinematic wander behavior always moves in the direction of the character’s current orientation
with maximum speed. The steering behavior modifies the character’s orientation, which allows
the character to meander as it moves forward. Figure 3.7 illustrates this. The character is shown
at successive frames. Note that it moves only forward at each frame (i.e., in the direction it was
facing at the previous frame).

Pseudo-Code

It can be implemented as follows:

1 class KinematicWander:
2 # Holds the static data for the character
3 character

Figure 3.7 A character using kinematic wander

54 Chapter 3 Movement

4

5 # Holds the maximum speed the character can travel
6 maxSpeed
7

8 # Holds the maximum rotation speed we’d like, probably
9 # should be smaller than the maximum possible, to allow

10 # a leisurely change in direction
11 maxRotation
12

13 def getSteering():
14

15 # Create the structure for output
16 steering = new KinematicSteeringOutput()
17

18 # Get velocity from the vector form of the orientation
19 steering.velocity = maxSpeed *
20 character.orientation.asVector()
21

22 # Change our orientation randomly
23 steering.rotation = randomBinomial() * maxRotation
24

25 # Output the steering
26 return steering

Data Structures

Orientation values have been given an asVector function that converts the orientation into a
direction vector using the formulae given at the start of the chapter.

Implementation Notes

We’ve used randomBinomial to generate the output rotation. This is a handy random number
function that isn’t common in the standard libraries of programming languages. It returns a
random number between −1 and 1, where values around zero are more likely. It can be simply
created as:

1 def randomBinomial():
2 return random() - random()

where random returns a random number from 0 to 1.
For our wander behavior, this means that the character is most likely to keep moving in its

current direction. Rapid changes of direction are less likely, but still possible.

3.3 Steering Behaviors 55

3.2.3 On the Website

The Kinematic Movement program that is part of the source code on the website gives you access

Program

to a range of different movement algorithms, including kinematic wander, arrive, seek, and flee.
You simply select the behavior you want to see for each of the two characters. The game world is
toroidal: if a character goes off one end, then that character will reappear on the opposite side.

3.3 Steering Behaviors

Steering behaviors extend the movement algorithms in the previous section by adding velocity
and rotation. They are gaining larger acceptance in PC and console game development. In some
genres (such as driving games) they are dominant; in other genres they are only just beginning to
see serious use.

There is a whole range of different steering behaviors, often with confusing and conflicting
names. As the field has developed, no clear naming schemes have emerged to tell the difference
between one atomic steering behavior and a compound behavior combining several of them
together.

In this book we’ll separate the two: fundamental behaviors and behaviors that can be built up
from combinations of these.

There are a large number of named steering behaviors in various papers and code samples.
Many of these are variations of one or two themes. Rather than catalog a zoo of suggested
behaviors, we’ll look at the basic structures common to many of them before looking at some
exceptions with unusual features.

3.3.1 Steering Basics

By and large, most steering behaviors have a similar structure. They take as input the kinematic of
the character that is moving and a limited amount of target information. The target information
depends on the application. For chasing or evading behaviors, the target is often another moving
character. Obstacle avoidance behaviors take a representation of the collision geometry of the
world. It is also possible to specify a path as the target for a path following behavior.

The set of inputs to a steering behavior isn’t always available in an AI-friendly format. Collision
avoidance behaviors, in particular, need to have access to the collision information in the level.
This can be an expensive process: checking the anticipated motion of the character using ray casts
or trial movement through the level.

Many steering behaviors operate on a group of targets. The famous flocking behavior, for
example, relies on being able to move toward the average position of the flock. In these behaviors
some processing is needed to summarize the set of targets into something that the behavior can
react to. This may involve averaging properties of the whole set (to find and aim for their center
of mass, for example), or it may involve ordering or searching among them (such as moving away
from the nearest or avoiding bumping into those that are on a collision course).

56 Chapter 3 Movement

Notice that the steering behavior isn’t trying to do everything. There is no behavior to avoid
obstacles while chasing a character and making detours via nearby power-ups. Each algorithm
does a single thing and only takes the input needed to do that. To get more complicated behaviors,
we will use algorithms to combine the steering behaviors and make them work together.

3.3.2 Variable Matching

The simplest family of steering behaviors operates by variable matching: they try to match one or
more of the elements of the character’s kinematic to a single target kinematic.

We might try to match the position of the target, for example, not caring about the other
elements. This would involve accelerating toward the target position and decelerating once we are
near. Alternatively, we could try to match the orientation of the target, rotating so that we align
with it. We could even try to match the velocity of the target, following it on a parallel path and
copying its movements but staying a fixed distance away.

Variable matching behaviors take two kinematics as input: the character kinematic and the
target kinematic. Different named steering behaviors try to match a different combination of
elements, as well as adding additional properties that control how the matching is performed. It is
possible, but not particularly helpful, to create a general variable matching steering behavior and
simply tell it which combination of elements to match. We’ve seen this type of implementation
on a couple of occasions.

The problem arises when more than one element of the kinematic is being matched at the same
time. They can easily conflict. We can match a target’s position and orientation independently.
But what about position and velocity? If we are matching their velocity, then we can’t be trying to
get any closer.

A better technique is to have individual matching algorithms for each element and then
combine them in the right combination later. This allows us to use any of the steering behavior
combination techniques in this chapter, rather than having one hard-coded. The algorithms for
combing steering behaviors are designed to resolve conflicts and so are perfect for this task.

For each matching steering behavior, there is an opposite behavior that tries to get as far away
from matching as possible. A behavior that tries to catch its target has an opposite that tries to
avoid its target, and so on. As we saw in the kinematic seek behavior, the opposite form is usually
a simple tweak to the basic behavior. We will look at several steering behaviors as pairs along with
their opposites, rather than separating them into separate sections.

3.3.3 Seek and Flee

Seek tries to match the position of the character with the position of the target. Exactly as for the
kinematic seek algorithm, it finds the direction to the target and heads toward it as fast as possible.
Because the steering output is now an acceleration, it will accelerate as much as possible.

Obviously, if it keeps on accelerating, its speed will grow larger and larger. Most characters
have a maximum speed they can travel; they can’t accelerate indefinitely. The maximum can be
explicit, held in a variable or constant. The current speed of the character (the length of the

3.3 Steering Behaviors 57

velocity vector) is then checked regularly, and it is trimmed back if it exceeds the maximum speed.
This is normally done as a post-processing step of the update function. It is not performed in a
steering behavior. For example,

1 struct Kinematic:
2

3 ... Member data as before ...
4

5 def update(steering, maxSpeed, time):
6

7 # Update the position and orientation
8 position += velocity * time
9 orientation += rotation * time

10

11 # and the velocity and rotation
12 velocity += steering.linear * time
13 orientation += steering.angular * time
14

15 # Check for speeding and clip
16 if velocity.length() > maxSpeed:
17 velocity.normalize()
18 velocity *= maxSpeed

Alternatively, maximum speed might be a result of applying a drag to slow down the character
a little at each frame. Games that rely on physics engines typically include drag. They do not need
to check and clip the current velocity; the drag (applied in the update function) automatically
limits the top speed.

Drag also helps another problem with this algorithm. Because the acceleration is always
directed toward the target, if the target is moving, the seek behavior will end up orbiting rather
than moving directly toward it. If there is drag in the system, then the orbit will become an inward
spiral. If drag is sufficiently large, the player will not notice the spiral and will see the character
simply move directly to its target.

Figure 3.8 illustrates the path that results from the seek behavior and its opposite, the flee
path, described below.

Pseudo-Code

The dynamic seek implementation looks very similar to our kinematic version:

1 class Seek:
2 # Holds the kinematic data for the character and target
3 character
4 target

58 Chapter 3 Movement

Flee path Seek path

Figure 3.8 Seek and flee

5

6 # Holds the maximum acceleration of the character
7 maxAcceleration
8

9 # Returns the desired steering output
10 def getSteering():
11

12 # Create the structure to hold our output
13 steering = new SteeringOutput()
14

15 # Get the direction to the target
16 steering.linear = target.position -
17 character.position
18

19 # Give full acceleration along this direction
20 steering.linear.normalize()
21 steering.linear *= maxAcceleration
22

23 # Output the steering
24 steering.angular = 0
25 return steering

Note that we’ve removed the change in orientation that was included in the kinematic version.
We can simply set the orientation, as we did before, but a more flexible approach is to use variable

3.3 Steering Behaviors 59

matching to make the character face in the correct direction. The align behavior, described below,
gives us the tools to change orientation using angular acceleration. The “look where you’re going”
behavior uses this to face the direction of movement.

Data Structures and Interfaces

This class uses the SteeringOutput structure we defined earlier in the chapter. It holds linear and
angular acceleration outputs.

Performance

The algorithm is again O(1) in both time and memory.

Flee

Flee is the opposite of seek. It tries to get as far from the target as possible. Just as for kinematic
flee, we simply need to flip the order of terms in the second line of the function:

1 # Get the direction to the target
2 steering.linear = character.position -
3 target.position

The character will now move in the opposite direction of the target, accelerating as fast as
possible.

On the Website

It is almost impossible to show steering behaviors in diagrams. The best way to get a feel of how

Program

the steering behaviors look is to run the Steering Behavior program from the source code on the
website. In the program two characters are moving around a 2D game world. You can select the
steering behavior of each one from a selection provided. Initially, one character is seeking and the
other is fleeing. They have each other as a target.

To avoid the chase going off to infinity, the world is toroidal: characters that leave one edge of
the world reappear at the opposite edge.

3.3.4 Arrive

Seek will always move toward its goal with the greatest possible acceleration. This is fine if the
target is constantly moving and the character needs to give chase at full speed. If the character

60 Chapter 3 Movement

Seek path Arrive path

Figure 3.9 Seeking and arriving

arrives at the target, it will overshoot, reverse, and oscillate through the target, or it will more likely
orbit around the target without getting closer.

If the character is supposed to arrive at the target, it needs to slow down so that it arrives
exactly at the right location, just as we saw in the kinematic arrive algorithm. Figure 3.9 shows the
behavior of each for a fixed target. The trails show the paths taken by seek and arrive. Arrive goes
straight to its target, while seek orbits a bit and ends up oscillating. The oscillation is not as bad
for dynamic seek as it was in kinematic seek: the character cannot change direction immediately,
so it appears to wobble rather than shake around the target.

The dynamic arrive behavior is a little more complex than the kinematic version. It uses two
radii. The arrival radius, as before, lets the character get near enough to the target without letting
small errors keep it in motion. A second radius is also given, but is much larger. The incoming
character will begin to slow down when it passes this radius. The algorithm calculates an ideal
speed for the character. At the slowing-down radius, this is equal to its maximum speed. At the
target point, it is zero (we want to have zero speed when we arrive). In between, the desired speed
is an interpolated intermediate value, controlled by the distance from the target.

The direction toward the target is calculated as before. This is then combined with the desired
speed to give a target velocity. The algorithm looks at the current velocity of the character and
works out the acceleration needed to turn it into the target velocity. We can’t immediately change
velocity, however, so the acceleration is calculated based on reaching the target velocity in a fixed
time scale.

This is exactly the same process as for kinematic arrive, where we tried to get the character to
arrive at its target in a quarter of a second. The fixed time period for dynamic arrive can usually
be a little smaller; we’ll use 0.1 as a good starting point.

When a character is moving too fast to arrive at the right time, its target velocity will be smaller
than its actual velocity, so the acceleration is in the opposite direction—it is acting to slow the
character down.

3.3 Steering Behaviors 61

Pseudo-Code

The full algorithm looks like the following:

1 class Arrive:
2 # Holds the kinematic data for the character and target
3 character
4 target
5

6 # Holds the max acceleration and speed of the character
7 maxAcceleration
8 maxSpeed
9

10 # Holds the radius for arriving at the target
11 targetRadius
12

13 # Holds the radius for beginning to slow down
14 slowRadius
15

16 # Holds the time over which to achieve target speed
17 timeToTarget = 0.1
18

19 def getSteering(target):
20

21 # Create the structure to hold our output
22 steering = new SteeringOutput()
23

24 # Get the direction to the target
25 direction = target.position - character.position
26 distance = direction.length()
27

28 # Check if we are there, return no steering
29 if distance < targetRadius
30 return None
31

32 # If we are outside the slowRadius, then go max speed
33 if distance > slowRadius:
34 targetSpeed = maxSpeed
35

36 # Otherwise calculate a scaled speed
37 else:
38 targetSpeed = maxSpeed * distance / slowRadius
39

40 # The target velocity combines speed and direction

62 Chapter 3 Movement

41 targetVelocity = direction
42 targetVelocity.normalize()
43 targetVelocity *= targetSpeed
44

45 # Acceleration tries to get to the target velocity
46 steering.linear =
47 targetVelocity - character.velocity
48 steering.linear /= timeToTarget
49

50 # Check if the acceleration is too fast
51 if steering.linear.length() > maxAcceleration:
52 steering.linear.normalize()
53 steering.linear *= maxAcceleration
54

55 # Output the steering
56 steering.angular = 0
57 return steering

Performance

The algorithm is O(1) in both time and memory, as before.

Implementation Notes

Many implementations do not use a target radius. Because the character will slow down to reach
its target, there isn’t the same likelihood of oscillation that we saw in kinematic arrive. Removing
the target radius usually makes no noticeable difference. It can be significant, however, with low
frame rates or where characters have high maximum speeds and low accelerations. In general, it
is good practice to give a margin of error around any target, to avoid annoying instabilities.

Leave

Conceptually, the opposite behavior of arrive is leave. There is no point in implementing it,
however. If we need to leave a target, we are unlikely to want to accelerate with miniscule (possibly
zero) acceleration first and then build up. We are more likely to accelerate as fast as possible. So
for practical purposes the opposite of arrive is flee.

3.3.5 Align

Align tries to match the orientation of the character with that of the target. It pays no attention
to the position or velocity of the character or target. Recall that orientation is not directly related

3.3 Steering Behaviors 63

to direction of movement for a general kinematic. This steering behavior does not produce any
linear acceleration; it only responds by turning.

Align behaves in a similar way to arrive. It tries to reach the target orientation and tries to have
zero rotation when it gets there. Most of the code from arrive we can copy, but orientations have
an added complexity that we need to consider.

Because orientations wrap around every 2π radians, we can’t simply subtract the target ori-
entation from the character orientation and determine what rotation we need from the result.
Figure 3.10 shows two very similar align situations, where the character is the same angle away
from its target. If we simply subtracted the two angles, the first one would correctly rotate a small
amount clockwise, but the second one would travel all around to get to the same place.

To find the actual direction of rotation, we subtract the character orientation from the target
and convert the result into the range (−π,π) radians. We perform the conversion by adding or
subtracting some multiple of 2π to bring the result into the given range. We can calculate the
multiple to use by using the mod function and a little jiggling about. The source code on the
website contains an implementation of a function that does this, but many graphics libraries also

Library

have one available.
We can then use the converted value to control rotation, and the algorithm looks very similar

to arrive. Like arrive, we use two radii: one for slowing down and one to make orientations near
the target acceptable. Because we are dealing with a single scalar value, rather than a 2D or 3D
vector, the radius acts as an interval.

We have no such problem when we come to subtracting the rotation values. Rotations, unlike
orientations, don’t wrap around. You can have huge rotation values, well out of the (−π,π) range.
Large values simply represent very fast rotation.

Orientation = 1.05 radians Orientation = 6.27 radians

Target = 0.52 radians Target = 0.52 radians

z axis direction

Figure 3.10 Aligning over a 2π radians boundary

64 Chapter 3 Movement

Pseudo-Code

Most of the algorithm is similar to arrive, we simply add the conversion:

1 class Align:
2 # Holds the kinematic data for the character and target
3 character
4 target
5

6 # Holds the max angular acceleration and rotation
7 # of the character
8 maxAngularAcceleration
9 maxRotation

10

11 # Holds the radius for arriving at the target
12 targetRadius
13

14 # Holds the radius for beginning to slow down
15 slowRadius
16

17 # Holds the time over which to achieve target speed
18 timeToTarget = 0.1
19

20 def getSteering(target):
21

22 # Create the structure to hold our output
23 steering = new SteeringOutput()
24

25 # Get the naive direction to the target
26 rotation = target.orientation -
27 character.orientation
28

29 # Map the result to the (-pi, pi) interval
30 rotation = mapToRange(rotation)
31 rotationSize = abs(rotationDirection)
32

33 # Check if we are there, return no steering
34 if rotationSize < targetRadius
35 return None
36

37 # If we are outside the slowRadius, then use
38 # maximum rotation
39 if rotationSize > slowRadius:

3.3 Steering Behaviors 65

40 targetRotation = maxRotation
41

42 # Otherwise calculate a scaled rotation
43 else:
44 targetRotation =
45 maxRotation * rotationSize / slowRadius
46

47 # The final target rotation combines
48 # speed (already in the variable) and direction
49 targetRotation *= rotation / rotationSize
50

51 # Acceleration tries to get to the target rotation
52 steering.angular =
53 targetRotation - character.rotation
54 steering.angular /= timeToTarget
55

56 # Check if the acceleration is too great
57 angularAcceleration = abs(steering.angular)
58 if angularAcceleration > maxAngularAcceleration:
59 steering.angular /= angularAcceleration
60 steering.angular *= maxAngularAcceleration
61

62 # Output the steering
63 steering.linear = 0
64 return steering

where the function abs returns the absolute (i.e., positive) value of a number; for example, −1 is
mapped to 1.

Implementation Notes

Whereas in the arrive implementation there are two vector normalizations, in this code we need
to normalize a scalar (i.e., turn it into either +1 or −1). To do this we use the result that:

1 normalizedValue = value / abs(value)

In a production implementation in a language where you can access the bit pattern of a
floating point number (C and C++, for example), you can do the same thing by manipulat-
ing the non-sign bits of the variable. Some C libraries provide an optimized sign function
faster than the approach above. Be aware that many provide implementations involving an
IF-statement, which is considerably slower (although in this case the speed is unlikely to be
significant).

66 Chapter 3 Movement

Performance

The algorithm, unsurprisingly, is O(1) in both memory and time.

The Opposite

There is no such thing as the opposite of align. Because orientations wrap around every 2π, fleeing
from an orientation in one direction will simply lead you back to where you started. To face the
opposite direction of a target, simply add π to its orientation and align to that value.

3.3.6 Velocity Matching

So far we have looked at behaviors that try to match position with a target. We could do the same
with velocity, but on its own this behavior is seldom useful. It could be used to make a character
mimic the motion of a target, but this isn’t very useful. Where it does become critical is when
combined with other behaviors. It is one of the constituents of the flocking steering behavior, for
example.

We have already implemented an algorithm that tries to match a velocity. Arrive calculates a
target velocity based on the distance to its target. It then tries to achieve the target velocity. We
can strip the arrive behavior down to provide a velocity matching implementation.

Pseudo-Code

The stripped down code looks like the following:

1 class VelocityMatch:
2 # Holds the kinematic data for the character and target
3 character
4 target
5

6 # Holds the max acceleration of the character
7 maxAcceleration
8

9 # Holds the time over which to achieve target speed
10 timeToTarget = 0.1
11

12 def getSteering(target):
13

14 # Create the structure to hold our output
15 steering = new SteeringOutput()
16

3.3 Steering Behaviors 67

17 # Acceleration tries to get to the target velocity
18 steering.linear = target.velocity -
19 character.velocity
20 steering.linear /= timeToTarget
21

22 # Check if the acceleration is too fast
23 if steering.linear.length() > maxAcceleration:
24 steering.linear.normalize()
25 steering.linear *= maxAcceleration
26

27 # Output the steering
28 steering.angular = 0
29 return steering

Performance

The algorithm is O(1) in both time and memory.

3.3.7 Delegated Behaviors

We have covered the basic building block behaviors that help to create many others. Seek and flee,
arrive, and align perform the steering calculations for many other behaviors.

All the behaviors that follow have the same basic structure: they calculate a target, either
position or orientation (they could use velocity, but none of those we’re going to cover does), and
then they delegate to one of the other behaviors to calculate the steering. The target calculation can
be based on many inputs. Pursue, for example, calculates a target for seek based on the motion of
another target. Collision avoidance creates a target for flee based on the proximity of an obstacle.
And wander creates its own target that meanders around as it moves.

In fact, it turns out that seek, align, and velocity matching are the only fundamental behaviors
(there is a rotation matching behavior, by analogy, but we’ve never seen an application for it). As
we saw in the previous algorithm, arrive can be divided into the creation of a (velocity) target
and the application of the velocity matching algorithm. This is common. Many of the delegated
behaviors below can, in turn, be used as the basis of another delegated behavior. Arrive can be
used as the basis of pursue, pursue can be used as the basis of other algorithms, and so on.

In the code that follows we will use a polymorphic style of programming to capture these
dependencies. You could alternatively use delegation, having the primitive algorithms as members
of the new techniques. Both approaches have their problems. In our case, when one behavior
extends another, it normally does so by calculating an alternative target. Using inheritance means
we need to be able to change the target that the super-class works on.

If we use the delegation approach, we’d need to make sure that each delegated behavior has the
correct character data, maxAcceleration, and other parameters. This requires a lot of duplication
and data copying that using sub-classes removes.

68 Chapter 3 Movement

3.3.8 Pursue and Evade

So far we have moved based solely on position. If we are chasing a moving target, then constantly
moving toward its current position will not be sufficient. By the time we reach where it is now, it
will have moved. This isn’t too much of a problem when the target is close and we are reconsidering
its location every frame. We’ll get there eventually. But if the character is a long distance from its
target, it will set off in a visibly wrong direction, as shown in Figure 3.11.

Instead of aiming at its current position, we need to predict where it will be at some time
in the future and aim toward that point. We did this naturally playing tag as children, which is
why the most difficult tag players to catch were those who kept switching direction, foiling our
predictions.

We could use all kinds of algorithms to perform the prediction, but most would be overkill.
Various research has been done into optimal prediction and optimal strategies for the character
being chased (it is an active topic in military research for evading incoming missiles, for example).
Craig Reynolds’s original approach is much simpler: we assume the target will continue moving
with the same velocity it currently has. This is a reasonable assumption over short distances, and
even over longer distances it doesn’t appear too stupid.

The algorithm works out the distance between character and target and works out how long it
would take to get there, at maximum speed. It uses this time interval as its prediction lookahead.
It calculates the position of the target if it continues to move with its current velocity. This new
position is then used as the target of a standard seek behavior.

If the character is moving slowly, or the target is a long way away, the prediction time could
be very large. The target is less likely to follow the same path forever, so we’d like to set a limit
on how far ahead we aim. The algorithm has a maximum time parameter for this reason. If the
prediction time is beyond this, then the maximum time is used.

Figure 3.12 shows a seek behavior and a pursue behavior chasing the same target. The pursue
behavior is more effective in its pursuit.

Seek output

Most efficient
direction

Chasing character

Target character

Figure 3.11 Seek moving in the wrong direction

3.3 Steering Behaviors 69

Chasing character

Pursue
route

Seek route

Figure 3.12 Seek and pursue

Pseudo-Code

The pursue behavior derives from seek, calculates a surrogate target, and then delegates to seek to
perform the steering calculation:

1 class Pursue (Seek):
2

3 # Holds the maximum prediction time
4 maxPrediction
5

6 # OVERRIDES the target data in seek (in other words
7 # this class has two bits of data called target:
8 # Seek.target is the superclass target which
9 # will be automatically calculated and shouldn’t

10 # be set, and Pursue.target is the target we’re
11 # pursuing).
12 target
13

14 # ... Other data is derived from the superclass ...
15

16 def getSteering():
17

18 # 1. Calculate the target to delegate to seek
19

70 Chapter 3 Movement

20 # Work out the distance to target
21 direction = target.position - character.position
22 distance = direction.length()
23

24 # Work out our current speed
25 speed = character.velocity.length()
26

27 # Check if speed is too small to give a reasonable
28 # prediction time
29 if speed <= distance / maxPrediction:
30 prediction = maxPrediction
31

32 # Otherwise calculate the prediction time
33 else:
34 prediction = distance / speed
35

36 # Put the target together
37 Seek.target = explicitTarget
38 Seek.target.position += target.velocity * prediction
39

40 # 2. Delegate to seek
41 return Seek.getSteering()

Implementation Notes

In this code we’ve used the slightly unsavory technique of naming a member variable in a derived
class with the same name as the super-class. In most languages this will have the desired effect of
creating two members with the same name. In our case this is what we want: setting the pursue
behavior’s target will not change the target for the seek behavior it extends.

Be careful, though! In some languages (Python, for example) you can’t do this. You’ll have to
name the target variable in each class with a different name.

As mentioned previously, it may be beneficial to cut out these polymorphic calls altogether
to improve the performance of the algorithm. We can do this by having all the data we need
in the pursue class, removing its inheritance of seek, and making sure that all the code the
class needs is contained in the getSteering method. This is faster, but at the cost of duplicat-
ing the delegated code in each behavior that needs it and obscuring the natural reuse of the
algorithm.

Performance

Once again, the algorithm is O(1) in both memory and time.

3.3 Steering Behaviors 71

Evade

The opposite behavior of pursuit is evade. Once again we calculate the predicted position of the
target, but rather than delegating to seek, we delegate to flee.

In the code above, we change the class definition so that it is a sub-class of Flee rather than
Seek and adjust the call Seek.getSteering to Flee.getSteering.

Overshooting

If the chasing character is able to move faster than the target, it will overshoot and oscillate around
its target, exactly as the normal seek behavior does.

To avoid this, we can replace the delegated call to seek with a call to arrive. This illustrates the
power of building up behaviors from their logical components; when we need a slightly different
effect, we can easily modify the code to get it.

3.3.9 Face

The face behavior makes a character look at its target. It delegates to the align behavior to perform
the rotation but calculates the target orientation first.

The target orientation is generated from the relative position of the target to the character. It
is the same process we used in the getOrientation function for kinematic movement.

Pseudo-Code

The implementation is very simple:

1 class Face (Align):
2

3 # Overrides the Align.target member
4 target
5

6 # ... Other data is derived from the superclass ...
7

8 # Implemented as it was in Pursue
9 def getSteering():

10

11 # 1. Calculate the target to delegate to align
12

13 # Work out the direction to target
14 direction = target.position - character.position
15

16 # Check for a zero direction, and make no change if so

72 Chapter 3 Movement

17 if direction.length() == 0: return target
18

19 # Put the target together
20 Align.target = explicitTarget
21 Align.target.orientation = atan2(-direction.x, direction.z)
22

23 # 2. Delegate to align
24 return Align.getSteering()

3.3.10 Looking Where You’re Going

We have assumed that the direction a character is facing does not have to be its direction of
motion. In many cases, however, we would like the character to face in the direction it is moving.
In the kinematic movement algorithms we set it directly. Using the align behavior, we can give
the character angular acceleration to make it face the right way. In this way the character changes
facing gradually, which can look more natural, especially for aerial vehicles such as helicopters or
hovercraft or for human characters that can move sideways (providing sidestep animations are
available, of course).

This is a process similar to the face behavior, above. The target orientation is calculated using
the current velocity of the character. If there is no velocity, then the target orientation is set to the
current orientation. We have no preference in this situation for any orientation.

Pseudo-Code

The implementation is even simpler than face:

1 class LookWhereYoureGoing (Align):
2

3 # No need for an overridden target member, we have
4 # no explicit target to set.
5

6 # ... Other data is derived from the superclass ...
7

8 def getSteering():
9

10 # 1. Calculate the target to delegate to align
11

12 # Check for a zero direction, and make no change if so
13 if character.velocity.length() == 0: return
14

15 # Otherwise set the target based on the velocity
16 target.orientation =
17 atan2(-character.velocity.x, character.velocity.z)

3.3 Steering Behaviors 73

18

19 # 2. Delegate to align
20 return Align.getSteering()

Implementation Notes

In this case we don’t need another target member variable. There is no overall target; we are
creating the current target from scratch. So, we can simply use Align.target for the calculated
target (in the same way we did with pursue and the other derived algorithms).

Performance

The algorithm is O(1) in both memory and time.

3.3.11 Wander

The wander behavior controls a character moving aimlessly about.
When we looked at the kinematic wander behavior, we perturbed the wander direction by

a random amount each time it was run. This makes the character move forward smoothly, but
the rotation of the character is erratic, appearing to twitch from side to side as it moves (run the

Program

Kinematic Steering program in the source code on the website to see it in action).
This initial idea for a wander behavior (move in a random direction) gave linear jerkiness. The

kinematic version added a layer of indirection and produced rotational jerkiness. We can smooth
this twitching by adding an extra layer, making the orientation of the character indirectly reliant
on the random number generator.

We can think of kinematic wander as behaving as a delegated seek behavior. There is a circle
around the character on which the target is constrained. Each time the behavior is run, we move
the target around the circle a little, by a random amount. The character then seeks the target.
Figure 3.13 illustrates this configuration.

We can improve this by moving the circle around which the target is constrained. If we move
it out in front of the character (where front is determined by its current facing direction) and
shrink it down, we get the situation in Figure 3.14.

The character tries to face the target in each frame, using the face behavior to align to the target.
It then adds an extra step: applying full acceleration in the direction of its current orientation.

We could also implement the behavior by having it seek the target and perform a look where
you’re going behavior to correct its orientation.

In either case, the orientation of the character is retained between calls (so smoothing the
changes in orientation). The angles that the edges of the circle subtend to the character determine
how fast it will turn. If the target is on one of these extreme points, it will turn quickly. The target
will twitch and jitter around the edge of the circle, but the character’s orientation will change
smoothly.

74 Chapter 3 Movement

Target

Seek output

Figure 3.13 The kinematic wander as a seek

Circle at fixed
distance ahead

Target

Seek output

Figure 3.14 The full wander behavior

This wander behavior biases the character to turn (in either direction). The target will spend
more time toward the edges of the circle, from the point of view of the character.

Pseudo-Code

1 class Wander (Face):
2

3 # Holds the radius and forward offset of the wander
4 # circle.
5 wanderOffset
6 wanderRadius

3.3 Steering Behaviors 75

7

8 # Holds the maximum rate at which the wander orientation
9 # can change

10 wanderRate
11

12 # Holds the current orientation of the wander target
13 wanderOrientation
14

15 # Holds the maximum acceleration of the character
16 maxAcceleration
17

18 # Again we don’t need a new target
19

20 # ... Other data is derived from the superclass ...
21

22 def getSteering():
23

24 # 1. Calculate the target to delegate to face
25

26 # Update the wander orientation
27 wanderOrientation += randomBinomial() * wanderRate
28

29 # Calculate the combined target orientation
30 targetOrientation = wanderOrientation +
31 character.orientation
32

33 # Calculate the center of the wander circle
34 target = character.position +
35 wanderOffset * character.orientation.asVector()
36

37 # Calculate the target location
38 target += wanderRadius * targetOrientation.asVector()
39

40 # 2. Delegate to face
41 steering = Face.getSteering()
42

43 # 3. Now set the linear acceleration to be at full
44 # acceleration in the direction of the orientation
45 steering.linear = maxAcceleration *
46 character.orientation.asVector()
47

48 # Return it
49 return steering

76 Chapter 3 Movement

Data Structures and Interfaces

We’ve used the same asVector function as earlier to get a vector form of the orientation.

Performance

The algorithm is O(1) in both memory and time.

3.3.12 Path Following

So far we’ve seen behaviors that take a single target or no target at all. Path following is a steering
behavior that takes a whole path as a target. A character with path following behavior should
move along the path in one direction.

Path following, as it is usually implemented, is a delegated behavior. It calculates the position
of a target based on the current character location and the shape of the path. It then hands its
target off to seek. There is no need to use arrive, because the target should always be moving along
the path. We shouldn’t need to worry about the character catching up with it.

The target position is calculated in two stages. First, the current character position is mapped
to the nearest point along the path. This may be a complex process, especially if the path is
curved or made up of many line segments. Second, a target is selected which is further along
the path than the mapped point by a fixed distance. To change the direction of motion along
the path, we can change the sign of this distance. Figure 3.15 shows this in action. The current
path location is shown, along with the target point a little way farther along. This approach

Seek output

Nearest point
on the path

Target

Figure 3.15 Path following behavior

3.3 Steering Behaviors 77

Predicted future position

Seek output

Nearest point
on the path

Target

Figure 3.16 Predictive path following behavior

is sometimes called “chase the rabbit,” after the way grayhounds chase the cloth rabbit at the
dog track.

Some implementations generate the target slightly differently. They first predict where the
character will be in a short time and then map this to the nearest point on the path. This is a
candidate target. If the new candidate target has not been placed farther along the path than it
was at the last frame, then it is changed so that it is. We’ll call this predictive path following. It is
shown in Figure 3.16. This latter implementation can appear smoother for complex paths with
sudden changes of direction, but has the downside of cutting corners when two paths come close
together.

Figure 3.17 shows this cutting-corner behavior. The character misses a whole section of the
path. The character is shown at the instant its predictive future position crosses to a later part of
the path.

This might not be what you want if, for example, the path represents a patrol route.

Pseudo-Code

1 class FollowPath (Seek):
2

3 # Holds the path to follow
4 path
5

6 # Holds the distance along the path to generate the
7 # target. Can be negative if the character is to move
8 # along the reverse direction.

78 Chapter 3 Movement

Path

Predicted future position

Nearest point
on the path

Target

Figure 3.17 Vanilla and predictive path following

9 pathOffset
10

11 # Holds the current position on the path
12 currentParam
13

14 # ... Other data is derived from the superclass ...
15

16 def getSteering():
17

18 # 1. Calculate the target to delegate to face
19

20 # Find the current position on the path
21 currentParam = path.getParam(character.position, currentPos)
22

23 # Offset it
24 targetParam = currentParam + pathOffset
25

26 # Get the target position
27 target.position = path.getPosition(targetParam)
28

29 # 2. Delegate to seek
30 return Seek.getSteering()

3.3 Steering Behaviors 79

We can convert this algorithm to a predictive version by first calculating a surrogate position
for the call to path.getParam. The algorithm looks almost identical:

1 class FollowPath (Seek):
2

3 # Holds the path to follow
4 path
5

6 # Holds the distance along the path to generate the
7 # target. Can be negative if the character is to move
8 # along the reverse direction.
9 pathOffset

10

11 # Holds the current position on the path
12 currentParam
13

14 # Holds the time in the future to predict the
15 # character’s position
16 predictTime = 0.1
17

18 # ... Other data is derived from the superclass ...
19

20 def getSteering():
21

22 # 1. Calculate the target to delegate to face
23

24 # Find the predicted future location
25 futurePos = character.position +
26 character.velocity * predictTime
27

28 # Find the current position on the path
29 currentParam = path.getParam(futurePos, currentPos)
30

31 # Offset it
32 targetParam = currentParam + pathOffset
33

34 # Get the target position
35 target.position = path.getPosition(targetParam)
36

37 # 2. Delegate to seek
38 return Seek.getSteering()

80 Chapter 3 Movement

Data Structures and Interfaces

The path that the behavior follows has the following interface:

1 class Path:
2 def getParam(position, lastParam)
3 def getPosition(param)

Both these functions use the concept of a path parameter. This is a unique value that increases
monotonically along the path. It can be thought of as a distance along the path. Typically, paths
are made up of line or curve splines; both of these are easily assigned parameters. The parameter
allows us to translate between the position on the path and positions in 2D or 3D space.

Path Types

Performing this translation (i.e., implementing a path class) can be tricky, depending on the
format of the path used.

It is most common to use a path of straight line segments as shown in Figure 3.18. In this case
the conversion is not too difficult. We can implement getParam by looking at each line segment
in turn, determining which one the character is nearest to, and then finding the nearest point on
that segment. For smooth curved splines common in some driving games, however, the math can
be more complex. A good source for closest-point algorithms for a range of different geometries
is Schneider and Eberly [2003].

The source code on the website gives a path class implementation for a series of line segments.

Library

This can work directly with the paths generated by the pathfinding algorithms of the next chapter
and is best suited to human characters moving around.

Line segments

Splines

Figure 3.18 Path types

3.3 Steering Behaviors 81

Keeping Track of the Parameter

The pseudo-code interface above provides for sending the last parameter value to the path in
order to calculate the current parameter value. This is essential to avoid nasty problems when
lines are close together.

We limit the getParam algorithm to only considering areas of the path close to the previous
parameter value. The character is unlikely to have moved far, after all. This technique, assuming
the new value is close to the old one, is called coherence, and it is a feature of many geometric
algorithms. Figure 3.19 shows a problem that would fox a non-coherent path follower but is easily
handled by assuming the new parameter is close to the old one.

Of course, you may really want corners to be cut or a character to move between very different
parts of the path. If another behavior interrupts and takes the character across the level, for
example, you don’t necessarily want it to come all the way back to pick up a circular patrol route.
In this case, you’ll need to remove coherence or at least widen the range of parameters that it
searches for a solution.

Performance

The algorithm is O(1) in both memory and time. The getParam function of the path will usually
be O(1), although it may be O(n), where n is the number of segments in the path. If this is the
case, then the getParam function will dominate the performance scaling of the algorithm.

Closest point?

Previous
point

Closest point?
Closest point?

Figure 3.19 Coherence problems with path following

82 Chapter 3 Movement

3.3.13 Separation

The separation behavior is common in crowd simulations, where a number of characters are all
heading in roughly the same direction. It acts to keep the characters from getting too close and
being crowded.

It doesn’t work as well when characters are moving across each other’s paths. The collision
avoidance behavior, below, should be used in this case.

Most of the time, the separation behavior has a zero output; it doesn’t recommend any
movement at all. If the behavior detects another character closer than some threshold, it acts
in a way similar to an evade behavior to move away from the character. Unlike the basic evade
behavior, however, the strength of the movement is related to the distance from the target. The
separation strength can decrease according to any formula, but a linear or an inverse square law
decay is common.

Linear separation looks like the following:

1 strength = maxAcceleration * (threshold - distance) / threshold

The inverse square law looks like the following:

1 strength = min(k / (distance * distance), maxAcceleration)

In each case, distance is the distance between the character and its nearby neighbor, threshold
is the minimum distance at which any separation output occurs, and maxAcceleration is the
maximum acceleration of the character. The k constant can be set to any positive value. It controls
how fast the separation strength decays with distance.

Separation is sometimes called the “repulsion steering” behavior, because it acts in the same
way as a physical repulsive force (an inverse square law force such as magnetic repulsion).

Where there are multiple characters within the avoidance threshold, the steering is calculated
for each in turn and summed. The final value may be greater than the maxAcceleration, in which
case it can be clipped to that value.

Pseudo-Code

1 class Separation:
2

3 # Holds the kinematic data for the character
4 character
5

6 # Holds a list of potential targets
7 targets
8

9 # Holds the threshold to take action

3.3 Steering Behaviors 83

10 threshold
11

12 # Holds the constant coefficient of decay for the
13 # inverse square law force
14 decayCoefficient
15

16 # Holds the maximum acceleration of the character
17 maxAcceleration
18

19 # See the Implementation Notes for why we have two
20 # getSteering methods
21 def getSteering():
22

23 # The steering variable holds the output
24 steering = new Steering
25

26 # Loop through each target
27 for target in targets:
28

29 # Check if the target is close
30 direction = target.position - character.position
31 distance = direction.length()
32 if distance < threshold:
33

34 # Calculate the strength of repulsion
35 strength = min(decayCoefficient / (distance * distance),
36 maxAcceleration)
37

38 # Add the acceleration
39 direction.normalize()
40 steering.linear += strength * direction
41

42 # We’ve gone through all targets, return the result
43 return steering

Implementation Notes

In the algorithm above, we simply look at each possible character in turn and work out whether
we need to separate from them. For a small number of characters, this will be the fastest approach.
For a few hundred characters in a level, we need a faster method.

Typically, graphics and physics engines rely on techniques to determine what objects are close
to one another. Objects are stored in spatial data structures, so it is relatively easy to make this
kind of query. Multi-resolution maps, quad- or octrees, and binary space partition (BSP) trees are

84 Chapter 3 Movement

all popular data structures for rapidly calculating potential collisions. Each of these can be used
by the AI to get potential targets more efficiently.

Implementing a spatial data structure for collision detection is beyond the scope of this book.
Other books in this series cover the topic in much more detail, particularly Ericson [2005] and
van den Bergen [2003].

Performance

The algorithm is O(1) in memory and O(n) in time, where n is the number of potential targets to
check. If there is some efficient way of pruning potential targets before they reach the algorithm
above, the overall performance in time will improve. A BSP system, for example, can give O(log n)
time, where n is the total number of potential targets in the game. The algorithm above will always
remain linear in the number of potential targets it checks, however.

Attraction

Using the inverse square law, we can set a negative valued constant of decay and get an attractive
force. The character will be attracted to others within its radius, but this is rarely useful.

Some developers have experimented with having lots of attractors and repulsors in their level
and having character movement mostly controlled by these. Characters are attracted to their goals
and repelled from obstacles, for example. Despite being ostensibly simple, this approach is full of
traps for the unwary.

The next section, on combining steering behaviors, shows why simply having lots of attractors
or repulsors leads to characters that regularly get stuck and why starting with a more complex
algorithm ends up being less work in the long run.

Independence

The separation behavior isn’t much use on its own. Characters will jiggle out of separation, but
then never move again. Separation, along with the remaining behaviors in this chapter, is designed
to work in combination with other steering behaviors. We return to how this combination works
in the next section.

3.3.14 Collision Avoidance

In urban areas, it is common to have large numbers of characters moving around the same space.
These characters have trajectories that cross each other, and they need to avoid constant collisions
with other moving characters.

A simple approach is to use a variation of the evade or separation behavior, which only engages
if the target is within a cone in front of the character. Figure 3.20 shows a cone that has another
character inside it.

3.3 Steering Behaviors 85

The cone check can be carried out using a dot product:

1 if orientation.asVector() . direction > coneThreshold:
2 # do the evasion
3 else:
4 # return no steering

where direction is the direction between the behavior’s character and the potential collision. The
coneThreshold value is the cosine of the cone half-angle, as shown in Figure 3.20.

If there are several characters in the cone, then the behavior needs to avoid them all. It is often
sufficient to find the average position and speed of all characters in the cone and evade that target.
Alternatively, the closest character in the cone can be found and the rest ignored.

Unfortunately, this approach, while simple to implement, doesn’t work well with more than
a handful of characters. The character does not take into account whether it will actually collide
but instead has a “panic” reaction to even coming close. Figure 3.21 shows a simple situation
where the character will never collide, but our naive collision avoidance approach will still take
action.

Figure 3.22 shows another problem situation. Here the characters will collide, but neither
will take evasive action because they will not have the other in their cone until the moment of
collision.

A better solution works out whether or not the characters will collide if they keep to their cur-
rent velocity. This involves working out the closest approach of the two characters and determining
if the distance at this point is less than some threshold radius. This is illustrated in Figure 3.23.

Note that the closest approach will not normally be the same as the point where the future
trajectories cross. The characters may be moving at very different velocities, and so are likely to
reach the same point at different times. We simply can’t see if their paths will cross to check if the
characters will collide. Instead, we have to find the moment that they are at their closest, use this
to derive their separation, and check if they collide.

Ignored character

Character to avoid

Half-angle of the cone

Figure 3.20 Separation cones for collision avoidance

86 Chapter 3 Movement

Future path
without avoidance

Future path
without avoidance

Never close enough
to collide

Character to avoid

Figure 3.21 Two in-cone characters who will not collide

Collision

Figure 3.22 Two out-of-cone characters who will collide

Position of
B at closest

Position of
A at closest

Character B

Character A

Closest
distance

Figure 3.23 Collision avoidance using collision prediction

3.3 Steering Behaviors 87

The time of closest approach is given by

tclosest = −dp.dv

|dv|2
, [3.1]

where dp is the current relative position of target to character (what we called the distance vector
from previous behaviors):

dp = pt − pc

and dv is the relative velocity:

dv = vt − vc .

If the time of closest approach is negative, then the character is already moving away from the
target, and no action needs to be taken.

From this time, the position of character and target at the time of closest approach can be
calculated:

p′
c = pc + vc tclosest,

p′
t = pt + vt tclosest.

We then use these positions as the basis of an evade behavior; we are performing an evasion
based on our predicted future positions, rather than our current positions. In other words, the
behavior makes the steering correction now, as if it were already at the most compromised position
it will get to.

For a real implementation it is worth checking if the character and target are already in
collision. In this case, action can be taken immediately, without going through the calculations to
work out if they will collide at some time in the future. In addition, this approach will not return
a sensible result if the centers of the character and target will collide at some point. A sensible
implementation will have some special case code for this unlikely situation to make sure that the
characters will sidestep in different directions. This can be as simple as falling back to the evade
behavior on the current positions of the character.

For avoiding groups of characters, averaging positions and velocities do not work well with
this approach. Instead, the algorithm needs to search for the character whose closest approach
will occur first and to react to this character only. Once this imminent collision is avoided, the
steering behavior can then react to more distant characters.

Pseudo-Code

1 class CollisionAvoidance:
2

3 # Holds the kinematic data for the character

88 Chapter 3 Movement

4 character
5

6 # Holds the maximum acceleration
7 maxAcceleration
8

9 # Holds a list of potential targets
10 targets
11

12 # Holds the collision radius of a character (we assume
13 # all characters have the same radius here)
14 radius
15

16 def getSteering():
17

18 # 1. Find the target that’s closest to collision
19

20 # Store the first collision time
21 shortestTime = infinity
22

23 # Store the target that collides then, and other data
24 # that we will need and can avoid recalculating
25 firstTarget = None
26 firstMinSeparation
27 firstDistance
28 firstRelativePos
29 firstRelativeVel
30

31 # Loop through each target
32 for target in targets:
33

34 # Calculate the time to collision
35 relativePos = target.position - character.position
36 relativeVel = target.velocity - character.velocity
37 relativeSpeed = relativeVel.length()
38 timeToCollision = (relativePos . relativeVel) /
39 (relativeSpeed * relativeSpeed)
40

41 # Check if it is going to be a collision at all
42 distance = relativePos.length()
43 minSeparation = distance-relativeSpeed*shortestTime
44 if minSeparation > 2*radius: continue
45

46 # Check if it is the shortest
47 if timeToCollision > 0 and

3.3 Steering Behaviors 89

48 timeToCollision < shortestTime:
49

50 # Store the time, target and other data
51 shortestTime = timeToCollision
52 firstTarget = target
53 firstMinSeparation = minSeparation
54 firstDistance = distance
55 firstRelativePos = relativePos
56 firstRelativeVel = relativeVel
57

58 # 2. Calculate the steering
59

60 # If we have no target, then exit
61 if not firstTarget: return None
62

63 # If we’re going to hit exactly, or if we’re already
64 # colliding, then do the steering based on current
65 # position.
66 if firstMinSeparation <= 0 or distance < 2*radius:
67 relativePos = firstTarget.position -
68 character.position
69

70 # Otherwise calculate the future relative position
71 else:
72 relativePos = firstRelativePos +
73 firstRelativeVel * shortestTime
74

75 # Avoid the target
76 relativePos.normalize()
77 steering.linear = relativePos * maxAcceleration
78

79 # Return the steering
80 return steering

Performance

The algorithm is O(1) in memory and O(n) in time, where n is the number of potential targets
to check.

As in the previous algorithm, if there is some efficient way of pruning potential targets before
they reach the algorithm above, the overall performance in time will improve. This algorithm will
always remain linear in the number of potential targets it checks, however.

90 Chapter 3 Movement

3.3.15 Obstacle and Wall Avoidance

The collision avoidance behavior assumes that targets are spherical. It is interested in avoiding
getting too close to the center point of the target.

This can also be applied to any obstacle in the game that is easily represented by a bounding
sphere. Crates, barrels, and small objects can be avoided simply this way.

More complex obstacles cannot be easily represented in this way. The bounding sphere of a
large object, such as a staircase, can fill a room. We certainly don’t want characters sticking to the
outside of the room just to avoid a staircase in the corner. By far the most common obstacles in
the game, walls, cannot be simply represented by bounding spheres at all.

The obstacle and wall avoidance behavior uses a different approach to avoiding collisions. The
moving character casts one or more rays out in the direction of its motion. If these rays collide
with an obstacle, then a target is created that will avoid the collision, and the character does a
basic seek on this target. Typically, the rays are not infinite. They extend a short distance ahead of
the character (usually a distance corresponding to a few seconds of movement).

Figure 3.24 shows a character casting a single ray that collides with a wall. The point and
normal of the collision with the wall are used to create a target location at a fixed distance from
the surface.

Pseudo-Code

1 class ObstacleAvoidance (Seek):
2

3 # Holds a collision detector
4 collisionDetector
5

6 # Holds the minimum distance to a wall (i.e., how far
7 # to avoid collision) should be greater than the
8 # radius of the character.

Collision
point

normal

Single ray cast
Collision

Figure 3.24 Collision ray avoiding a wall

3.3 Steering Behaviors 91

9 avoidDistance
10

11 # Holds the distance to look ahead for a collision
12 # (i.e., the length of the collision ray)
13 lookahead
14

15 # ... Other data is derived from the superclass ...
16

17 def getSteering():
18

19 # 1. Calculate the target to delegate to seek
20

21 # Calculate the collision ray vector
22 rayVector = character.velocity
23 rayVector.normalize()
24 rayVector *= lookahead
25

26 # Find the collision
27 collision = collisionDetector.getCollision(
28 character.position, rayVector)
29

30 # If have no collision, do nothing
31 if not collision: return None
32

33 # Otherwise create a target
34 target = collision.position + collision.normal * avoidDistance
35

36 # 2. Delegate to seek
37 return Seek.getSteering()

Data Structures and Interfaces

The collision detector has the following interface:

1 class CollisionDetector:
2 def getCollision(position, moveAmount)

where getCollision returns the first collision for the character if it begins at the given position
and moves by the given movement amount. Collisions in the same direction, but farther than
moveAmount, are ignored.

Typically, this call is implemented by casting a ray from position to position + moveAmount
and checking for intersections with walls or other obstacles.

92 Chapter 3 Movement

The getCollision method returns a collision data structure of the form

1 struct Collision:
2 position
3 normal

where position is the collision point and normal is the normal of the wall at the point of collision.
These are standard data to expect from a collision detection routine, and most provide such data
as a matter of course.

Performance

The algorithm is O(1) in both time and memory, excluding the performance of the collision
detector (or rather, assuming that the collision detector is O(1)). In reality, collision detection
using ray casts is quite expensive and is almost certainly not O(1) (it normally depends on the
complexity of the environment). You should expect that most of the time spent in this algorithm
will be spent in the collision detection routine.

Collision Detection Problems

So far we have assumed that we are detecting collisions with a single ray cast. In practice, this isn’t
a good solution.

Figure 3.25 shows a one-ray character colliding with a wall that it never detects. Typically, a
character will need to have two or more rays. The figure shows a three-ray character, with the rays
splayed out to act like whiskers. This character will not graze the wall.

Position of character
at undetected collision

Single
ray cast

Triple ray cast

Detected
collision

Figure 3.25 Grazing a wall with a single ray and avoiding it with three

3.3 Steering Behaviors 93

Parallel side rays

Central ray with short
fixed length whiskers

Whiskers only

Single only

Figure 3.26 Ray configurations for obstacle avoidance

Several basic ray configurations are used over and over for wall avoidance. Figure 3.26 illus-
trates these.

There are no hard and fast rules as to which configuration is better. Each has its own particular
idiosyncrasies. A single ray with short whiskers is often the best initial configuration to try but
can make it impossible for the character to move down tight passages. The single ray configu-
ration is useful in concave environments but grazes convex obstacles. The parallel configuration
works well in areas where corners are highly obtuse but is very susceptible to the corner trap, as
we’ll see.

The Corner Trap

The basic algorithm for multi-ray wall avoidance can suffer from a crippling problem with acute
angled corners (any convex corner, in fact, but it is more prevalent with acute angles). Figure 3.27
illustrates a trapped character. Currently, its left ray is colliding with the wall. The steering beha-
vior will therefore turn it to the left to avoid the collision. Immediately, the right ray will then be
colliding, and the steering behavior will turn the character to the right.

When the character is run in the game, it will appear to home into the corner directly, until it
slams into the wall. It will be unable to free itself from the trap.

The fan structure, with a wide enough fan angle, alleviates this problem. Often, there is a
trade-off, however, between avoiding the corner trap with a large fan angle and keeping the angle
small to allow the character to access small passageways. At worst, with a fan angle near π radians,
the character will not be able to respond quickly enough to collisions detected on its side rays and
will still graze against walls.

Several developers have experimented with adaptive fan angles. If the character is moving
successfully without a collision, then the fan angle is narrowed. If a collision is detected, then the
fan angle is widened. If the character detects many collisions on successive frames, then the fan
angle will continue to widen, reducing the chance that the character is trapped in a corner.

Other developers implement specific corner-trap avoidance code. If a corner trap is detected,
then one of the rays is considered to have won, and the collisions detected by other rays are ignored
for a while.

94 Chapter 3 Movement

Figure 3.27 The corner trap for multiple rays

Projected
collision volume

Figure 3.28 Collision detection with projected volumes

Both approaches work well and represent the most practical solutions to the problem. The
only complete solution, however, is to perform the collision detection using a projected volume
rather than a ray, as shown in Figure 3.28.

Many game engines are capable of doing this, for the sake of modeling realistic physics. Unlike
for AI, the projection distances required by physics are typically very small, however, and the
calculations can be very slow when used in a steering behavior.

In addition, there are complexities involved in interpreting the collision data returned from
a volume query. Unlike for physics, it is not the first collision point that needs to be considered
(this could be the edge of a polygon on one extreme of the character model), but how the overall
character should react to the wall. So far there is no widely trusted mechanism for doing volume
prediction in wall avoidance.

3.4 Combining Steering Behaviors 95

Align
LookWhereYoureGoing

Face

Wander

Pursue
Evade

Path following

CollisionAvoidance

ObstacleAvoidance

Arrive

Separation

Seek
Flee

VelocityMatch

ForceField

Figure 3.29 Steering family tree

For now, it seems that the most practical solution is to use adaptive fan angles, with one long
ray cast and two shorter whiskers.

3.3.16 Summary

Figure 3.29 shows a family tree of the steering behaviors we have looked at in this section. We’ve
marked a steering behavior as a child of another if it can be seen as extending the behavior of its
parent.

3.4 Combining Steering Behaviors

Individually, steering behaviors can achieve a good degree of movement sophistication. In many
games steering simply consists of moving toward a given location: the seek behavior.

Higher level decision making tools are responsible for determining where the character intends
to move. This is often a pathfinding algorithm, generating intermediate targets on the path to a
final goal.

This only gets us so far, however. A moving character usually needs more than one steering
behavior. It needs to reach its goal, avoid collisions with other characters, tend toward safety as

96 Chapter 3 Movement

it moves, and avoid bumping into walls. Wall and obstacle avoidance can be particularly difficult
to get when working with other behaviors. In addition, some complex steering, such as flocking
and formation motion, can only be accomplished when more than one steering behavior is active
at once.

This section looks at increasingly sophisticated ways of accomplishing this combination: from
simple blending of steering outputs to complicated pipeline architectures designed explicitly to
support collision avoidance.

3.4.1 Blending and Arbitration

By combining steering behaviors together, more complex movement can be achieved. There are
two methods of combining steering behaviors: blending and arbitration.

Each method takes a portfolio of steering behaviors, each with its own output, and generates
a single overall steering output. Blending does this by executing all the steering behaviors and
combining their results using some set of weights or priorities. This is sufficient to achieve some
very complex behaviors, but problems arise when there are a lot of constraints on how a character
can move. Arbitration selects one or more steering behaviors to have complete control over the
character. There is a whole range of arbitration schemes that control which behavior gets to have
its way.

Blending and arbitration are not exclusive approaches, however. They are the ends of a con-
tinuum.

Blending may have weights or priorities that change over time. Some process needs to change
these weights, and this might be in response to the game situation or the internal state of the char-
acter. The weights used for some steering behaviors may be zero; they are effectively switched off.

At the same time, there is nothing that requires an arbitration architecture to return a single
steering behavior to execute. It may return a set of blending weights for combining a set of different
behaviors.

A general steering system needs to combine elements of both blending and arbitration.
Although we’ll look at different algorithms for each, an ideal implementation will mix elements
of both.

3.4.2 Weighted Blending

The simplest way to combine steering behaviors is to blend their results together using weights.
Suppose we have a crowd of rioting characters in our game. The characters need to move as

a mass, while making sure that they aren’t consistently bumping into each other. Each character
needs to stay by the others, while keeping a safe distance. Their overall behavior is a blend of
two behaviors: arriving at the center of mass of the group and separation from nearby charac-
ters. At no point is the character doing just one thing. It is always taking both concerns into
consideration.

3.4 Combining Steering Behaviors 97

The Algorithm

A group of steering behaviors can be blended together to act as a single behavior. Each steering
behavior in the portfolio is asked for its acceleration request, as if it were the only behavior
operating.

These accelerations are combined together using a weighted linear sum, with coefficients
specific to each behavior. There are no constraints on the blending weights; they don’t have to
sum to one, for example, and rarely do (i.e., it isn’t a weighted mean).

The final acceleration from the sum may be too great for the capabilities of the character, so it
is trimmed according to the maximum possible acceleration (a more complex actuation step can
always be used; see Section 3.8 on motor control later in the chapter).

In our crowd example, we may use weights of 1 for both separation and cohesion. In this case
the requested accelerations are summed and cropped to the maximum possible acceleration. This
is the output of the algorithm. Figure 3.30 illustrates this process.

As in all parameterized systems, the choice of weights needs to be the subject of inspired
guesswork or good trial and error. There have been research projects that have tried to evolve the
steering weights using genetic algorithms or neural networks. Results have not been encouraging,
however, and manual experimentation still seems to be the most sensible approach.

Pseudo-Code

The algorithm for blended steering is as follows:

1 class BlendedSteering:
2

3 struct BehaviorAndWeight:
4 behavior
5 weight
6

7 # Holds a list of BehaviorAndWeight instances.

Separation Resulting
acceleration

Cohesion

Figure 3.30 Blending steering outputs

98 Chapter 3 Movement

8 behaviors
9

10 # Holds the maximum acceleration and rotation
11 maxAcceleration
12 maxRotation
13

14 # Returns the acceleration required.
15 def getSteering():
16

17 # Create the steering structure for accumulation
18 steering = new Steering()
19

20 # Accumulate all accelerations
21 for behavior in behaviors:
22 steering += behavior.weight *
23 behavior.behavior.getSteering()
24

25 # Crop the result and return
26 steering.linear = max(steering.linear, maxAcceleration)
27 steering.angular = max(steering.angular, maxRotation)
28 return steering

Data Structures

We have assumed that instances of the steering structure can be added together and multiplied
by a scalar. In each case these operations should be performed component-wise (i.e., each linear
and angular component should individually be added and multiplied).

Performance

The algorithm requires only temporary storage for the acceleration. It is O(1) in memory. It is
O(n) for time, where n is the number of steering behaviors in the list. The practical execution
speed of this algorithm depends on the efficiency of the component steering behaviors.

Flocking and Swarming

The original research into steering behaviors by Craig Reynolds modeled the movement patterns
of flocks of simulated birds (known as “boids”). Flocking is the most common steering behavior,
relying on a simple weighted blend of simpler behaviors.

It is so ubiquitous that all steering behaviors are sometimes referred to, incorrectly, as
“flocking.” We’ve even seen AI programmers fall into this habit at times.

3.4 Combining Steering Behaviors 99

The flocking algorithm relies on blending three simple steering behaviors: move away from
boids that are too close (separation), move in the same direction and at the same velocity as
the flock (alignment and velocity matching), and move toward the center of mass of the flock
(cohesion). The cohesion steering behavior calculates its target by working out the center of mass
of the flock. It then hands off this target to a regular arrive behavior.

For simple flocking, using equal weights may be sufficient. In general, however, separation
is more important than cohesion, which is more important than alignment. The latter two are
sometimes seen reversed.

These behaviors are shown schematically in Figure 3.31.
In most implementations the flocking behavior is modified to ignore distant boids. In each

behavior there is a neighborhood in which other boids are considered. Separation only avoids
nearby boids; cohesion and alignment calculate and seek the position, facing, and velocity of
only neighboring boids. The neighborhood is most commonly a simple radius cut-off, although
Reynolds suggests it should have an angular cut-off, as shown in Figure 3.32.

Separation

Cohesion

Result

Match velocity/align

Center of
gravity

Average
velocity

Figure 3.31 The three components of flocking behaviors

Figure 3.32 The neighborhood of a boid

100 Chapter 3 Movement

On the Website

There is a Flocking program as part of the source code on the website that demonstrates the classic

Program

flocking algorithm in two dimensions, modeling a herd of animals. You can switch on and off
each of the three component behaviors at any time to see the contribution they make to the whole
movement.

Problems

There are several important problems with blended steering behaviors in real games. It is no
coincidence that demonstrations of blended steering often use very sparse outdoor environments,
rather than indoor or urban levels.

In more realistic settings, characters can often get stuck in the environment in ways that
are difficult to debug. As with all AI techniques, it is essential to be able to get good debugging
information when you need it and at the very least to be able to visualize the inputs and outputs
to each steering behavior in the blend.

Some of these problems, but by no means all of them, will be solved by introducing arbitration
into the steering system.

Stable Equilibria

Blending steering behaviors causes problems when two steering behaviors want to do conflict-
ing things. This can lead to the character doing nothing, being trapped at an equilibrium. In
Figure 3.33, the character is trying to reach its destination while avoiding the enemy. The seek
steering behavior is precisely balanced against the evade behavior.

This balance will soon sort itself out. As long as the enemy is stationary, numerical instability
will give the character a minute lateral velocity. It will skirt around increasingly quickly before
making a dash for the destination. This is an unstable equilibrium.

Figure 3.34 shows a more serious situation. Here, if the character does make it out of equilib-
rium slightly (by numerical error, for example), it will immediately head back into equilibrium.
There is no escape for the character. It will stay fixed to the spot, looking stupid and indecisive.
The equilibrium is stable.

Stable equilibria have a basin of attraction: the region of the level where a character will fall
into the equilibrium point. If this basin is large, then the chances of a character becoming trapped

Avoid enemy Seek target

Enemy Target

Figure 3.33 An unstable equilibrium

3.4 Combining Steering Behaviors 101

Avoid enemy 2

Avoid enemy 1

Seek target

Enemy 2

Basin of
attraction

Enemy 1

Target

Figure 3.34 A stable equilibrium

Wall
avoidance

Result

Pursue

Pursued enemy

Figure 3.35 Can’t avoid an obstacle and chase

are very large. Figure 3.34 shows a basin of attraction that extends in a corridor for an unlimited
distance. Unstable equilibria effectively have a basin of zero size.

Basins of attraction aren’t only defined by a set of locations. They might only attract characters
that are traveling in a particular direction or that have a particular orientation. For this reason
they can be very difficult to visualize and debug.

Constrained Environments

Steering behaviors, either singly or blended, work well in environments with few constraints.
Movement in an open 3D space has the fewest constraints. Most games, however, take place
in constrained 2D worlds. Indoor environments, racetracks, and formation motion all greatly
increase the number of constraints on a character’s movement.

Figure 3.35 shows a chasing steering behavior returning a pathological suggestion for the
motion of a character. The pursue behavior alone would collide with the wall, but adding the wall
avoidance makes the direction even farther from the correct route for capturing the enemy.

102 Chapter 3 Movement

This problem is often seen in characters trying to move at acute angles through narrow
doorways, as shown in Figure 3.36. The obstacle avoidance behavior kicks in and can send the
character past the door, missing the route it wanted to take.

The problem of navigating into narrow passages is so perennial that many developers delib-
erately get their level designers to make wide passages where AI characters need to navigate.

Nearsightedness

Steering behaviors act locally. They make decisions based on their immediate surroundings only.
As human beings, we anticipate the result of our actions and evaluate if it will be worth it. Basic
steering behaviors can’t do this, so they often take the wrong course of action to reach their goal.

Figure 3.37 shows a character avoiding a wall using a standard wall avoidance technique. The
movement of the character catches the corner on just the wrong side. It will never catch the enemy
now, but it won’t realize that for a while.

There is no way to augment steering behaviors to get around this problem. Any behavior that
does not lookahead can be foiled by problems that are beyond its horizon. The only way to solve

Resulting acceleration

Collision
ray Route of character

Target

Figure 3.36 Missing a narrow doorway

Collision
ray

Route of character

Figure 3.37 Long distance failure in a steering behavior

3.4 Combining Steering Behaviors 103

this is to incorporate pathfinding into the steering system. This integration is discussed below,
and the pathfinding algorithms themselves are found in the next chapter.

3.4.3 Priorities

We have met a number of steering behaviors that will only request an acceleration in particular
conditions. Unlike seek or evade, which always produce an acceleration, collision avoidance,
separation, and arrive will suggest no acceleration in many cases.

When these behaviors do suggest an acceleration, it is unwise to ignore it. A collision avoidance
behavior, for example, should be honored immediately to avoid banging into another character.

When behaviors are blended together, their acceleration requests are diluted by the requests
of the others. A seek behavior, for example, will always be returning maximum acceleration in
some direction. If this is blended equally with a collision avoidance behavior, then the collision
avoidance behavior will never have more than 50% influence over the motion of the character.
This may not be enough to get the character out of trouble.

The Algorithm

A variation of behavior blending replaces weights with priorities. In a priority-based system,
behaviors are arranged in groups with regular blending weights. These groups are then placed in
priority order.

The steering system considers each group in turn. It blends the steering behaviors in the group
together, exactly as before. If the total result is very small (less than some small, but adjustable,
parameter), then it is ignored and the next group is considered. It is best not to check against
zero directly, because numerical instability in calculations can mean that a zero value is never
reached for some steering behaviors. Using a small constant value (conventionally called the
epsilon parameter) avoids this problem.

When a group is found with a result that isn’t small, its result is used to steer the character.
A pursuing character working in a team, for example, may have three groups: a collision

avoidance group, a separation group, and a pursuit group. The collision avoidance group contains
behaviors for obstacle avoidance, wall avoidance, and avoiding other characters. The separation
group simply contains the separation behavior, which is used to avoid getting too close to other
members of the chasing pack. The pursuit group contains the pursue steering behavior used to
home in on the target.

If the character is far from any interference, the collision avoidance group will return with no
desired acceleration. The separation group will then be considered but will also return with no
action. Finally, the pursuit group will be considered, and the acceleration needed to continue the
chase will be used. If the current motion of the character is perfect for the pursuit, this group
may also return with no acceleration. In this case, there are no more groups to consider, so the
character will have no acceleration, just as if they’d been exclusively controlled by the pursuit
behavior.

104 Chapter 3 Movement

In a different scenario, if the character is about to crash into a wall, the first group will
return an acceleration that will help avoid the crash. The character will carry out this acceleration
immediately, and the steering behaviors in the other groups will never be considered.

Pseudo-Code

The algorithm for priority-based steering is as follows:

1 class PrioritySteering:
2

3 # Holds a list of BlendedSteering instances, which in turn
4 # contain sets of behaviors with their blending weights.
5 groups
6

7 # Holds the epsilon parameter, should be a small value
8 epsilon
9

10 # Returns the acceleration required.
11 def getSteering():
12

13 # Go through each group
14 for group in groups:
15

16 # Create the steering structure for accumulation
17 steering = group.getSteering()
18

19 # Check if we’re above the threshold, if so return
20 if steering.linear.length() > epsilon or
21 abs(steering.angular) > epsilon:
22 return steering
23

24 # If we get here, it means that no group had a large
25 # enough acceleration, so return the small
26 # acceleration from the final group.
27 return steering

Data Structures and Interfaces

The priority steering algorithm uses a list of BlendedSteering instances. Each instance in this list
makes up one group, and within that group the algorithm uses the code we created before to blend
behaviors together.

3.4 Combining Steering Behaviors 105

Implementation Notes

The algorithm relies on being able to find the absolute value of a scalar (the angular acceleration)
using the abs function. This function is found in most standard libraries.

The method also uses the length method to find the magnitude of a linear acceleration vector.
Because we’re only comparing the result with a fixed epsilon value, we may as well get the squared
magnitude and use that (making sure our epsilon value is suitable for comparing against a squared
distance). This saves a square root calculation.

On the Website

Program

The Combining Steering program that is part of the source code on the website lets you see this
in action.

Initially, the character moving around has a two-stage, priority-based steering behavior, and
the priority stage that is in control is shown. Most of the time the character will wander around,
and its lowest level behavior is active. When the character comes close to an obstacle, its higher
priority avoidance behavior is run, until it is no longer in danger of colliding.

You can switch the character to blend its two steering behaviors. Now it will wander and
avoid obstacles at the same time. Because the avoidance behavior is being diluted by the wander
behavior, you will notice the character responding less effectively to obstacles.

Performance

The algorithm requires only temporary storage for the acceleration. It is O(1) in memory. It is
O(n) for time, where n is the total number of steering behaviors in all the groups. Once again, the
practical execution speed of this algorithm depends on the efficiency of the getSteering methods
for the steering behaviors it contains.

Equilibria Fallback

One notable feature of this priority-based approach is its ability to cope with stable equilibria.
If a group of behaviors is in equilibrium, its total acceleration will be near zero. In this case the
algorithm will drop down to the next group to get an acceleration.

By adding a single behavior at the lowest priority (wander is a good candidate), equilibria can
be broken by reverting to a fallback behavior. This situation is illustrated in Figure 3.38.

Weaknesses

While this works well for unstable equilibria (it avoids the problem with slow creeping around
the edge of an exclusion zone, for example), it cannot avoid large stable equilibria.

106 Chapter 3 Movement

Enemy 2

Basin of
attraction

Under fallback
behavior

Main behavior
returning to equilibrium

Enemy 1

Target

Target for fallback

Figure 3.38 Priority steering avoiding unstable equilibrium

In a stable equilibrium the fallback behavior will engage at the equilibrium point and move the
character out, whereupon the higher priority behaviors will start to generate acceleration requests.
If the fallback behavior has not moved the character out of the basin of attraction, the higher
priority behaviors will steer the character straight back to the equilibrium point. The character
will oscillate in and out of equilibrium, but never escape.

Variable Priorities

The algorithm above uses a fixed order to represent priorities. Groups of behavior that appear
earlier in the list will take priority over those appearing later in the list. In most cases priorities
are fairly easy to fix; a collision avoidance, when activated, will always take priority over a wander
behavior, for example.

In some cases, however, we’d like more control. A collision avoidance behavior may be low
priority as long as the collision isn’t imminent, becoming absolutely critical near the last possible
opportunity for avoidance.

We can modify the basic priority algorithm by allowing each group to return a dynamic
priority value. In the PrioritySteering.getSteering method, we initially request the priority
values and then sort the groups into priority order. The remainder of the algorithm operates in
exactly the same way as before.

Despite providing a solution for the occasional stuck character, there is only a minor practical
advantage to using this approach. On the other hand, the process of requesting priority values and
sorting the groups into order adds time. Although it is an obvious extension, our feeling is that if
you are going in this direction, you may as well bite the bullet and upgrade to a full cooperative
arbitration system.

3.4 Combining Steering Behaviors 107

3.4.4 Cooperative Arbitration

So far we’ve looked at combining steering behaviors in an independent manner. Each steering
behavior knows only about itself and always returns the same answer. To calculate the resulting
steering acceleration, we select one or blend together several of these results. This approach has
the advantage that individual steering behaviors are very simple and easily replaced. They can be
tested on their own.

But as we’ve seen, there are a number of significant weaknesses in the approach that make it
difficult to let characters loose without glitches appearing.

There is a trend toward increasingly sophisticated algorithms for combining steering behav-
iors. A core feature of this trend is the cooperation among different behaviors.

Suppose, for example, a character is chasing a target using a pursue behavior. At the same
time it is avoiding collisions with walls. Figure 3.39 shows a possible situation. The collision is
imminent and so needs to be avoided.

The collision avoidance behavior generates an avoidance acceleration away from the wall.
Because the collision is imminent, it takes precedence, and the character is accelerated away.

The overall motion of the character is shown in Figure 3.39. It slows dramatically when
it is about to hit the wall because the wall avoidance behavior is providing only a tangential
acceleration.

The situation could be mitigated by blending the pursue and wall avoidance behaviors
(although, as we’ve seen, simple blending would introduce other movement problems in situ-
ations with unstable equilibria). Even in this case it would still be noticeable because the forward
acceleration generated by pursue is diluted by wall avoidance.

To get a believable behavior, we’d like the wall avoidance behavior to take into account what
pursue is trying to achieve. Figure 3.40 shows a version of the same situation. Here the wall
avoidance behavior is context sensitive; it understands where the pursue behavior is going, and it
returns an acceleration which takes both concerns into account.

Wall avoidance
acceleration

Character
path

Figure 3.39 An imminent collision during pursuit

108 Chapter 3 Movement

Wall avoidance
acceleration taking
target into account

Character
path

Figure 3.40 A context-sensitive wall avoidance

Obviously, taking context into account in this way increases the complexity of the steering
algorithm. We can no longer use simple building blocks that selfishly do their own thing.

Many collaborative arbitration implementations are based on techniques we will cover in
Chapter 5 on decision making. It makes sense; we’re effectively making decisions about where
and how to move. Decision trees, state machines, and blackboard architectures have all been used
to control steering behaviors. Blackboard architectures, in particular, are suited to cooperating
steering behaviors; each behavior is an expert that can read (from the blackboard) what other
behaviors would like to do before having its own say.

As yet it isn’t clear whether one approach will become the de facto standard for games.
Cooperative steering behaviors is an area that many developers have independently stumbled
across, and it is likely to be some time before any consensus is reached on an ideal implementation.

Even though it lacks consensus, it is worth looking in depth at an example, so we’ll introduce
the steering pipeline algorithm, an example of a dedicated approach that doesn’t use the decision
making technology in Chapter 5.

3.4.5 Steering Pipeline

The steering pipeline approach was pioneered by Marcin Chady, as an intermediate step between
simply blending or prioritizing steering behaviors and implementing a complete movement plan-
ning solution (discussed in Chapter 4). It is a cooperative arbitration approach that allows con-
structive interaction between steering behaviors. It provides excellent performance in a range of
situations that are normally problematic, including tight passages and integrating steering with
pathfinding. So far it has been used by only a small number of developers.

Bear in mind when reading this section that this is just one example of a cooperative arbitration
approach. We’re not suggesting this is the only way it can be done.

Algorithm

Figure 3.41 shows the general structure of the steering pipeline.

3.4 Combining Steering Behaviors 109

DecomposerDecomposer

Targeter

Uses all
in series

Loops if
necessary

Decomposer

Actuator

ConstraintConstraintConstraintConstraint

Outputs

accelerations

Uses only the
most important

Figure 3.41 Steering pipeline

There are four stages in the pipeline: the targeters work out where the movement goal is,
decomposers provide sub-goals that lead to the main goal, constraints limit the way a character
can achieve a goal, and the actuator limits the physical movement capabilities of a character.

In all but the final stage, there can be one or more components. Each component in the
pipeline has a different job to do. All are steering behaviors, but the way they cooperate depends
on the stage.

Targeters

Targeters generate the top-level goal for a character. There can be several targets: a positional
target, an orientation target, a velocity target, and a rotation target. We call each of these elements
a channel of the goal (e.g., position channel, velocity channel). All goals in the algorithm can have
any or all of these channels specified. An unspecified channel is simply a “don’t care.”

Individual channels can be provided by different behaviors (a chase-the-enemy targeter may
generate the positional target, while a look-toward targeter may provide an orientation target),
or multiple channels can be requested by a single targeter. When multiple targeters are used,
only one may generate a goal in each channel. The algorithm we develop here trusts that the
targeters cooperate in this way. No effort is made to avoid targeters overwriting previously set
channels.

To the greatest extent possible, the steering system will try to fulfill all channels, although some
sets of targets may be impossible to achieve all at once. We’ll come back to this possibility in the
actuation stage.

At first glance it can appear odd that we’re choosing a single target for steering. Behaviors
such as run away or avoid obstacle have goals to move away from, not to seek. The pipeline forces
you to think in terms of the character’s goal. If the goal is to run away, then the targeter needs to
choose somewhere to run to. That goal may change from frame to frame as the pursuing enemy
weaves and chases, but there will still be a single goal.

110 Chapter 3 Movement

Other “away from” behaviors, like obstacle avoidance, don’t become goals in the steering
pipeline. They are constraints on the way a character moves and are found in the constraints
stage.

Decomposers

Decomposers are used to split the overall goal into manageable sub-goals that can be more easily
achieved.

The targeter may generate a goal somewhere across the game level, for example. A decom-
poser can check this goal, see that is not directly achievable, and plan a complete route (using a
pathfinding algorithm, for example). It returns the first step in that plan as the sub-goal. This is
the most common use for decomposers: to incorporate seamless path planning into the steering
pipeline.

There can be any number of decomposers in the pipeline, and their order is significant. We
start with the first decomposer, giving it the goal from the targeter stage. The decomposer can
either do nothing (if it can’t decompose the goal) or can return a new sub-goal. This sub-goal is
then passed to the next decomposer, and so on, until all decomposers have been queried.

Because the order is strictly enforced, we can perform hierarchical decomposition very effi-
ciently. Early decomposers should act broadly, providing large-scale decomposition. For example,
they might be implemented as a coarse pathfinder. The sub-goal returned will still be a long way
from the character. Later decomposers can then refine the sub-goal by decomposing it. Because
they are decomposing only the sub-goal, they don’t need to consider the big picture, allowing
them to decompose in more detail. This approach will seem familiar when we look at hierarchical
pathfinding in the next chapter. With a steering pipeline in place, we don’t need a hierarchical
pathfinding engine; we can simply use a set of decomposers pathfinding on increasingly detailed
graphs.

Constraints

Constraints limit the ability of a character to achieve its goal or sub-goal. They detect if moving
toward the current sub-goal is likely to violate the constraint, and if so, they suggest a way to avoid
it. Constraints tend to represent obstacles: moving obstacles like characters or static obstacles like
walls.

Constraints are used in association with the actuator, described below. The actuator works
out the path that the character will take toward its current sub-goal. Each constraint is allowed to
review that path and determine if it is sensible. If the path will violate a constraint, then it returns
a new sub-goal that will avoid the problem. The actuator can then work out the new path and
check if that one works and so on, until a valid path has been found.

It is worth bearing in mind that the constraint may only provide certain channels in its sub-
goal. Figure 3.42 shows an upcoming collision. The collision avoidance constraint could generate
a positional sub-goal, as shown, to force the character to swing around the obstacle. Equally, it
could leave the position channel alone and suggest a velocity pointing away from the obstacle, so
that the character drifts out from its collision line. The best approach depends to a large extent
on the movement capabilities of the character and, in practice, takes some experimentation.

3.4 Combining Steering Behaviors 111

Path
taken

Object
to avoid

Sub-goal

Original
goal

Figure 3.42 Collision avoidance constraint

Of course, solving one constraint may violate another constraint, so the algorithm may need to
loop around to find a compromise where every constraint is happy. This isn’t always possible, and
the steering system may need to give up trying to avoid getting into an endless loop. The steering
pipeline incorporates a special steering behavior, deadlock, that is given exclusive control in this
situation. This could be implemented as a simple wander behavior in the hope that the character
will wander out of trouble. For a complete solution, it could call a comprehensive movement
planning algorithm.

The steering pipeline is intended to provide believable yet lightweight steering behavior, so that
it can be used to simulate a large number of characters. We could replace the current constraint
satisfaction algorithm with a full planning system, and the pipeline would be able to solve arbitrary
movement problems. We’ve found it best to stay simple, however. In the majority of situations,
the extra complexity isn’t needed, and the basic algorithm works fine.

As it stands, the algorithm is not always guaranteed to direct an agent through a complex
environment. The deadlock mechanism allows us to call upon a pathfinder or another higher
level mechanism to get out of trickier situations. The steering system has been specially designed
to allow you to do that only when necessary, so that the game runs at the maximum speed. Always
use the simplest algorithms that work.

The Actuator

Unlike each of the other stages of the pipeline, there is only one actuator per character. The
actuator’s job is to determine how the character will go about achieving its current sub-goal.
Given a sub-goal and its internal knowledge about the physical capabilities of the character, it
returns a path indicating how the character will move to the goal.

The actuator also determines which channels of the sub-goal take priority and whether any
should be ignored.

For simple characters, like a walking sentry or a floating ghost, the path can be extremely
simple: head straight for the target. The actuator can often ignore velocity and rotation channels
and simply make sure the character is facing the target.

If the actuator does honor velocities, and the goal is to arrive at the target with a particular
velocity, we may choose to swing around the goal and take a run up, as shown in Figure 3.43.

112 Chapter 3 Movement

Path
taken

Target
velocity

Figure 3.43 Taking a run up to achieve a target velocity

More constrained characters, like an AI-controlled car, will have more complex actuation: the
car can’t turn while stationary, it can’t move in any direction other than the one in which it is
facing, and the grip of the tires limits the maximum turning speed. The resulting path may be
more complicated, and it may be necessary to ignore certain channels. For example, if the sub-goal
wants us to achieve a particular velocity while facing in a different direction, then we know the
goal is impossible. Therefore, we will probably throw away the orientation channel.

In the context of the steering pipeline, the complexity of actuators is often raised as a problem
with the algorithm. It is worth bearing in mind that this is an implementation decision; the
pipeline supports comprehensive actuators when they are needed (and you obviously have to pay
the price in execution time), but they also support trivial actuators that take virtually no time at
all to run.

Actuation as a general topic is covered later in this chapter, so we’ll avoid getting into the grimy
details at this stage. For the purpose of this algorithm, we will assume that actuators take a goal
and return a description of the path the character will take to reach it.

Eventually, we’ll want to actually carry out the steering. The actuator’s final job is to return
the forces and torques (or other motor controls—see Section 3.8 for details) needed to achieve
the predicted path.

Pseudo-Code

The steering pipeline is implemented with the following algorithm:

1 class SteeringPipeline:
2 # Lists of components at each stage of the pipe
3 targeters
4 decomposers
5 constraints
6 actuator
7

3.4 Combining Steering Behaviors 113

8 # Holds the number of attempts the algorithm will make
9 # to fund an unconstrained route.

10 constraintSteps
11

12 # Holds the deadlock steering behavior
13 deadlock
14

15 # Holds the current kinematic data for the character
16 kinematic
17

18 # Performs the pipeline algorithm and returns the
19 # required forces used to move the character
20 def getSteering():
21

22 # Firstly we get the top level goal
23 goal
24 for targeter in targeters:
25 goal.updateChannels(targeter.getGoal(kinematic))
26

27 # Now we decompose it
28 for decomposer in decomposers:
29 goal = decomposer.decompose(kinematic, goal)
30

31 # Now we loop through the actuation and constraint
32 # process
33 validPath = false
34 for i in 0..constraintSteps:
35

36 # Get the path from the actuator
37 path = actuator.getPath(kinematic, goal)
38

39 # Check for constraint violation
40 for constraint in constraints:
41 # If we find a violation, get a suggestion
42 if constraint.isViolated(path):
43 goal = constraint.suggest(path, kinematic, goal)
44

45 # Go back to the top level loop to get the
46 # path for the new goal
47 break continue
48

49 # If we’re here it is because we found a valid path
50 return actuator.output(path, kinematic, goal)
51

114 Chapter 3 Movement

52 # We arrive here if we ran out of constraint steps.
53 # We delegate to the deadlock behavior
54 return deadlock.getSteering()

Data Structures and Interfaces

We are using interface classes to represent each component in the pipeline. At each stage, a different
interface is needed.

Targeter

Targeters have the form:

1 class Targeter:
2 def getGoal(kinematic)

The getGoal function returns the targeter’s goal.

Decomposer

Decomposers have the interface:

1 class Decomposer:
2 def decompose(kinematic, goal)

The decompose method takes a goal, decomposes it if possible, and returns a sub-goal. If the
decomposer cannot decompose the goal, it simply returns the goal it was given.

Constraint

Constraints have two methods:

1 class Constraint:
2 def willViolate(path)
3 def suggest(path, kinematic, goal)

The willViolate method returns true if the given path will violate the constraint at some
point. The suggest method should return a new goal that enables the character to avoid vio-
lating the constraint. We can make use of the fact that suggest always follows a positive result
from willViolate. Often, willViolate needs to perform calculations to determine if the path
poses a problem. If it does, the results of these calculations can be stored in the class and reused

3.4 Combining Steering Behaviors 115

in the suggest method that follows. The calculation of the new goal can be entirely performed
in the willViolate method, leaving the suggest method to simply return the result. Any chan-
nels not needed in the suggestion should take their values from the current goal passed into
the method.

Actuator

The actuator creates paths and returns steering output:

1 class Actuator:
2 def getPath(kinematic, goal)
3 def output(path, kinematic, goal)

The getPath function returns the route that the character will take to the given goal. The
output function returns the steering output for achieving the given path.

Deadlock

The deadlock behavior is a general steering behavior. Its getSteering function returns a steering
output that is simply returned from the steering pipeline.

Goal

Goals need to store each channel, along with an indication as to whether the channel should
be used. The updateChannel method sets appropriate channels from another goal object. The
structure can be implemented as:

1 struct Goal:
2 # Flags to indicate if each channel is to be used
3 hasPosition, hasOrientation, hasVelocity, hasRotation
4

5 # Data for each channel
6 position, orientation, velocity, rotation
7

8 # Updates this goal
9 def updateChannels(o):

10 if o.hasPosition: position = o.position
11 if o.hasOrientation: orientation = o. orientation
12 if o.hasVelocity: velocity = o. velocity
13 if o.hasRotation: rotation = o. rotation

116 Chapter 3 Movement

Paths

In addition to the components in the pipeline, we have used an opaque data structure for the
path. The format of the path doesn’t affect this algorithm. It is simply passed between steering
components unaltered.

We’ve used two different path implementations to drive the algorithm. Pathfinding-style paths,
made up of a series of line segments, give point-to-point movement information. They are suitable
for characters who can turn very quickly—for example, human beings walking. Point-to-point
paths are very quick to generate, they can be extremely quick to check for constraint violation,
and they can be easily turned into forces by the actuator.

The production version of this algorithm uses a more general path representation. Paths are
made up of a list of maneuvers, such as “accelerate” or “turn with constant radius.” They are
suitable for the most complex steering requirements, including race car driving, which is the
ultimate test of a steering algorithm. They can be more difficult to check for constraint violation,
however, because they involve curved path sections.

It is worth experimenting to see if your game can make do with straight line paths before
going ahead and using maneuver sequences.

Performance

The algorithm is O(1) in memory. It uses only temporary storage for the current goal.
It is O(cn) in time, where c is the number of constraint steps and n is the number of constraints.

Although c is a constant (and we could therefore say the algorithm is O(n) in time), it helps
to increase its value as more constraints are added to the pipeline. In the past we’ve used a
number of constraint steps similar to the number of constraints, giving an algorithm O(n2)
in time.

The constraint violation test is at the lowest point in the loop, and its performance is critical.
Profiling a steering pipeline with no decomposers will show that most of the time spent executing
the algorithm is normally spent in this function.

Since decomposers normally provide pathfinding, they can be very long running, even though
they will be inactive for much of the time. For a game where the pathfinders are extensively used
(i.e., the goal is always a long way away from the character), the speed hit will slow the AI
unacceptably. The steering algorithm needs to be split over multiple frames.

On the Website

Library

The algorithm is implemented in the source code on the website in its basic form and as an
interruptible algorithm capable of being split over several frames. The Steering Pipeline program
shows it in operation.

An AI character is moving around a landscape in which there are many walls and boulders.

Program

The pipeline display illustrates which decomposers and constraints are active in each frame.

3.4 Combining Steering Behaviors 117

Example Components

Actuation will be covered in Section 3.8 later in the chapter, but it is worth taking a look at a sample
steering component for use in the targeter, decomposer, and constraint stages of the pipeline.

Targeter

The chase targeter keeps track of a moving character. It generates its goal slightly ahead of its
victim’s current location, in the direction the victim is moving. The distance ahead is based on
the victim’s speed and a lookahead parameter in the targeter.

1 class ChaseTargeter (Targeter):
2

3 # Holds a kinematic data structure for the chasee
4 chasedCharacter
5

6 # Controls how much to anticipate the movement
7 lookahead
8

9 def getGoal(kinematic):
10

11 goal = Goal()
12 goal.position = chasedCharacter.position +
13 chasedCharacter.velocity * lookahead
14 goal.hasPosition = true
15 return goal

Decomposer

The pathfinding decomposer performs pathfinding on a graph and replaces the given goal with
the first node in the returned plan. See Chapter 4 on pathfinding for more information.

1 class PlanningDecomposer (Decomposer):
2 # Data for the graph
3 graph
4 heuristic
5

6 def decompose(kinematic, goal):
7

8 # First we quantize our current location and our goal
9 # into nodes of the graph

118 Chapter 3 Movement

10 start = graph.getNode(kinematic.position)
11 end = graph.getNode(goal.position)
12

13 # If they are equal, we don’t need to plan
14 if startNode == endNode: return goal
15

16 # Otherwise plan the route
17 path = pathfindAStar(graph, start, end, heuristic)
18

19 # Get the first node in the path and localize it
20 firstNode = path[0].to_node
21 position = graph.getPosition(firstNode)
22

23 # Update the goal and return
24 goal.position = position
25 return goal

Constraint

The avoid obstacle constraint treats an obstacle as a sphere, represented as a single 3D point and a
constant radius. For simplicity, we are assuming that the path provided by the actuator is a series
of line segments, each with a start point and an end point.

1 class AvoidObstacleConstraint (Constraint):
2

3 # Holds the obstacle bounding sphere
4 center, radius
5

6 # Holds a margin of error by which we’d ideally like
7 # to clear the obstacle. Given as a proportion of the
8 # radius (i.e. should be > 1.0)
9 margin

10

11 # If a violation occurs, stores the part of the path
12 # that caused the problem
13 problemIndex
14

15 def willViolate(path):
16 # Check each segment of the path in turn
17 for i in 0..len(path):
18 segment = path[i]
19

3.4 Combining Steering Behaviors 119

20 # If we have a clash, store the current segment
21 if distancePointToSegment(center, segment) < radius:
22 problemIndex = i
23 return true
24

25 # No segments caused a problem.
26 return false
27

28 def suggest(path, kinematic, goal):
29 # Find the closest point on the segment to the sphere
30 # center
31 closest = closestPointOnSegment(segment, center)
32

33 # Check if we pass through the center point
34 if closest.length() == 0:
35

36 # Get any vector at right angles to the segment
37 dirn = segment.end - segment.start
38 newDirn = dirn.anyVectorAtRightAngles()
39

40 # Use the new dirn to generate a target
41 newPt = center + newDirn*radius*margin
42

43 # Otherwise project the point out beyond the radius
44 else:
45 newPt = center + (closest-center)*radius*margin /
46 closest.length()
47

48 # Set up the goal and return
49 goal.position = newPt
50 return goal

The suggest method appears more complex that it actually is. We find a new goal by finding
the point of closest approach and projecting it out so that we miss the obstacle by far enough.
We need to check that the path doesn’t pass right through the center of the obstacle, however,
because in that case we can’t project the center out. If it does, we use any point around the edge
of the sphere, at a tangent to the segment, as our target. Figure 3.44 shows both situations in two
dimensions and also illustrates how the margin of error works.

We added the anyVectorAtRightAngles method just to simplify the listing. It returns a new
vector at right angles to its instance. This is normally achieved by using a cross product with some
reference direction and then returning a cross product of the result with the original direction.
This will not work if the reference direction is the same as the vector we start with. In this case a
backup reference direction is needed.

120 Chapter 3 Movement

Figure 3.44 Obstacle avoidance projected and at right angles

Conclusion

The steering pipeline is one of many possible cooperative arbitration mechanisms. Unlike other
approaches, such as decision trees or blackboard architectures, it is specifically designed for the
needs of steering.

On the other hand, it is not the most efficient technique. While it will run very quickly for
simple scenarios, it can slow down when the situation gets more complex. If you are determined
to have your characters move intelligently, then you will have to pay the price in execution speed
sooner or later (in fact, to guarantee it, you’ll need full motion planning, which is even slower
than pipeline steering). In many games, however, the prospect of some foolish steering is not a
major issue, and it may be easier to use a simpler approach to combining steering behaviors, such
as blending.

3.5 Predicting Physics

A common requirement of AI in 3D games is to interact well with some kind of physics simulation.
This may be as simple as the AI in variations of Pong, which tracked the current position of the
ball and moved the bat so that it intercepted the ball, or it might involve the character correctly
calculating the best way to throw a ball so that it reaches a teammate who is running. We’ve seen
examples of this already. The pursue steering behavior predicted the future position of its target by
assuming it would carry on with its current velocity. At its most complex, it may involve deciding
where to stand to minimize the chance of being hit by an incoming grenade.

3.5 Predicting Physics 121

In each case, we are doing AI not based on the character’s own movement (although that may
be a factor), but on the basis of other characters’ or objects’ movement.

By far, the most common requirement for predicting movement is for aiming and shooting
firearms. This involves the solution of ballistic equations: the so-called “Firing Solution.” In this
section we will first look at firing solutions and the mathematics behind them. We will then look at
the broader requirements of predicting trajectories and a method of iteratively predicting objects
with complex movement patterns.

3.5.1 Aiming and Shooting

Firearms, and their fantasy counterparts, are a key feature of game design. In almost any game
you choose to think of, the characters can wield some variety of projectile weapon. In a fantasy
game it might be a crossbow or fireball spell, and in a science fiction (sci-fi) game it could be a
disrupter or phaser.

This puts two common requirements on the AI. Characters should be able to shoot accurately,
and they should be able to respond to incoming fire. The second requirement is often omitted,
since the projectiles from many firearms and sci-fi weapons move too fast for anyone to be able
to react to. When faced with weapons such as rocket-propelled grenades (RPGs) or mortars,
however, the lack of reaction can appear unintelligent.

Regardless of whether a character is giving or receiving fire, it needs to understand the likely
trajectory of a weapon. For fast-moving projectiles over small distances, this can be approximated
by a straight line, so older games tended to use simple straight line tests for shooting. With the
introduction of increasingly complex physics simulation, however, shooting along a straight line
to your targets is likely to result in your bullets landing in the dirt at their feet. Predicting correct
trajectories is now a core part of the AI in shooters.

3.5.2 Projectile Trajectory

A moving projectile under gravity will follow a curved trajectory. In the absence of any air
resistance or other interference, the curve will be part of a parabola, as shown in Figure 3.45.

The projectile moves according to the formula:

�pt = �p0 + �usmt + �g t 2

2
, [3.2]

Figure 3.45 Parabolic arc

122 Chapter 3 Movement

where �pt is its position (in three dimensions) at time t , �p0 is the firing position (again in three
dimensions), sm is the muzzle velocity (the speed at which the projectile left the weapon—it
is not strictly a velocity because it is not a vector), �u is the direction the weapon was fired in
(a normalized 3D vector), t is the length of time since the shot was fired, and �g is the acceleration
due to gravity. The notation �x denotes that x is a vector. Others values are scalar.

It is worth noting that although the acceleration due to gravity on Earth is

�g =
[0

−9.81
0

]
ms−2

(i.e., 9.81 ms−2 in the down direction), this can look too slow in a game environment. Physics
middleware vendors such as Havok recommend using a value around double that for games,
although some tweaking is needed to get the exact look.

The simplest thing we can do with the trajectory equations is to determine if a character will
be hit by an incoming projectile. This is a fairly fundamental requirement of any character in a
shooter with slow-moving projectiles (such as grenades).

We will split this into two elements: determining where a projectile will land and determining
if its trajectory will touch the character.

Predicting a Landing Spot

The AI should determine where an incoming grenade will land and then move quickly away from
that point (using a flee steering behavior, for example, or a more complex compound steering
system that takes into account escape routes). If there’s enough time, an AI character might move
toward the grenade point as fast as possible (using arrive, perhaps) and then intercept and throw
back the ticking grenade, forcing the player to pull the grenade pin and hold it for just the right
length of time.

We can determine where a grenade will land by solving the projectile equation for a fixed value
of py (i.e., the height). If we know the current velocity of the grenade and its current position,
we can solve for just the y component of the position and get the time at which the grenade will
reach a known height (i.e., the height of the floor on which the character is standing):

ti =
−uy sm ±

√
u2

y s2
m − 2gy(py0 − pyt)

gy
, [3.3]

where pyi is the position of impact, and ti is the time at which this occurs. There may be zero, one,
or two solutions to this equation. If there are zero solutions, then the projectile never reaches the
target height; it is always below it. If there is one solution, then the projectile reaches the target
height at the peak of its trajectory. Otherwise, the projectile reaches the height once on the way
up and once on the way down. We are interested in the solution when the projectile is descending,
which will be the greater time value (since whatever goes up will later come down). If this time

3.5 Predicting Physics 123

value is less than zero, then the projectile has already passed the target height and won’t reach
it again.

The time ti from Equation 3.3 can be substituted into Equation 3.2 to get the complete position
of impact:

�pi =
[px0 + ux smti + 1

2 gx t 2
i

pyi

pz0 + uz smti + 1
2 gz t 2

i

]
, [3.4]

which further simplifies, if (as it normally does) gravity only acts in the down direction, to:

�pi =
[px0 + ux smti

pyi

pz0 + uz smti

]
.

For grenades, we could compare the time to impact with the known length of the grenade fuse
to determine whether it is safer to run from or catch and return the grenade.

Note that this analysis does not deal with the situation where the ground level is rapidly
changing. If the character is on a ledge or walkway, for example, the grenade may miss impacting
at its height entirely and sail down the gap behind it. We can use the result of Equation 3.4 to
check if the impact point is valid.

For outdoor levels with rapidly fluctuating terrain, we can also use the equation iteratively,
generating (x, z) coordinates with Equation 3.4 and then feeding the py coordinate of the impact
point back into the equation, until the resulting (x, z) values stabilize. There is no guarantee that
they will ever stabilize, but in most cases they do. In practice, however, high explosive projectiles
typically damage a large area, so inaccuracies in the impact point prediction are difficult to spot
when the character is running away.

The final point to note about incoming hit prediction is that the floor height of the character
is not normally the height at which the character catches. If the character is intending to catch the
incoming object (as it will in most sports games, for example), it should use a target height value
at around chest height. Otherwise, it will appear to maneuver in such a way that the incoming
object drops at its feet.

3.5.3 The Firing Solution

To hit a target at a given point �E , we need to solve Equation 3.2. In most cases we know the firing
point �S (i.e., �S ≡ �p0), the muzzle velocity sm , and the acceleration due to gravity �g ; we’d like to
find just �u, the direction to fire in (although finding the time to collision can also be useful for
deciding if a slow-moving shot is worth it).

Archers and grenade throwers can change the velocity of the projectile as they fire (i.e., they
select an sm value), but most weapons have a fixed value for sm . We will assume, however, that
characters who can select a velocity will always try to get the projectile to its target in the shortest
time possible. In this case they will always choose the highest possible velocity.

124 Chapter 3 Movement

In an indoor environment with many obstacles (such as barricades, joists, and columns), it
might be advantageous for a character to throw its grenade more slowly so that it arches over
obstacles. Dealing with obstacles in this way gets to be very complex and is best solved by a trial
and error process, trying different sm values (normally trials are limited to a few fixed values:
“throw fast,” “throw slow,” and “drop,” for example). For the purpose of this book, we’ll assume
that sm is constant and known in advance.

The quadratic Equation 3.2 has vector coefficients. Add the requirement that the firing vector
should be normalized,

|�u| = 1,

and we have four equations in four unknowns:

Ex = Sx + ux smti + 1

2
gx t 2

i ,

Ey = Sy + uy smti + 1

2
gy t 2

i ,

Ez = Sz + uz smti + 1

2
gz t 2

i ,

1 = u2
x + u2

y + u2
z .

These can be solved to find the firing direction and the projectile’s time to target. First, we get
an expression for ti :

|�g |2t 4
i − 4

(�g . �� + s2
m

)
t 2
i + 4| ��|2 = 0,

where �� is the vector from the start point to the end point, given by �� = �E − �S. This is a quartic
in ti , with no odd powers. We can therefore use the quadratic equation formula to solve for t 2

i and
take the square root of the result. Doing this, we get

ti = +2

√√√√ �g . �� + s2
m ±

√
(�g . �� + s2

m)2 − |�g |2| ��|2

2|�g |2
,

which gives us two real-valued solutions for time, of which a maximum of two may be positive.
Note that we should strictly take into account the two negative solutions also (replacing the
positive sign with a negative sign before the first square root). We omit these because solutions
with a negative time are entirely equivalent to aiming in exactly the opposite direction to get a
solution in positive time.

There are no solutions if: (�g . �� + s2
m

)2
< |�g |2| ��|2.

In this case the target point cannot be hit with the given muzzle velocity from the start point.
If there is one solution, then we know the end point is at the absolute limit of the given firing
capabilities. Usually, however, there will be two solutions, with different arcs to the target. This is

3.5 Predicting Physics 125

Long time
trajectory

Short time
trajectory Target

Figure 3.46 Two possible firing solutions

illustrated in Figure 3.46. We will almost always choose the lower arc, which has the smaller time
value, since it gives the target less time to react to the incoming projectile and produces a shorter
arc that is less likely to hit obstacles (especially the ceiling).

We might want to choose the longer arc if we are firing over a wall, such as in a castle-strategy
game.

With the appropriate ti value selected, we can determine the firing vector using the equation:

�u = 2 �� − �g t 2
i

2smti
. [3.5]

The intermediate derivations of these equations are left as an exercise.
This is admittedly a mess to look at, but can be easily implemented as follows:

1 def calculateFiringSolution(start, end, muzzle_v, gravity):
2

3 # Calculate the vector from the target back to the start
4 delta = start - end
5

6 # Calculate the real-valued a,b,c coefficients of a conventional
7 # quadratic equation
8 a = gravity * gravity
9 b = -4 * (gravity * delta + muzzle_v*muzzle_v)

10 c = 4 * delta * delta
11

12 # Check for no real solutions
13 if 4*a*c > b*b: return None
14

15 # Find the candidate times
16 time0 = sqrt((-b + sqrt(b*b-4*a*c)) / (2*a))
17 time1 = sqrt((-b - sqrt(b*b-4*a*c)) / (2*a))

126 Chapter 3 Movement

18

19 # Find the time to target
20 if times0 < 0:
21 if times1 < 0:
22 # We have no valid times
23 return None
24 else:
25 ttt = times1
26 else:
27 if times1 < 0:
28 ttt = times0
29 else:
30 ttt = min(times0, times1)
31

32 # Return the firing vector
33 return (2 * delta - gravity * ttt*ttt) / (2 * muzzle_v * ttt)

This code assumes that we can take the scalar product of two vectors using the a * b notation.
The algorithm is O(1) in both memory and time. There are optimizations to be had, and the C++

Library

source code on the website contains an implementation of this function where the math has been
automatically optimized by a commercial equation to code converter for added speed.

3.5.4 Projectiles with Drag

The situation becomes more complex if we introduce air resistance. Because it adds complexity, it
is very common to see developers ignoring drag altogether for calculating firing solutions. Often,
a drag-free implementation of ballistics is a perfectly acceptable approximation. Once again, the
gradual move toward including drag in trajectory calculations is motivated by the use of physics
engines. If the physics engine includes drag (and most of them do to avoid numerical instability
problems), then a drag-free ballistic assumption can lead to inaccurate firing over long distances.
It is worth trying an implementation without drag, however, even if you are using a physics engine.
Often, the results will be perfectly usable and much simpler to implement.

The trajectory of a projectile moving under the influence of drag is no longer a parabolic arc.
As the projectile moves, it slows down, and its overall path looks like Figure 3.47.

Adding drag to the firing calculations considerably complicates the mathematics, and for this
reason most games either ignore drag in their firing calculations or use a kind of trial and error
process that we’ll look at in more detail later.

Although drag in the real world is a complex process caused by many interacting factors, drag
in computer simulation is often dramatically simplified. Most physics engines relate the drag force
to the speed of a body’s motion with components related to either velocity or velocity squared or
both. The drag force on a body, D, is given (in one dimension) by:

D = −kv − cv2,

3.5 Predicting Physics 127

Figure 3.47 Projectile moving with drag

where v is the velocity of the projectile, and k and c are both constants. The k coefficient is
sometimes called the viscous drag and c the aerodynamic drag (or ballistic coefficient). These
terms are somewhat confusing, however, because they do not correspond directly to real-world
viscous or aerodynamic drag.

Adding these terms changes the equation of motion from a simple expression into a second-
order differential equation:

�̈pt = g − k �̇pt − c �̇pt

∣∣�̇pt

∣∣.
Unfortunately, the second term in the equation, c �̇pt |�̇pt |, is where the complications set in.

It relates the drag in one direction to the drag in another direction. Up to this point, we’ve
assumed that for each of the three dimensions the projectile motion is independent of what
is happening in the other directions. Here the drag is relative to the total speed of the projec-
tile: even if it is moving slowly in the x-direction; for example, it will experience a great deal
of drag if it is moving quickly in the z-direction. This is the characteristic of a non-linear dif-
ferential equation, and with this term included there can be no simple equation for the firing
solution.

Our only option is to use an iterative method that performs a simulation of the projectile’s
flight. We will return to this approach below.

More progress can be made if we remove the second term to give:

�̈pt = g − k �̇pt . [3.6]

While this makes the mathematics tractable, it isn’t the most common setup for a physics engine.
If you need very accurate firing solutions and you have control over the kind of physics you are
running, this may be an option. Otherwise, you will need to use an iterative method.

Library

We can solve this equation to get an equation for the motion of the particle. If you’re not
interested in the math, you can skip to the implementation in the source code on the website.

Omitting the derivations, we solve Equation 3.6 and find that the trajectory of the particle is
given by:

�pt = �g t − �Ae−kt

k
+ �B, [3.7]

128 Chapter 3 Movement

where �A and �B are constants found from the position and velocity of the particle at time t = 0:

�A = sm �u − �g
k

and

�B = �p0 − �A
k

.

We can use this equation for the path of the projectile on its own, if it corresponds to the
drag in our physics (or if accuracy is less important). Or we can use it as the basis of an iterative
algorithm in more complex physics systems.

Rotating and Lift

Another complication in the movement calculations occurs if the projectile is rotating while it is
in flight.

We have treated all projectiles as if they are not rotating during their flight. Spinning projectiles
(golf balls, for example) have additional lift forces applying to them as a result of their spin and
are more complex still to predict. If you are developing an accurate golf game that simulates
this effect (along with wind that varies over the course of the ball’s flight), then it is likely to
be impossible to solve the equations of motion directly. The best way to predict where the ball
will land is to run it through your simulation code (possibly with a coarse simulation resolution,
for speed).

3.5.5 Iterative Targeting

When we cannot create an equation for the firing solution, or when such an equation would be
very complex or prone to error, we can use an iterative targeting technique. This is similar to the
way that long-range weapons and artillery (euphemistically called “effects” in military speak) are
really targeted.

The Problem

We would like to be able to determine a firing solution that hits a given target, even if the equations
of motion for the projectile cannot be solved or if we have no simple equations of motion at all.

The generated firing solution may be approximate (i.e., it doesn’t matter if we are slightly off
center as long as we hit), but we need to be able to control its accuracy to make sure we can hit
small or large objects correctly.

3.5 Predicting Physics 129

The Algorithm

The process has two stages. We initially make a guess as to the correct firing solution. The trajectory
equations are then processed to check if the firing solution is accurate enough (i.e., does it hit the
target?). If it is not accurate, then a new guess is made, based on the previous guess.

The process of testing involves checking how close the trajectory gets to the target location.
In some cases we can find this mathematically from the equations of motion (although it is very
likely that if we can find this, then we could also solve the equation of motion and find a firing
solution without an iterative method). In most cases the only way to find the closest approach
point is to follow a projectile through its trajectory and record the point at which it made its
closest approach.

To make this process faster, we only test at intervals along the trajectory. For a relatively
slow-moving projectile with a simple trajectory, we might check every half second. For a fast-
moving object with complex wind, lift, and aerodynamic forces, we may need to test every tenth
or hundredth of a second. The position of the projectile is calculated at each time interval. These
positions are linked by straight line segments, and we find the nearest point to our target on this
line segment. We are approximating the trajectory by a piecewise linear curve.

We can add additional tests to avoid checking too far in the future. This is not normally a full
collision detection process, because of the time that would take, but we do a simple test such as
stopping when the projectile’s height is a good deal lower than its target.

The initial guess for the firing solution can be generated from the firing solution function
described earlier; that is, we assume there is no drag or other complex movement in our first
guess.

After the initial guess, the refinement depends to some extent on the forces that exist in the
game. If no wind is being simulated, then the direction of the first-guess solution in the x–z plane
will be correct (called the “bearing”). We only need to tweak the angle between the x–z plane and
the firing direction (called the “elevation”). This is shown in Figure 3.48.

If we have a drag coefficient, then the elevation will need to be higher than that generated by
the initial guess. If the projectile experiences no lift, then the maximum elevation should be 45◦.
Any higher than that and the total flight distance will start decreasing again. If the projectile does
experience lift, then it might be better to send it off higher, allowing it to fly longer and to generate
more lift, which will increase its distance.

Final guess

TargetInitial guess:
without drag

Initial guess:
actual

Figure 3.48 Refining the guess

130 Chapter 3 Movement

If we have a crosswind, then just adjusting the elevation will not be enough. We will also need
to adjust the bearing. It is a good idea to iterate between the two adjustments in series: getting
the elevation right first for the correct distance, then adjusting the bearing to get the projectile
to land in the direction of the target, then adjusting the elevation to get the right distance,
and so on.

You would be quite right if you get the impression that refining the guesses is akin to complete
improvisation. In fact, real targeting systems for military weapons use complex simulations for
the flights of their projectiles and a range of algorithms, heuristics, and search techniques to find
the best solution. In games, the best approach is to get the AI running in a real game environment
and adjust the guess refinement rules until good results are generated quickly.

Whatever the sequence of adjustment or the degree to which the refinement algorithm takes
into account physical laws, a good starting point is a binary search, the stalwart of many algorithms
in computer science, described in depth in any good text on algorithmics or computer science.

Pseudo-Code

Because the refinement algorithm depends to a large extent on the kind of forces we are modeling
in the game, the pseudo-code presented below will assume that we are trying to find a firing
solution for a projectile moving with drag alone. This allows us to simplify the search from a
search for a complete firing direction to just a search for an angle of elevation.

This is the most complex technique we’ve seen in a commercial game for this situation,
although, as we have seen, in military simulation more complex situations occur.

The code uses the equation of motion for a projectile experiencing only viscous drag, as we
derived earlier.

1 def refineTargeting(source, target, muzzleVelocity, gravity,
2 margin):
3

4 # Get the target offset from the source
5 deltaPosition = target - source
6

7 # Take an initial guess from the dragless firing solution
8 direction = calculateFiringSolution(source, target,
9 muzzleVelocity,

10 gravity)
11

12 # Convert it into a firing angle.
13 minBound = asin(direction.y / direction.length())
14

15 # Find how close it gets us
16 distance = distanceToTarget(direction, source,
17 target, muzzleVelocity)

3.5 Predicting Physics 131

18

19 # Check if we made it
20 if distance*distance < margin*margin:
21 return direction
22

23 # Otherwise check if we overshot
24 else if minBoundDistance > 0:
25

26 # We’ve found a maximum, rather than a minimum bound,
27 # put it in the right place
28 maxBound = minBound
29

30 # Use the shortest possible shot as the minimum bound
31 minBound = -90
32

33 # Otherwise we need to find a maximum bound, we use
34 # 45 degrees
35 else:
36 maxBound = 45
37

38 # Calculate the distance for the maximum bound
39 direction = convertToDirection(deltaPosition, angle)
40 distance = distanceToTarget(direction, source,
41 target, muzzleVelocity)
42

43 # See if we’ve made it
44 if distance*distance < margin*margin:
45 return direction
46

47 # Otherwise make sure it overshoots
48 else if distance < 0:
49

50 # Our best shot can’t make it
51 return None
52

53 # Now we have a minimum and maximum bound, use a binary
54 # search from here on.
55 distance = margin
56 while distance*distance < margin*margin:
57

58 # Divide the two bounds
59 angle = (maxBound - minBound) * 0.5
60

61 # Calculate the distance

132 Chapter 3 Movement

62 direction = convertToDirection(deltaPosition, angle)
63 distance = distanceToTarget(direction, source,
64 target, muzzleVelocity)
65

66 # Change the appropriate bound
67 if distance < 0: minBound = angle
68 else: maxBound = angle
69

70 return direction

Data Structures and Interfaces

In the code we rely on three functions. The calculateFiringSolution function is the function we
defined earlier. It is used to create a good initial guess.

The distanceToTarget function runs the physics simulator and returns how close the projec-
tile got to the target. The sign of this value is critical. It should be positive if the projectile overshot
its target and negative if it undershot. Simply performing a 3D distance test will always give a
positive distance value, so the simulation algorithm needs to determine whether the miss was too
far or too near and set the sign accordingly.

The convertToDirection function creates a firing direction from an angle. It can be imple-
mented in the following way:

1 def convertToDirection(deltaPosition, angle):
2

3 # Find the planar direction
4 direction = deltaPosition
5 direction.y = 0
6 direction.normalize()
7

8 # Add in the vertical component
9 direction *= cos(angle)

10 direction.y = sin(angle)
11

12 return direction

Performance

The algorithm is O(1) in memory and O(r log n−1) in time, where r is the resolution of the
sampling we use in the physics simulator for determining the closest approach to target, and n is
the accuracy threshold that determines if a hit has been found.

3.5 Predicting Physics 133

Iterative Targeting without Motion Equations

Although the algorithm given above treats the physical simulation as a black-box, in the discussion
we assumed that we could implement it by sampling the equations of motion at some resolution.

The actual trajectory of an object in the game may be affected by more than just mass and
velocity. Drag, lift, wind, gravity wells, and all manner of other exotica can change the movement
of a projectile. This can make it impossible to calculate a motion equation to describe where the
projectile will be at any point in time.

If this is the case, then we need a different method of following the trajectory to determine
how close to its target it gets. The real projectile motion, once it has actually been released, is likely
to be calculated by a physics system. We can use the same physics system to perform miniature
simulations of the motion for targeting purposes.

At each iteration of the algorithm, the projectile is set up and fired, and the physics is updated
(normally at relatively coarse intervals compared to the normal operation of the engine; extreme
accuracy is probably not needed). The physics update is repeatedly called, and the position of
the projectile after each update is recorded, forming the piecewise linear curve we saw previously.
This is then used to determine the closest point of the projectile to the target.

This approach has the advantage that the physical simulation can be as complex as necessary
to capture the dynamics of the projectile’s motion. We can even include other factors, such as a
moving target.

On the other hand, this method requires a physics engine that can easily set up isolated
simulations. If your physics engine is only optimized for having one simulation at a time (i.e.,
the current game world), then this will be a problem. Even if the physics system allows it, the
technique can be time consuming. It is only worth contemplating when simpler methods (such
as assuming a simpler set of forces for the projectile) give visibly poor results.

Other Uses of Prediction

Prediction of projectile motion is the most complex common type of motion prediction in
games.

In games involving collisions as an integral part of gameplay, such as ice hockey games and
pool or snooker simulators, the AI may need to be able to predict the results of impacts. This
is commonly done using an extension of the iterative targeting algorithm: we have a go in a
simulation and see how near we get to our goal.

Throughout this chapter we’ve used another prediction technique that is so ubiquitous that
developers often fail to realize that its purpose is to predict motion.

In the pursue steering behavior, for example, the AI aims its motion at a spot some way in front
of its target, in the direction the target is moving. We are assuming that the target will continue
to move in the same direction at the current speed and choose a target position to effectively cut
it off. If you remember playing tag at school, the good players did the same thing: predict the
motion of the player they wanted to catch or evade.

We can add considerably more complex prediction to a pursuit behavior, making a genuine
prediction as to a target’s motion (if the target is coming up on a wall, for example, we know it

134 Chapter 3 Movement

won’t carry on in the same direction and speed; it will swerve to avoid impact). Complex motion
prediction for chase behaviors is the subject of active academic research (and is beyond the scope
of this book). Despite the body of research done, games still use the simple version, assuming the
prey will keep doing what they are doing.

In the last 10 years, motion prediction has also started to be used extensively outside character-
based AI. Networking technologies for multi-player games need to cope when the details of a
character’s motion have been delayed or disrupted by the network. In this case, the server can use
a motion prediction algorithm (which is almost always the simple “keep doing what they were
doing” approach) to guess where the character might be. If it later finds out it was wrong, it can
gradually move the character to its correct position (common in massively multi-player games)
or snap it immediately there (more common in shooters), depending on the needs of the game
design.

An active area of research in at least one company we know of is to use more complex
character AI to learn the typical actions of players and use the AI to control a character when
network lag occurs. Effectively, they predict the motion of characters by trying to simulate the
thought processes of the real-life player controlling them.

3.6 Jumping

The biggest problem with character movement in shooters is jumping. The regular steering
algorithms are not designed to incorporate jumps, which are a core part of the shooter genre.

Jumps are inherently risky. Unlike other steering actions, they can fail, and such a failure may
make it difficult or impossible to recover (at the very limit, it may kill the character).

For example, consider a character chasing an enemy around a flat level. The steering algorithm
estimates that the enemy will continue to move at its current speed and so sets the character’s
trajectory accordingly. The next time the algorithm runs (usually the next frame, but it may
be a little later if the AI is running every few frames) the character finds that its estimate was
wrong and that its target has decelerated fractionally. The steering algorithm again assumes that
the target will continue at its current speed and estimates again. Even though the character
is decelerating, the algorithm can assume that it is not. Each decision it makes can be frac-
tionally wrong, and the algorithm can recover the next time it runs. The cost of the error is
almost zero.

By contrast, if a character decides to make a jump between two platforms, the cost of an
error may be greater. The steering controller needs to make sure that the character is moving at
the correct speed and in the correct direction and that the jump action is executed at the right
moment (or at least not too late). Slight perturbations in the character’s movement (caused by
clipping an obstacle, for example, from gun recoil, or the blast wave from an explosion) can lead
to the character missing the landing spot and plummeting to its doom, a dramatic failure.

Steering behaviors effectively distribute their thinking over time. Each decision they make
is very simple, but because they are constantly reconsidering the decision, the overall effect is
competent. Jumping is a one-time, fail-sensitive decision.

3.6 Jumping 135

3.6.1 Jump Points

The simplest support for jumps puts the onus on the level designer. Locations in the game
level are labeled as being jump points. These regions need to be manually placed. If charac-
ters can move at many different speeds, then jump points also have an associated minimum
velocity set. This is the velocity at which a character needs to be traveling in order to make
the jump.

Depending on the implementation, characters either may seek to get as near their target
velocity as possible or may simply check that the component of their velocity in the correct
direction is sufficiently large.

Figure 3.49 shows two walkways with a jump point placed at their nearest point. A character
that wishes to jump between the walkways needs to have enough velocity heading toward the
other platform to make the jump. The jump point has been given a minimum velocity in the
direction of the other platform.

In this case it doesn’t make sense for a character to try to make a run up in that exact direction.
The character should be allowed to have any velocity with a sufficiently large component in the
correct direction, as shown in Figure 3.50.

If the structure of the landing area is a little different, however, the same strategy would result
in disaster. In Figure 3.51 the same run up has disastrous results.

Jump point

Jump point

Minimum jump velocity

Figure 3.49 Jump points between walkways

136 Chapter 3 Movement

Jump point

Character path

Figure 3.50 Flexibility in the jump velocity

Character path

Jump point

Figure 3.51 A jump to a narrower platform

3.6 Jumping 137

Achieving the Jump

To achieve the jump, the character can use a velocity matching steering behavior to take a run
up. For the period before its jump, the movement target is the jump point, and the velocity the
character is matching is that given by the jump point. As the character crosses onto the jump
point, a jump action is executed, and the character becomes airborne.

This approach requires very little processing at runtime.

1. The character needs to decide to make a jump. It may use some pathfinding system to determine
that it needs to be on the other side of the gap, or else it may be using a simple steering behavior
and be drawn toward the ledge.

2. The character needs to recognize which jump it will make. This will normally happen auto-
matically when we are using a pathfinding system (see the section on jump links, below). If we
are using a local steering behavior, then it can be difficult to determine that a jump is ahead in
enough time to make it. A reasonable lookahead is required.

3. Once the character has found the jump point it is using, a new steering behavior takes over that
performs velocity matching to bring the character into the jump point with the correct velocity
and direction.

4. When the character touches the jump point, a jump action is requested. The character doesn’t
need to work out when or how to jump, it simply gets thrown into the air as it hits the jump
point.

Weaknesses

The examples at the start of this section hint at the problems suffered by this approach. In general,
the jump point does not contain enough information about the difficulty of the jump for every
possible jumping case.

Figure 3.52 illustrates a number of different jumps that are difficult to mark up using jump
points. Jumping onto a thin walkway requires velocity in exactly the right direction, jumping
onto a narrow ledge requires exactly the right speed, and jumping onto a pedestal involves correct
speed and direction. Notice that the difficulty of the jump also depends on the direction it is taken
from. Each of the jumps in Figure 3.52 would be easy in the opposite direction.

In addition, not all failed jumps are equal. A character might not mind occasionally missing
a jump if it only lands in two feet of water with an easy option to climb out. If the jump crosses a
50-foot drop into boiling lava, then accuracy is more important.

We can incorporate more information into the jump point—data that include the kinds of
restrictions on approach velocities and how dangerous it would be to get it wrong. Because they
are created by the level designer, such data are prone to error and difficult to tune. Bugs in the
velocity information may not surface throughout QA if the AI characters don’t happen to attempt
the jump in the wrong way.

A common workaround is to limit the placement of jump points to give the AI the best
chance of looking intelligent. If there are no risky jumps that the AI knows about, then it is less

138 Chapter 3 Movement

Jump point Jump point Jump point

Figure 3.52 Three cases of difficult jump points

likely to fail. To avoid this being obvious to the player, some restrictions on the level structure
are commonly imposed, reducing the number of risky jumps that the player can make, but AI
characters choose not to. This is typical of many aspects of AI development: the capabilities of
the AI put natural restrictions on the layout of the game’s levels. Or, put another way, the level
designers have to avoid exposing weaknesses in the AI.

3.6.2 Landing Pads

A better alternative is to combine jump points with landing pads. A landing pad is another region
of the level, very much like the jump point. Each jump point is paired with a landing pad. We can
then simplify the data needed in the jump point. Rather than require the level designer to set up
the required velocity, we can leave that up to the character.

When the character determines that it will make a jump, it adds an extra processing step.
Using trajectory prediction code similar to that provided in the previous section, the character
calculates the velocity required to land exactly on the landing pad when taking off from the
jump point. The character can then use this calculation as the basis of its velocity matching
algorithm.

This approach is significantly less prone to error. Because the character is calculating the
velocity needed, it will not be prone to accuracy errors in setting up the jump point. It also
benefits from allowing characters to take into account their own physics when determining how
to jump. If characters are heavily laden with weapons, they may not be able to jump up so high.
In this case they will need to have a higher velocity to carry themselves over the gap. Calculating
the jump trajectory allows them to get the exact approach velocity they need.

3.6 Jumping 139

The Trajectory Calculation

The trajectory calculation is slightly different to the firing solution discussed previously. In the
current case we know the start point S, the end point E , the gravity g , and the y component of
velocity vy . We don’t know the time t or the x and z components of velocity. We therefore have
three equations in three unknowns:

Ex = Sx + vx t ,

Ey = Sy + vy t + 1

2
gy t 2,

Ez = Sz + vz t .

We have assumed here that gravity is acting in the vertical direction only and that the known
jump velocity is also only in the vertical direction. To support other gravity directions, we would
need to allow the maximum jump velocity not only to be just in the y-direction but also to have
an arbitrary vector. The equations above would then have to be rewritten in terms of both the
jump vector to find and the known jump velocity vector. This causes significant problems in the
mathematics that are best avoided, especially since the vast majority of cases require y-direction
jumps only, exactly as shown here.

We have also assumed that there is no drag during the trajectory. This is the most common
situation. Drag is usually non-existent or negligible for these calculations. If you need to include
drag for your game, then replace these equations with those given in Section 3.5.4; solving them
will be correspondingly more difficult.

We can solve the system of equations to give:

t =
−vy ±

√
2g (Ey − Sy) + v2

y

g
[3.8]

and then

vx = Ex − Sx

t

and

vz = Ez − Sz

t
.

Equation 3.8 has two solutions. We’d ideally like to achieve the jump in the fastest time
possible, so we want to use the smaller of the two values. Unfortunately, this value might give us
an impossible launch velocity, so we need to check and use the higher value if necessary.

We can now implement a jumping steering behavior to use a jump point and landing pad.
This behavior is given a jump point when it is created and tries to achieve the jump. If the jump
is not feasible, it will have no effect, and no acceleration will be requested.

140 Chapter 3 Movement

Pseudo-Code

The jumping behavior can be implemented in the following way:

1 class Jump (VelocityMatch):
2

3 # Holds the jump point to use
4 jumpPoint
5

6 # Keeps track of whether the jump is achievable
7 canAchieve = False
8

9 # Holds the maximum speed of the character
10 maxSpeed
11

12 # Holds the maximum vertical jump velocity
13 maxYVelocity
14

15 # Retrieve the steering for this jump
16 def getSteering():
17

18 # Check if we have a trajectory, and create
19 # one if not.
20 if not target:
21 target = calculateTarget()
22

23 # Check if the trajectory is zero
24 if not canAchieve:
25 # If not, we have no acceleration
26 return new SteeringOutput()
27

28 # Check if we’ve hit the jump point (character
29 # is inherited from the VelocityMatch base class)
30 if character.position.near(target.position) and
31 character.velocity.near(target.velocity):
32

33 # Perform the jump, and return no steering
34 # (we’re airborne, no need to steer).
35 scheduleJumpAction()
36 return new SteeringOutput()
37

38 # Delegate the steering
39 return VelocityMatch.getSteering()
40

3.6 Jumping 141

41 # Works out the trajectory calculation
42 def calculateTarget():
43

44 target = new Kinematic()
45 target.position = jumpPoint.jumpLocation
46

47 # Calculate the first jump time
48 sqrtTerm = sqrt(2*gravity.y*jumpPoint.deltaPosition.y +
49 maxYVelocity*maxVelocity)
50 time = (maxYVelocity - sqrtTerm) / gravity.y
51

52 # Check if we can use it
53 if not checkJumpTime(time):
54

55 # Otherwise try the other time
56 time = (maxYVelocity + sqrtTerm) / gravity.y
57 checkJumpTime(time)
58

59 # Private helper method for the calculateTarget
60 # function
61 def checkJumpTime(time):
62

63 # Calculate the planar speed
64 vx = jumpPoint.deltaPosition.x / time
65 vz = jumpPoint.deltaPosition.z / time
66 speedSq = vx*vx + vz*vz
67

68 # Check it
69 if speedSq < maxSpeed*maxSpeed:
70

71 # We have a valid solution, so store it
72 target.velocity.x = vx
73 target.velocity.z = vz
74 canAchieve = true
75

Data Structures and Interfaces

We have relied on a simple jump point data structure that has the following form:

1 struct JumpPoint:
2

3 # The position of the jump point
4 jumpLocation

142 Chapter 3 Movement

5

6 # The position of the landing pad
7 landingLocation
8

9 # The change in position from jump to landing
10 # This is calculated from the other values
11 deltaPosition

In addition, we have used the near method of a vector to determine if the vectors are roughly
similar. This is used to make sure that we start the jump without requiring absolute accuracy
from the character. The character is unlikely to ever hit a jump point completely accurately,
so this function provides some margin of error. The particular margin for error depends on
the game and the velocities involved: faster moving or larger characters require larger margins
for error.

Finally, we have used a scheduleJumpAction function to force the character into the air. This
can schedule an action to a regular action queue (a structure we will look at in depth in Chapter 5),
or it can simply add the required vertical velocity directly to the character, sending it upward. The
latter approach is fine for testing but makes it difficult to schedule a jump animation at the correct
time. As we’ll see later in the book, sending the jump through a central action resolution system
allows us to simplify animation selection.

Implementation Notes

When implementing this behavior as part of an entire steering system, it is important to make
sure it can take complete control of the character. If the steering behavior is combined with others
using a blending algorithm, then it will almost certainly fail eventually. A character that is avoiding
an enemy at a tangent to the jump will have its trajectory skewed. It either will not arrive at the
jump point (and therefore not take off) or will jump in the wrong direction and plummet.

Performance

The algorithm is O(1) in both time and memory.

Jump Links

Rather than have jump points as a new type of game entity, many developers incorporate jumping
into their pathfinding framework. Pathfinding will be discussed at length in Chapter 4, so we don’t
want to anticipate too much here.

As part of the pathfinding system, we create a network of locations in the game. The connec-
tions that link locations have information stored with them (the distance between the locations
in particular). We can simply add jumping information to this connection.

3.6 Jumping 143

A connection between two nodes on either side of a gap is labeled as requiring a jump. At
runtime, the link can be treated just like a jump point and landing pad pair, and the algorithm we
developed above can be applied to carry out the jump.

3.6.3 Hole Fillers

Another approach used by several developers allows characters to choose their own jump points.
The level designer fills holes with an invisible object, labeled as a jumpable gap.

The character steers as normal but has a special variation of the obstacle avoidance steering
behavior (we’ll call it a jump detector). This behavior treats collisions with the jumpable gap
object differently from collisions with walls. Rather than trying to avoid the wall, it moves toward
it at full speed. At the point of collision (i.e., the last possible moment that the character is on the
ledge), it executes a jump action and leaps into the air.

This approach has great flexibility; characters are not limited to a particular set of locations
from which they can jump. In a room that has a large chasm running through it, for example,
the character can jump across at any point. If it steers toward the chasm, the jump detector will
execute the jump across automatically. There is no need for separate jump points on each side of
the chasm. The same jumpable gap object works for both sides.

We can easily support one-directional jumps. If one side of the chasm is lower than the other,
we could set up the situation shown in Figure 3.53. In this case the character can jump from the
high side to the low side, but not the other way around. In fact, we can use very small versions of
this collision geometry in a similar way to jump points (label them with a target velocity and they
are the 3D version of jump points).

Gaps at the edge ensure the character
doesn’t try to jump here and hit the

edge of the opposite wall

Jumpable gap object

Figure 3.53 A one-direction chasm jump

144 Chapter 3 Movement

While hole fillers are flexible and convenient, this approach suffers even more from the problem
of sensitivity to landing areas. With no target velocity, or notion of where the character wants to
land, it will not be able to sensibly work out how to take off to avoid missing a landing spot. In
the chasm example above, the technique is ideal because the landing area is so large, and there is
very little possibility of failing the jump.

If you use this approach, then make sure you design levels that don’t show the weaknesses in
the approach. Aim only to have jumpable gaps that are surrounded by ample take off and landing
space.

3.7 Coordinated Movement

Games increasingly require groups of characters to move in a coordinated manner. Coordinated
motion can occur at two levels. The individuals can make decisions that compliment each other,
making their movements appear coordinated. Or they can make a decision as a whole and move
in a prescribed, coordinated group.

Tactical decision making will be covered in Chapter 6. This section looks at ways to move
groups of characters in a cohesive way, having already made the decision that they should move
together. This is usually called formation motion.

Formation motion is the movement of a group of characters so that they retain some group
organization. At its simplest it can consist of moving in a fixed geometric pattern such as a V
or line abreast, but it is not limited to that. Formations can also make use of the environment.
Squads of characters can move between cover points using formation steering with only minor
modifications, for example. Formation motion is used in team sports games, squad-based games,
real-time strategy games, and an increasing number of first-person shooters, driving games, and
action adventures. It is a simple and flexible technique that is much quicker to write and execute
and can produce much more stable behavior than collaborative tactical decision making.

3.7.1 Fixed Formations

The simplest kind of formation movement uses fixed geometric formations. A formation is defined
by a set of slots: locations where a character can be positioned. Figure 3.54 shows some common
formations used in military-inspired games.

One slot is marked as the leader’s slot. All the other slots in the formation are defined relative
to this slot. Effectively, it defines the “zero” for position and orientation in the formation.

The character at the leader’s location moves through the world like any non-formation char-
acter would. It can be controlled by any steering behavior, it may follow a fixed path, or it may
have a pipeline steering system blending multiple movement concerns. Whatever the mechanism,
it does not take account of the fact that it is positioned in the formation.

The formation pattern is positioned and oriented in the game so that the leader is located in
its slot, facing the appropriate direction. As the leader moves, the pattern also moves and turns in
the game. In turn, each of the slots in the pattern move and turn in unison.

3.7 Coordinated Movement 145

Figure 3.54 A selection of formations

Each additional slot in the formation can then be filled by an additional character. The position
of each character can be determined directly from the formation geometry, without requiring a
kinematic or steering system of its own. Often, the character in the slot has its position and
orientation set directly.

If a slot is located at rs relative to the leader’s slot, then the position of the character at that
slot will be

ps = pl + �l rs,

where ps is the final position of slot s in the game, pl is the position of the leader character, and
�l is the orientation of the leader character, in matrix form. In the same way, the orientation of
the character in the slot will be

ωs = ωl + ωs,

where ωs is the orientation of slot s, relative to the leader’s orientation, and ωl is the orientation
of the leader.

The movement of the leader character should take into account the fact that it is carrying the
other characters with it. The algorithms it uses to move will be no different to a non-formation
character, but it should have limits on the speed it can turn (to avoid outlying characters sweeping
round at implausible speeds), and any collision or obstacle avoidance behaviors should take into
account the size of the whole formation.

In practice, these constraints on the leader’s movement make it difficult to use this kind of
formation for anything but very simple formation requirements (small squads of troops in a
strategy game where you control 10,000 units, for example).

146 Chapter 3 Movement

4 characters
7 characters

12 characters

Figure 3.55 A defensive circle formation with different numbers of characters

3.7.2 Scalable Formations

In many situations the exact structure of a formation will depend on the number of characters
that are participating in it. A defensive circle, for example, will be wider with 20 defenders than
with 5. With 100 defenders, it may be possible to structure the formation in several concentric
rings. Figure 3.55 illustrates this.

It is common to implement scalable formations without an explicit list of slot positions and
orientations. A function can dynamically return the slot locations, given the total number of
characters in the formation, for example.

This kind of implicit, scalable formation can be seen very clearly in Homeworld [Relic Enter-
tainment, 1999]. When additional ships are added to a formation, the formation accommodates
them, changing its distribution of slots accordingly. Unlike our example so far, Homeworld uses
a more complex algorithm for moving the formation around.

3.7.3 Emergent Formations

Emergent formations provide a different solution to scalability. Each character has its own steering
system using the arrive behavior. The characters select their target based on the position of other
characters in the group.

Imagine that we are looking to create a large V formation. We can force each character to
choose another target character in front of it and select a steering target behind and to the side, for
example. If there is another character already selecting that target, then it selects another. Similarly,
if there is another character already targeting a location very near, it will continue looking. Once
a target is selected, it will be used for all subsequent frames, updated based on the position and
orientation of the target character. If the target becomes impossible to achieve (it passes into a
wall, for example), then a new target will be selected.

3.7 Coordinated Movement 147

Figure 3.56 Emergent arrowhead formation

Overall, this emergent formation will organize itself into a V formation. If there are many
members of the formation, the gap between the bars of the V will fill up with smaller V shapes.
As Figure 3.56 shows, the overall arrowhead effect is pronounced regardless of the number of
characters in the formation. In the figure, the lines connect a character with the character it is
following.

There is no overall formation geometry in this approach, and the group does not necessarily
have a leader (although it helps if one member of the group isn’t trying to position itself relative
to any other member). The formation emerges from the individual rules of each character, in
exactly the same way as we saw flocking behaviors emerge from the steering behavior of each flock
member.

This approach also has the advantage of allowing each character to react individually to
obstacles and potential collisions. There is no need to factor in the size of the formation when
considering turning or wall avoidance, because each individual in the formation will act appro-
priately (as long as it has those avoidance behaviors as part of its steering system).

While this method is simple and effective, it can be difficult to set up rules to get just the right
shape. In the V example above, a number of characters often end up jostling for position in the cen-
ter of the V. With more unfortunate choices in each character’s target selection, the same rule can
give a formation consisting of a single long diagonal line with no sign of the characteristic V shape.

Debugging emergent formations, like any kind of emergent behavior, can be a challenge. The
overall effect is often one of controlled disorder, rather than formation motion. For military
groups, this characteristic disorder makes emergent formations of little practical use.

3.7.4 Two-Level Formation Steering

We can combine strict geometric formations with the flexibility of an emergent approach using
a two-level steering system. We use a geometric formation, defined as a fixed pattern of slots,
just as before. Initially, we will assume we have a leader character, although we will remove this
requirement later.

148 Chapter 3 Movement

Figure 3.57 Two-level formation motion in a V

Rather than directly placing each character it its slot, it follows the emergent approach by
using the slot at a target location for an arrive behavior. Characters can have their own collision
avoidance behaviors and any other compound steering required.

This is two-level steering because there are two steering systems in sequence: first the leader
steers the formation pattern, and then each character in the formation steers to stay in the pattern.
As long as the leader does not move at maximum velocity, each character will have some flexibility
to stay in its slot while taking account of its environment.

Figure 3.57 shows a number of agents moving in V formation through the woods. The
characteristic V shape is visible, but each character has moved slightly from its slot position to
avoid bumping into trees.

The slot that a character is trying to reach may be briefly impossible to achieve, but its steering
algorithm ensures that it still behaves sensibly.

Removing the Leader

In the example above, if the leader needs to move sideways to avoid a tree, then all the slots in
the formation will also lurch sideways and every other character will lurch sideways to stay with
the slot. This can look odd because the leader’s actions are mimicked by the other characters,
although they are largely free to cope with obstacles in their own way.

We can remove the responsibility for guiding the formation from the leader and have all the
characters react in the same way to their slots. The formation is moved around by an invisible
leader: a separate steering system that is controlling the whole formation, but none of the indi-
viduals. This is the second level of the two-level formation.

3.7 Coordinated Movement 149

Because this new leader is invisible, it does not need to worry about small obstacles, bumping
into other characters, or small terrain features. The invisible leader will still have a fixed location
in the game, and that location will be used to lay out the formation pattern and determine the
slot locations for all the proper characters. The location of the leader’s slot in the pattern will not
correspond to any character, however. Because it is not acting like a slot, we call this the pattern’s
anchor point.

Having a separate steering system for the formation typically simplifies implementation. We
no longer have different characters with different roles, and there is no need to worry about
making one character take over as leader if another one dies.

The steering for the anchor point is often simplified. Outdoors, we might only need to use a
single high-level arrive behavior, for example, or maybe a path follower. In indoor environments
the steering will still need to take account of large scale obstacles, such as walls. A formation that
passes straight through into a wall will strand all its characters, making them unable to follow
their slots.

Moderating the Formation Movement

So far information has flowed in only one direction: from the formation to the characters within it.
When we have a two-level steering system, this causes problems. The formation could be

steering ahead, oblivious to the fact that its characters are having problems keeping up. When the
formation was being led by a character, this was less of a problem, because difficulties faced by the
other characters in the formation were likely to also be faced by the leader.

When we steer the anchor point directly, it is usually allowed to disregard small-scale obstacles
and other characters. The characters in the formations may take considerably longer to move than
expected because they are having to navigate these obstacles. This can lead to the formation and
its characters getting a long way out of synch.

One solution is to slow the formation down. A good rule of thumb is to make the maximum
speed of the formation around half that of the characters. In fairly complex environments, how-
ever, the slow down required is unpredictable, and it is better not to burden the whole game with
slow formation motion for the sake of a few occasions when a faster speed would be problematic.

A better solution is to moderate the movement of the formation based on the current positions
of the characters in its slots: in effect to keep the anchor point on a leash. If the characters in the
slots are having trouble reaching their targets, then the formation as a whole should be held back
to give them a chance to catch up.

This can be simply achieved by resetting the kinematic of the anchor point at each frame. Its
position, orientation, velocity, and rotation are all set to the average of those properties for the
characters in its slots. If the anchor point’s steering system gets to run first, it will move forward a
little, moving the slots forward and forcing the characters to move also. After the slot characters
are moved, the anchor point is reined back so that it doesn’t move too far ahead.

Because the position is reset at every frame, the target slot position will only be a little way
ahead of the character when it comes to steer toward it. Using the arrive behavior will mean that
each character is fairly nonchalant about moving such a small distance, and the speed for the
slot characters will decrease. This, in turn, will mean that the speed of the formation decreases
(because it is being calculated as the average of the movement speeds for the slot characters).

150 Chapter 3 Movement

On the following frame the formation’s velocity will be even less. Over a handful of frames it will
slow to a halt.

An offset is generally used to move the anchor point a small distance ahead of the center of
mass. The simplest solution is to move it a fixed distance forward, as given by the velocity of the
formation:

panchor = pc + koffsetvc , [3.9]

where pc is the position, and vc is the velocity of the center of mass. It is also necessary to set a very
high maximum acceleration and maximum velocity for the formation’s steering. The formation
will not actually achieve this acceleration or velocity because it is being held back by the actual
movement of its characters.

Drift

Moderating the formation motion requires that the anchor point of the formation always be at
the center of mass of its slots (i.e., its average position). Otherwise, if the formation is supposed
to be stationary, the anchor point will be reset to the average point, which will not be where it was
in the last frame. The slots will all be updated based on the new anchor point and will again move
the anchor point, causing the whole formation to drift across the level.

It is relatively easy, however, to recalculate the offsets of each slot based on a calculation of the
center of mass of a formation. The center of mass of the slots is given by:

pc = 1

n

∑
i=1..n

{
psi if slot i is occupied,
0 otherwise,

where psi is the position of slot i. Changing from the old to the new anchor point involves changing
each slot coordinate according to:

p′
si

= psi − pc . [3.10]

For efficiency, this should be done once and the new slot coordinates stored, rather than being
repeated every frame. It may not be possible, however, to perform the calculation offline. Different
combinations of slots may be occupied at different times. When a character in a slot gets killed,
for example, the slot coordinates will need to be recalculated because the center of mass will have
changed.

Drift also occurs when the anchor point is not at the average orientation of the occupied slots
in the pattern. In this case, rather than drifting across the level, the formation will appear to spin
on the spot. We can again use an offset for all the orientations based on the average orientation
of the occupied slots:

�ωc = �vc

|�vc | ,

3.7 Coordinated Movement 151

where

�vc = 1

n

∑
i=1..n

{ �ωsi if slot i is occupied,
0 otherwise,

and �ωsi is the orientation of slot i. The average orientation is given in vector form and can be
converted back into an angle ωc , in the range (−π,π). As before, changing from the old to the
new anchor point involves changing each slot orientation according to:

ω′
si

= ωsi − ωc .

This should also be done as infrequently as possible, being cached internally until the set of
occupied slots changes.

3.7.5 Implementation

We can now implement the two-level formation system. The system consists of a formation
manager that processes a formation pattern and generates targets for the characters occupying its
slots.

The formation manager can be implemented in the following way:

1 class FormationManager:
2

3 # Holds the assignment of a single character to a slot
4 struct SlotAssignment:
5 character
6 slotNumber
7

8 # Holds a list of slots assignments.
9 slotAssignments

10

11 # Holds a Static structure (i.e., position and orientation)
12 # representing the drift offset for the currently filled
13 # slots.
14 driftOffset
15

16 # Holds the formation pattern
17 pattern
18

19

20 # Updates the assignment of characters to slots
21 def updateSlotAssignments():

152 Chapter 3 Movement

22

23 # A very simple assignment algorithm: we simply go through
24 # each assignment in the list and assign sequential slot
25 # numbers
26 for i in 0..slotAssignments.length():
27 slotAssignments[i].slotNumber = i
28

29 # Update the drift offset
30 driftOffset = pattern.getDriftOffset(slotAssignments)
31

32

33 # Add a new character to the first available slot. Returns
34 # false if no more slots are available.
35 def addCharacter(character):
36

37 # Find out how many slots we have occupied
38 occupiedSlots = slotAssignments.length()
39

40 # Check if the pattern supports more slots
41 if pattern.supportsSlots(occupiedSlots + 1):
42

43 # Add a new slot assignment
44 slotAssignment = new SlotAssignment()
45 slotAssignment.character = character
46 slotAssignments.append(slotAssignment)
47

48 # Update the slot assignments and return success
49 updateSlotAssignments()
50 return true
51

52 # Otherwise we’ve failed to add the character
53 return false
54

55

56 # Removes a character from its slot.
57 def removeCharacter(character):
58

59 # Find the character’s slot
60 slot = charactersInSlots.find(character)
61

62 # Make sure we’ve found a valid result
63 if slot in 0..slotAssignments.length():
64

65 # Remove the slot

3.7 Coordinated Movement 153

66 slotAssignments.removeElementAt(slot)
67

68 # Update the assignments
69 updateSlotAssignments()
70

71

72 # Write new slot locations to each character
73 def updateSlots():
74

75 # Find the anchor point
76 anchor = getAnchorPoint()
77

78 # Get the orientation of the anchor point as a matrix
79 orientationMatrix = anchor.orientation.asMatrix()
80

81 # Go through each character in turn
82 for i in 0..slotAssignments.length():
83

84 # Ask for the location of the slot relative to the
85 # anchor point. This should be a Static structure
86 relativeLoc =
87 pattern.getSlotLocation(slotAssignments[i].slotNumber)
88

89 # Transform it by the anchor point’s position and
90 # orientation
91 location = new Static()
92 location.position = relativeLoc.position *
93 orientationMatrix +
94 anchor.position
95 location.orientation = anchor.orientation +
96 relativeLoc.orientation
97

98 # And add the drift component
99 location.position -= driftOffset.position

100 location.orientation -= driftOffset.orientation
101

102 # Write the static to the character
103 slotAssignments[i].character.setTarget(location)

For simplicity, in the code we’ve assumed that we can look up a slot in the slotAssignments list
by its character using a findIndexFromCharacter method. Similarly, we’ve used a remove method
of the same list to remove an element at a given index.

154 Chapter 3 Movement

Data Structures and Interfaces

The formation manager relies on access to the current anchor point of the formation through
the getAnchorPoint function. This can be the location and orientation of a leader character, a
modified center of mass of the characters in the formation, or an invisible but steered anchor
point for a two-level steering system.

In the source code on the website, getAnchorPoint is implemented by finding the current

Library

center of mass of the characters in the formation.
The formation pattern class generates the slot offsets for a pattern, relative to its anchor point.

It does this after being asked for its drift offset, given a set of assignments. In calculating the
drift offset, the pattern works out which slots are needed. If the formation is scalable and returns
different slot locations depending on the number of slots occupied, it can use the slot assignments
passed into the getDriftOffset function to work out how many slots are used and therefore what
positions each slot should occupy.

Each particular pattern (such as a V, wedge, circle) needs its own instance of a class that
matches the formation pattern interface:

1 class FormationPattern:
2

3 # Holds the number of slots currently in the
4 # pattern. This is updated in the getDriftOffset
5 # method. It may be a fixed value.
6 numberOfSlots
7

8 # Calculates the drift offset when characters are in
9 # given set of slots

10 def getDriftOffset(slotAssignments)
11

12 # Gets the location of the given slot index.
13 def getSlotLocation(slotNumber)
14

15 # Returns true if the pattern can support the given
16 # number of slots
17 def supportsSlots(slotCount)

In the manager class, we’ve also assumed that the characters provided to the formation man-
ager can have their slot target set. The interface is simple:

1 class Character:
2

3 # Sets the steering target of the character. Takes a
4 # Static object (i.e. containing position and orientation).
5 def setTarget(static)

3.7 Coordinated Movement 155

Implementation Caveats

In reality, the implementation of this interface will depend on the rest of the character data we
need to keep track of for a particular game. Depending on how the data are arranged in your game
engine, you may need to adjust the formation manager code so that it accesses your character data
directly.

Performance

The target update algorithm is O(n) in time, where n is the number of occupied slots in the
formation. It is O(1) in memory, excluding the resulting data structure into which the assignments
are written, which is O(n) in memory, but is part of the overall class and exists before and after
the class’s algorithms run.

Adding or removing a character consists of two parts in the pseudo-code above: (1) the actual
addition or removal of the character from the slot assignments list, and (2) the updating of the
slot assignments on the resulting list of characters.

Adding a character is an O(1) process in both time and memory. Removing a character
involves finding if the character is present in the slot assignments list. Using a suitable hashing
representation, this can be O(log n) in time and O(1) in memory.

As we have it above, the assignment algorithm is O(n) in time and O(1) in memory (again
excluding the assignment data structure). Typically, assignment algorithms will be more sophis-
ticated and have worse performance than O(n), as we will see later in this chapter.

In the (somewhat unlikely) event that this kind of assignment algorithm is suitable, we can
optimize it by having the assignment only reassign slots to characters that need to change (adding
a new character, for example, may not require the other characters to change their slot numbers).
We have deliberately not tried to optimize this algorithm, because we will see that it has serious
behavioral problems that must be resolved with more complex assignment techniques.

Sample Formation Pattern

To make things more concrete, let’s consider a usable formation pattern. The defensive circle posts
characters around the circumference of a circle, so their backs are to the center of the circle. The
circle can consist of any number of characters (although a huge number might look silly, we will
not put any fixed limit).

The defensive circle formation class might look something like the following:

1 class DefensiveCirclePattern:
2

3 # The radius of one character, this is needed to determine
4 # how close we can pack a given number of characters around
5 # a circle.
6 characterRadius

156 Chapter 3 Movement

7

8 # Calculates the number of slots in the pattern from
9 # the assignment data. This is not part of the formation

10 # pattern interface.
11 def calculateNumberOfSlots(assignments):
12

13 # Find the number of filled slots: it will be the
14 # highest slot number in the assignments
15 filledSlots = 0
16 for assignment in assignments:
17 if assignment.slotNumber >= maxSlotNumber:
18 filledSlots = assignment.slotNumber
19

20 # Add one to go from the index of the highest slot to the
21 # number of slots needed.
22 numberOfSlots = filledSlots + 1
23

24 return numberOfSlots
25

26 # Calculates the drift offset of the pattern.
27 def getDriftOffset(assignments):
28

29 # Store the center of mass
30 center = new Static()
31

32 # Now go through each assignment, and add its
33 # contribution to the center.
34 for assignment in assignments:
35 location = getSlotLocation(assignment.slotNumber)
36 center.position += location.position
37 center.orientation += location.orientation
38

39 # Divide through to get the drift offset.
40 numberOfAssignments = assignments.length()
41 center.position /= numberOfAssignments
42 center.orientation /= numberOfAssignments
43 return center
44

45 # Calculates the position of a slot.
46 def getSlotLocation(slotNumber):
47

48 # We place the slots around a circle based on their
49 # slot number
50 angleAroundCircle = slotNumber / numberOfSlots * PI * 2

3.7 Coordinated Movement 157

51

52 # The radius depends on the radius of the character,
53 # and the number of characters in the circle:
54 # we want there to be no gap between character’s shoulders.
55 radius = characterRadius / sin(PI / numberOfSlots)
56

57 # Create a location, and fill its components based
58 # on the angle around circle.
59 location = new Static()
60 location.position.x = radius * cos(angleAroundCircle)
61 location.position.z = radius * sin(angleAroundCircle)
62

63 # The characters should be facing out
64 location.orientation = angleAroundCircle
65

66 # Return the slot location
67 return location
68

69 # Makes sure we can support the given number of slots
70 # In this case we support any number of slots.
71 def supportsSlots(slotCount):
72 return true

If we know we are using the assignment algorithm given in the previous pseudo-code, then
we know that the number of slots will be the same as the number of assignments (since char-
acters are assigned to sequential slots). In this case the calculateNumberOfSlots method can be
simplified:

1 def calculateNumberOfSlots(assignments):
2 return assignments.length()

In general, with more useful assignment algorithms, this may not be the case, so the long form
above is usable in all cases, at the penalty of some decrease in performance.

3.7.6 Extending to More than Two Levels

The two-level steering system can be extended to more levels, giving the ability to create formations
of formations. This is becomingly increasingly important in military simulation games with lots
of units; real armies are organized in this way.

The framework above can be simply extended to support any depth of formation. Each forma-
tion has its own steering anchor point, either corresponding to a leader character or representing
the formation in an abstract way. The steering for this anchor point can be managed in turn

158 Chapter 3 Movement

Squad leader Squad leader Squad leader

Fire team
in wedge

Fire team
in wedge

Infantry squad

Fire team
in wedge

Fire team
in wedge

Infantry squad

Fire team
in wedge

Fire team
in wedge

Infantry squad

Platoon sergeant
and aidman (first aid)

Platoon ‘HQ’:
leader, communications and heavy weapons

Figure 3.58 Nesting formations to greater depth

by another formation. The anchor point is trying to stay in a slot position of a higher level
formation.

Figure 3.58 shows an example adapted from the U.S. infantry soldiers training manual [U.S.
Army Infantry School, 1992]. The infantry rifle fire team has its characteristic finger-tip formation
(called the “wedge” in army-speak). These finger-tip formations are then combined into the
formation of an entire infantry squad. In turn, this squad formation is used in the highest level
formation: the column movement formation for a rifle platoon.

Figure 3.59 shows each formation on its own to illustrate how the overall structure of
Figure 3.58 is constructed.2 Notice that in the squad formation there are three slots, one of
which is occupied by an individual character. The same thing happens at an entire platoon level:
additional individuals occupy slots in the formation. As long as both characters and formations
expose the same interface, the formation system can cope with putting either an individual or a
whole sub-formation into a single slot.

The squad and platoon formations in the example show a weakness in our current imple-
mentation. The squad formation has three slots. There is nothing to stop the squad leader’s slot
from being occupied by a rifle team, and there is nothing to stop a formation from having two
leaders and only one rifle team. To avoid these situations we need to add the concept of slot
roles.

2. The format of the diagram uses military mapping symbols common to all NATO countries. A full guide on military
symbology can be found in Kourkolis [1986], but it is not necessary to understand any details for our purposes in this
book.

3.7 Coordinated Movement 159

Infantry
platoon

Infantry
squad

Squad leader

Fire
team

Platoon sergeant
and aidman (first aid)

Platoon ‘HQ’:

Platoon sergeant

Aidman

Machine gun crew

Machine gun crew

Communication

Communication

Forward observer

Platoon leader

Figure 3.59 Nesting formations shown individually

3.7.7 Slot Roles and Better Assignment

So far we have assumed that any character can occupy each slot. While this is normally the case,
some formations are explicitly designed to give each character a different role. A rifle fire team in a
military simulation game, for example, will have a rifleman, grenadier, machine gunner, and squad
leader in very specific locations. In a real-time strategy game, it is often advisable to keep the heavy
artillery in the center of a defensive formation, while using agile infantry troops in the vanguard.

Slots in a formation can have roles so that only certain characters can fill certain slots. When
a formation is assigned to a group of characters (often, this is done by the player), the characters
need to be assigned to their most appropriate slots. Whether using slot roles or not, this should not
be a haphazard process, with lots of characters scrabbling over each other to reach the formation.

Assigning characters to slots in a formation is not difficult or error prone if we don’t use slot
roles. With roles it can become a complex problem. In game applications, a simplification can be
used that gives good enough performance.

Hard and Soft Roles

Imagine a formation of characters in a fantasy RPG game. As they explore a dungeon, the party
needs to be ready for action. Magicians and missile weapon users should be in the middle of the
formation, surrounded by characters who fight hand to hand.

160 Chapter 3 Movement

We can support this by creating a formation with roles. We have three roles: magicians (we’ll
assume that they do not need a direct line of sight to their enemy), missile weapon users (including
magicians with fireballs and spells that do follow a trajectory), and melee (hand to hand) weapon
users. Let’s call these roles “melee,”“missile,” and “magic” for short.

Similarly, each character has one or more roles that it can fulfill. An elf might be able to fight
with a bow or sword, while a dwarf may rely solely on its axe. Characters are only allowed to fill a
slot if they can fulfill the role associated with that slot. This is known as a hard role.

Figure 3.60 shows what happens when a party is assigned to the formation. We have four kinds
of character: fighters (F) fill melee slots, elves (E) fill either melee or missile slots, archers (A) fill
missile slots, and mages (M) fill magic slots. The first party maps nicely onto the formation, but
the second party, consisting of all melee combatants, does not.

We could solve this problem by having many different formations for different compositions
of the party. In fact, this would be the optimal solution, since a party of sword-wielding thugs
will move differently to one consisting predominantly of highly trained archers. Unfortunately, it
requires lots of different formations to be designed. If the player can switch formation, this could
multiply up to several hundred different designs.

On the other hand, we could use the same logic that gave us scalable formations: we feed in
the number of characters in each role, and we write code to generate the optimum formation for
those characters. This would give us impressive results, again, but at the cost of more complex
code. Most developers would ideally want to move as much content out of code as possible, ideally
using separate tools to structure formation patterns and define roles.

A simpler compromise approach uses soft roles: roles that can be broken. Rather than a
character having a list of roles it can fulfill, it has a set of values representing how difficult it
would find it to fulfill every role. In our example, the elf would have low values for both melee

Melee

Missile

Magic

Missile

Melee

UnassignedFF

F F
F

F F
E

E

M

E A

A E

E F F F

2 Archers, 3 Elves,
3 Fighters, 1 Mage

2 Elves,
7 Fighters

Figure 3.60 An RPG formation, and two examples of the formation filled

3.7 Coordinated Movement 161

and missile roles, but would have a high value for occupying the magic role. Similarly, the fighter
would have high values in both missile and magic roles, but would have a very low value for the
melee role.

The value is known as the slot cost. To make a slot impossible for a character to fill, its slot cost
should be infinite. Normally, this is just a very large value. The algorithm below works better if the
values aren’t near to the upper limit of the data type (such as FLT_MAX) because several costs will
be added. To make a slot ideal for a character, its slot cost should be zero. We can have different
levels of unsuitable assignment for one character. Our mage might have a very high slot cost for
occupying a melee role but a slightly lower cost for missile slots.

We would like to assign characters to slots in such a way that the total cost is minimized. If
there are no ideal slots left for a character, then it can still be placed in a non-suitable slot. The
total cost will be higher, but at least characters won’t be left stranded with nowhere to go. In our
example, the slot costs are given for each role below:

Magic Missile Melee

Archer 1000 0 1500

Elf 1000 0 0

Fighter 2000 1000 0

Mage 0 500 2000

Figure 3.61 shows that a range of different parties can now be assigned to our formation.
These flexible slot costs are called soft roles. They act just like hard roles when the formation

can be sensibly filled but don’t fail when the wrong characters are available.

E

E

FF

M

A

A

E F

E E

FF

FF

E

E

FF

M

M

FF

F

F

F

M

Slot cost: 0 Slot cost: 3000 Slot cost: 1000

2 Archers, 3 Elves,
3 Fighters, 1 Mage

2 Elves,
7 Fighters

2 Elves,
4 Fighters, 3 Mages

Figure 3.61 Different total slot costs for a party

162 Chapter 3 Movement

3.7.8 Slot Assignment

We have grazed along the topic of slot assignment several times in this section, but have not looked
at the algorithm.

Slot assignment needs to happen relatively rarely in a game. Most of the time a group of
characters will simply be following their slots around. Assignment usually occurs when a group
of previously disorganized characters are assigned to a formation. We will see that it also occurs
when characters spontaneously change slots in tactical motion.

For large numbers of character and slots, the assignment can be done in many different
ways. We could simply check each possible assignment and use the one with the lowest slot cost.
Unfortunately, the number of assignments to check very quickly gets huge. The number of possible
assignments of k characters to n slots is given by the permutations formula:

nPk ≡ n!

(n − k)!
.

For a formation of 20 slots and 20 characters, this gives nearly 2500 trillion different possible
assignments. Clearly, no matter how infrequently we need to do it, we can’t check every possible
assignment. And a highly efficient algorithm won’t help us here. The assignment problem is an
example of a non-polynomial time complete (NP-complete) problem; it cannot be properly solved
in a reasonable amount of time by any algorithm.

Instead, we simplify the problem by using a heuristic. We won’t be guaranteed to get the best
assignment, but we will usually get a decent assignment very quickly. The heuristic assumes that
a character will end up in a slot best suited to it. We can therefore look at each character in turn
and assign it to a slot with the lowest slot cost.

We run the risk of leaving a character until last and having nowhere sensible to put it. We can
improve the performance by considering highly constrained characters first and flexible characters
last. The characters are given an ease of assignment value which reflects how difficult it is to find
slots for them.

The ease of assignment value is given by:

∑
i=1..n

{
1

1+ci
if ci < k,

0 otherwise,

where ci is the cost of occupying slot i, n is the number of possible slots, and k is a slot-cost limit,
beyond which a slot is considered to be too expensive to consider occupying.

Characters that can only occupy a few slots will have lots of high slot costs and therefore a low
ease rating. Notice that we are not adding up the costs for each role, but for each actual slot. Our
dwarf may only be able to occupy melee slots, but if there are twice the number of melee slots
than other types, it will still be relatively flexible. Similarly, a magician that can fulfill both magic
and missile roles will be inflexible if there is only one of each to choose from in a formation of
ten slots.

3.7 Coordinated Movement 163

The list of characters is sorted according to their ease of assignment values, and the most
awkward characters are assigned first. This approach works in the vast majority of cases and is the
standard approach for formation assignment.

Generalized Slot Costs

Slot costs do not necessarily have to depend only on the character and the slot roles. They can be
generalized to include any difficulty a character might have in taking up a slot.

If a formation is spread out, for example, a character may choose a slot that is close by over
a more distant slot. Similarly, a light infantry unit may be willing to move farther to get into
position than a heavy tank. This is not a major issue when the formations will be used for motion,
but it can be significant in defensive formations. This is the reason we used a slot cost, rather than
a slot score (i.e., high is bad and low is good, rather than the other way around). Distance can be
directly used as a slot cost.

There may be other trade-offs in taking up a formation position. There may be a number of
defensive slots positioned at cover points around the room. Characters should take up positions in
order of the cover they provide. Partial cover should only be occupied if no better slot is available.

Whatever the source of variation in slot costs, the assignment algorithm will still operate
normally. In our implementation, we will generalize the slot cost mechanism to be a method call;

Library

we ask a character how costly it will be to occupy a particular slot. The source code on the website
includes an implementation of this interface that supports the basic slot roles mechanism.

Implementation

We can now implement the assignment algorithm using generalized slot costs. The calculateAs-
signment method is part of the formation manager class, as before.

1 class FormationManager
2

3 # ... other content as before ...
4

5 def updateSlotAssignments():
6

7 # Holds a slot and its corresponding cost.
8 struct CostAndSlot:
9 cost

10 slot
11

12 # Holds a character’s ease of assignment and its
13 # list of slots.
14 struct CharacterAndSlots:

164 Chapter 3 Movement

15 character
16 assignmentEase
17 costAndSlots
18

19 # Holds a list of character and slot data for
20 # each character.
21 characterData
22

23 # Compile the character data
24 for assignment in slotAssignments:
25

26 # Create a new character datum, and fill it
27 datum = new CharacterAndSlots()
28 datum.character = assignment.character
29

30 # Add each valid slot to it
31 for slot in 0..pattern.numberOfSlots:
32

33 # Get the cost of the slot
34 cost = pattern.getSlotCost(assignment.character)
35

36 # Make sure the slot is valid
37 if cost >= LIMIT: continue
38

39 # Store the slot information
40 slotDatum = new CostAndSlot()
41 slotDatum.slot = slot
42 slotDatum.cost = cost
43 datum.costAndSlots.append(slotDatum)
44

45 # Add it to the character’s ease of assignment
46 datum.assignmentEase += 1 / (1+cost)
47

48 # Keep track of which slots we have filled
49 # Filled slots is an array of booleans of size:
50 # numberOfSlots. Initially all should be false
51 filledSlots = new Boolean[pattern.numberOfSlots]
52

53 # Clear the set of assignments, in order to keep track
54 # of new assignments
55 assignments = []
56

57 # Arrange characters in order of ease of assignment, with
58 # the least easy first.

3.7 Coordinated Movement 165

59 characterData.sortByAssignmentEase()
60 for characterDatum in characterData:
61

62 # Choose the first slot in the list that is still
63 # open
64 characterDatum.costAndSlots.sortByCost()
65 for slot in characterDatum.costAndSlots:
66

67 # Check if this slot is valid
68 if not filledSlots[slot]:
69

70 # Create an assignment
71 assignment = new SlotAssignment()
72 assignment.character = characterDatum.character
73 assignment.slotNumber = slot
74 assignments.append(assignment)
75

76 # Reserve the slot
77 filledSlots[slot] = true
78

79 # Go to the next character
80 break continue
81

82 # If we reach here, it is because a character has no
83 # valid assignment. Some sensible action should be
84 # taken, such as reporting to the player.
85 error
86

87 # We have a complete set of slot assignments now,
88 # so store them
89 slotAssignments = assignments

The break continue statement indicates that the innermost loop should be left and the sur-
rounding loop should be restarted with the next element. In some languages this is not an easy
control flow to achieve. In C/C++ it can be done by labeling the outermost loop and using a
named continue statement (which will continue the named loop, automatically breaking out of
any enclosing loops). See the reference information for your language to see how to achieve the
same effect.

Data Structures and Interfaces

In this code we have hidden a lot of complexity in data structures. There are two lists,
characterData and costAndSlots, within the CharacterAndSlots structure that are both
sorted.

166 Chapter 3 Movement

In the first case, the character data are sorted by the ease of assignment rating, using the
sortByAssignmentEase method. This can be implemented as any sort, or alternatively the method
can be rewritten to sort as it goes, which may be faster if the character data list is implemented as a
linked list, where data can be very quickly inserted. If the list is implemented as an array (which is
normally faster), then it is better to leave the sort till last and use a fast in-place sorting algorithm
such as quicksort.

In the second case, the character data is sorted by slot cost using the sortByCost method.
Again, this can be implemented to sort as the list is compiled if the underlying data structure
supports fast element inserts.

Performance

The performance of the algorithm is O(kn) in memory, where k is the number of characters and
n is the number of slots. It is O(ka log a) in time, where a is the average number of slots that can
be occupied by any given character. This is normally a lower value than the total number of slots
but grows as the number of slots grows. If this is not the case, if the number of valid slots for a
character is not proportional to the number of slots, then the performance of the algorithm is
also O(kn) in time.

In either case, this is significantly faster than an O(nPk) process.
Often, the problem with this algorithm is one of memory rather than speed. There are ways

to get the same algorithmic effect with less storage, if necessary, but at a corresponding increase
in execution time.

Regardless of the implementation, this algorithm is often not fast enough to be used regularly.
Because assignment happens rarely (when the user selects a new pattern, for example, or adds a
unit to a formation), it can be split over several frames. The player is unlikely to notice a delay of
a few frames before the characters begin to assemble into a formation.

3.7.9 Dynamic Slots and Plays

So far we have assumed that the slots in a formation pattern are fixed relative to the anchor point.
A formation is a fixed 2D pattern that can move around the game level. The framework we’ve
developed so far can be extended to support dynamic formations that change shape over time.

Slots in a pattern can be dynamic, moving relative to the anchor point of the formation.
This is useful for introducing a degree of movement when the formation itself isn’t moving, for
implementing set plays in some sports games, and for using as the basis of tactical movement.

Figure 3.62 shows how fielders move in a textbook baseball double play.
This can be implemented as a formation. Each fielder has a fixed slot depending on the position

they play. Initially, they are in a fixed pattern formation and are in their normal fielding positions
(actually, there may be many of these fixed formations depending on the strategy of the defense).
When the AI detects that the double play is on, it sets the formation pattern to a dynamic double
play pattern. The slots move along the paths shown, bringing the fielders in place to throw out
both batters.

3.7 Coordinated Movement 167

Figure 3.62 A baseball double play

In some cases, the slots don’t need to move along a path; they can simply jump to their new
locations and have the characters use their arrive behaviors to move there. In more complex plays,
however, the route taken is not direct, and characters weave their way to their destination.

To support dynamic formations, an element of time needs to be introduced. We can simply
extend our pattern interface to take a time value. This will be the time elapsed since the formation
began. The pattern interface now looks like the following:

1 class FormationPattern:
2

3 # ... other elements as before ...
4

5 # Gets the location of the given slot index at a given time
6 def getSlotLocation(slotNumber, time)

Unfortunately, this can cause problems with drift, since the formation will have its slots
changing position over time. We could extend the system to recalculate the drift offset in each
frame to make sure it is accurate. Many games that use dynamic slots and set plays do not use
two-level steering, however. For example, the movement of slots in a baseball game is fixed with
respect to the field, and in a football game, the plays are often fixed with respect to the line of
scrimmage. In this case, there is no need for two-level steering (the anchor point of the formation
is fixed), and drift is not an issue, since it can be removed from the implementation.

168 Chapter 3 Movement

Position of player
when kick is taken

Position of player
when ball arrives

Path of player

Figure 3.63 A corner kick in soccer

Many sports titles use techniques similar to formation motion to manage the coordinated
movement of players on the field. Some care does need to be taken to ensure that the players don’t
merrily follow their formation oblivious to what’s actually happening on the field.

There is nothing to say that the moving slot positions have to be completely pre-defined. The
slot movement can be determined dynamically by a coordinating AI routine. At the extreme, this
gives complete flexibility to move players anywhere in response to the tactical situation in the
game. But that simply shifts the responsibility for sensible movement onto a different bit of code
and begs the question of how should that be implemented?

In practical use some intermediate solution is sensible. Figure 3.63 shows a set soccer play for
a corner kick, where only three of the players have fixed play motions.

The movement of the remaining offensive players will be calculated in response to the move-
ment of the defending team, while the key set play players will be relatively fixed, so the player
taking the corner knows where to place the ball. The player taking the corner may wait until just
before he kicks to determine which of the three potential scorers he will cross to. This again will
be in response to the actions of the defense.

The decision can be made by any of the techniques in the decision making chapter (Chapter 5).
We could, for example, look at the opposing players in each of A, B, and C’s shot cone and pass to
the character with the largest free angle to aim for.

3.7.10 Tactical Movement

An important application of formations is tactical squad-based movement.
When they are not confident of the security of the surrounding area, a military squad will move

in turn, while other members of the squad provide a lookout and rapid return of fire if an enemy

3.7 Coordinated Movement 169

Figure 3.64 Bounding overwatch

should be spotted. Known as bounding overwatch, this movement involves stationary squad
members who remain in cover, while their colleagues run for the next cover point. Figure 3.64
illustrates this.

Dynamic formation patterns are not limited to creating set plays for sports games, they can
also be used to create a very simple but effective approximation of bounding overwatch. Rather
than moving between set locations on a sports field, the formation slots will move in a predictable
sequence between whatever cover is near to the characters.

First we need access to the set of cover points in the game. A cover point is some location in
the game where a character will be safe if it takes cover. These locations can be created manually
by the level designers, or they can be calculated from the layout of the level. Chapter 6 will look at
how cover points are created and used in much more detail. For our purposes here, we’ll assume
that there is some set of cover points available.

We need a rapid method of getting a list of cover points in the region surrounding the anchor
point of the formation. The overwatch formation pattern accesses this list and chooses the closest
set of cover points to the formation’s anchor point. If there are four slots, it finds four cover points,
and so on.

When asked to return the location of each slot, the formation pattern uses one of this set
of cover points for each slot. This is shown in Figure 3.65. For each of the illustrated formation
anchor points, the slot positions correspond to the nearest cover points.

170 Chapter 3 Movement

Formation
anchor point

Selected
cover point

Numbers
indicate
slot IDs

Cover point

1

2
3

4

Figure 3.65 Formation patterns match cover points

Thus the pattern of the formation is linked to the environment, rather than geometrically
fixed beforehand. As the formation moves, cover points that used to correspond to a slot will
suddenly not be part of the set of nearest points. As one cover point leaves the list, another (by
definition) will enter. The trick is to give the new arriving cover point to the slot whose cover
point has just been removed and not assign all the cover points to slots afresh.

Because each character is assigned to a particular slot, using some kind of slot ID (an integer
in our sample code), the newly valid slot should have the same ID as the recently disappeared
slot. The cover points that are still valid should all still have the same IDs. This typically requires
checking the new set of cover points against the old ones and reusing ID values.

Figure 3.66 shows the character at the back of the group assigned to a cover point called slot
4. A moment later, the cover point is no longer one of the four closest to the formation’s anchor
point. The new cover point, at the front of the group, reuses the slot 4 ID, so the character at the
back (who is assigned to slot 4) now finds its target has moved and steers toward it.

Library

The accompanying source code on the website gives an example implementation of a bounding
overwatch formation pattern.

Tactical Motion and Anchor Point Moderation

We can now run the formation system. We need to turn off moderation of the anchor point’s
movement; otherwise, the characters are likely to get stuck at one set of cover points. Their center
of mass will not change, since the formation is stationary at their cover points. Therefore, the
anchor point will not move forward, and the formation will not get a chance to find new cover
points.

3.8 Motor Control 171

Formation
anchor point

Selected
cover point

Newly
de-selected
cover point

Cover point

1

2

3

4

Figure 3.66 An example of slot change in bounding overwatch

Because moderation is now switched off, it is essential to make the anchor point move slowly
in comparison with the individual characters. This is what you’d expect to see in any case, as
bounding overwatch is not a fast maneuver.

An alternative used in a couple of game prototypes we’ve seen is to go back to the idea of having
a leader character that acts as the anchor point. This leader character can be under the player’s
control, or it can be controlled with some regular steering behavior. As the leader character moves,
the rest of the squad moves in bounding overwatch around it. If the leader character moves at full
speed, then its squad doesn’t have time to take their defensive positions, and it appears as if they
are simply following behind the leader. If the leader slows down, then they take cover around it.

To support this, make sure that any cover point near the leader is excluded from the list of
cover points that can be turned into slots. Otherwise, other characters may try to join the leader
in its cover.

3.8 Motor Control

So far the chapter has looked at moving characters by being able to directly affect their physical
state. This is an acceptable approximation in many cases. But, increasingly, motion is being
controlled by physics simulation. This is almost universal in driving games, where it is the cars
that are doing the steering. It has also been used for flying characters and is starting to filter
through to human character physics.

The outputs from steering behaviors can be seen as movement requests. An arrive behavior,
for example, might request an acceleration in one direction. We can add a motor control layer to

172 Chapter 3 Movement

our movement solution that takes this request and works out how to best execute it; this is the
process of actuation. In simple cases this is sufficient, but there are occasions where the capabilities
of the actuator need to have an effect on the output of steering behaviors.

Think about a car in a driving game. It has physical constraints on its movement: it cannot
turn while stationary; the faster it moves, the slower it can turn (without going into a skid); it can
brake much more quickly than it can accelerate; and it only moves in the direction it is facing
(we’ll ignore power slides for now). On the other hand, a tank has different characteristics; it can
turn while stationary, but it also needs to slow for sharp corners. And human characters will have
different characteristics again. They will have sharp acceleration in all directions and different top
speeds for moving forward, sideways, or backward.

When we simulate vehicles in a game, we need to take into account their physical capabilities.
A steering behavior may request a combination of accelerations that is impossible for the vehicle
to carry out. We need some way to end up with a maneuver that the character can perform.

A very common situation that arises in first- and third-person games is the need to match
animations. Typically, characters have a palette of animations. A walk animation, for example,
might be scaled so that it can support a character moving between 0.8 and 1.2 meters per second.
A jog animation might support a range of 2.0 to 4.0 meters per second. The character needs to
move in one of these two ranges of speed; no other speed will do. The actuator, therefore, needs
to make sure that the steering request can be honored using the ranges of movement that can be
animated.

There are two angles of attack for actuation: output filtering and capability-sensitive steering.

3.8.1 Output Filtering

The simplest approach to actuation is to filter the output of steering based on the capabilities of
the character. In Figure 3.67, we see a stationary car that wants to begin chasing another. The
indicated linear and angular accelerations show the result of a pursue steering behavior. Clearly,
the car cannot perform these accelerations: it cannot accelerate sideways, and it cannot begin to
turn without moving forward.

A filtering algorithm simply removes all the components of the steering output that cannot be
achieved. The result is for no angular acceleration and a smaller linear acceleration in its forward
direction.

If the filtering algorithm is run every frame (even if the steering behavior isn’t), then the car
will take the indicated path. At each frame the car accelerates forward, allowing it to accelerate
angularly. The rotation and linear motion serve to move the car into the correct orientation so
that it can go directly after its quarry.

This approach is very fast, easy to implement, and surprisingly effective. It even naturally
provides some interesting behaviors. If we rotate the car in the example below so that the target
is almost behind it, then the path of the car will be a J-turn, as shown in Figure 3.68.

There are problems with this approach, however. When we remove the unavailable compo-
nents of motion, we will be left with a much smaller acceleration than originally requested. In the
first example above, the initial acceleration is small in comparison with the requested acceleration.

3.8 Motor Control 173

Requested acceleration Filtered acceleration

Pursuing car

Target car

Figure 3.67 Requested and filtered accelerations

Car moving
forward

Car reversing

Pursuing car

Target car

Figure 3.68 A J-turn emerges

In this case it doesn’t look too bad. We can justify it by saying that the car is simply moving off
slowly to perform its initial turn.

We could also scale the final request so that it is the same magnitude as the initial request.
This makes sure that a character doesn’t move more slowly because its request is being filtered.

In Figure 3.69 the problem of filtering becomes pathological. There is now no component of
the request that can be performed by the car. Filtering alone will leave the car immobile until the
target moves or until numerical errors in the calculation resolve the deadlock.

To resolve this last case, we can detect if the final result is zero and engage a different actuation
method. This might be a complete solution such as the capability-sensitive technique below, or it
could be a simple heuristic such as drive forward and turn hard.

In our experience a majority of cases can simply be solved with filtering-based actuation.
Where it tends not to work is where there is a small margin of error in the steering requests. For
driving at high speed, maneuvering through tight spaces, matching the motion in an animation,

174 Chapter 3 Movement

Pursuing car

Requested acceleration
(all filtered)

Target car

Figure 3.69 Everything is filtered: nothing to do

or jumping, the steering request needs to be honored as closely as possible. Filtering can cause
problems, but, to be fair, so can the other approaches in this section (although to a lesser
extent).

3.8.2 Capability-Sensitive Steering

A different approach to actuation is to move the actuation into the steering behaviors themselves.
Rather than generating movement requests based solely on where the character wants to go, the
AI also takes into account the physical capabilities of the character.

If the character is pursuing an enemy, it will consider each of the maneuvers that it can achieve
and choose the one that best achieves the goal of catching the target. If the set of maneuvers that
can be performed is relatively small (we can move forward or turn left or right, for example), then
we can simply look at each in turn and determine the situation after the maneuver is complete.
The winning action is the one that leads to the best situation (the situation with the character
nearest its target, for example).

In most cases, however, there is an almost unlimited range of possible actions that a character
can take. It may be able to move with a range of different speeds, for example, or to turn through
a range of different angles. A set of heuristics is needed to work out what action to take depending
on the current state of the character and its target. Section 3.8.3 gives examples of heuristic sets
for a range of common movement AIs.

The key advantage of this approach is that we can use information discovered in the steering
behavior to determine what movement to take. Figure 3.70 shows a skidding car that needs to
avoid an obstacle. If we were using a regular obstacle avoiding steering behavior, then path A
would be chosen. Using output filtering, this would be converted into putting the car into reverse
and steering to the left.

We could create a new obstacle avoidance algorithm that considers both possible routes around
the obstacle, in the light of a set of heuristics (such as those in Section 3.8.3).

3.8 Motor Control 175

Velocity
(skidding) Route A

Route B

Target

Obstacle

Figure 3.70 Heuristics make the right choice

Because a car will prefer to move forward to reach its target, it would correctly use route B,
which involves accelerating to avoid the impact. This is the choice a rational human being would
make.

There isn’t a particular algorithm for capability-sensitive steering. It involves implementing
heuristics that model the decisions a human being would make in the same situation: when it is
sensible to use each of the vehicle’s possible actions to get the desired effect.

Coping with Combined Steering Behaviors

Although it seems an obvious solution to bring the actuation into the steering behaviors, it causes
problems when combining behaviors together. In a real game situation, where there will be several
steering concerns active at one time, we need to do actuation in a more global way.

One of the powerful features of steering algorithms, as we’ve seen earlier in the chapter, is the
ability to combine concerns to produce complex behaviors. If each behavior is trying to take into
account the physical capabilities of the character, they are unlikely to give a sensible result when
combined.

If you are planning to blend steering behaviors, or combine them using a blackboard system,
state machine, or steering pipeline, it is advisable to delay actuation to the last step, rather than
actuating as you go.

This final actuation step will normally involve a set of heuristics. At this stage we don’t have
access to the inner workings of any particular steering behavior; we can’t look at alternative
obstacle avoidance solutions, for example. The heuristics in the actuator, therefore, need to be
able to generate a roughly sensible movement guess for any kind of input; they will be limited to
acting on one input request with no additional information.

3.8.3 Common Actuation Properties

This section looks at common actuation restrictions for a range of movement AI in games, along
with a set of possible heuristics for performing context-sensitive actuation.

176 Chapter 3 Movement

Human Characters

Human characters can move in any direction relative to their facing, although they are consi-
derably faster in their forward direction than any other. As a result, they will rarely try to achieve
their target by moving sideways or backward, unless the target is very close.

They can turn very fast at low speed, but their turning abilities decrease at higher speeds. This
is usually represented by a “turn on the spot” animation that is only available to stationary or very
slow-moving characters. At a walk or a run, the character may either slow and turn on the spot
or turn in its motion (represented by the regular walk or run animation, but along a curve rather
than a straight line).

Actuation for human characters depends, to a large extent, on the animations that are available.
At the end of Chapter 4, we will look at a technique that can always find the best combination of
animations to reach its goal. Most developers simply use a set of heuristics, however.

� If the character is stationary or moving very slowly, and if it is a very small distance from its
target, it will step there directly, even if this involves moving backward or sidestepping.

� If the target is farther away, the character will first turn on the spot to face its target and then
move forward to reach it.

� If the character is moving with some speed, and if the target is within a speed-dependent arc
in front of it, then it will continue to move forward but add a rotational component (usually
while still using the straight line animation, which puts a natural limit on how much rotation
can be added to its movement without the animation looking odd).

� If the target is outside its arc, then it will stop moving and change direction on the spot before
setting off once more.

The radius for sidestepping, how fast is “moving very slowly,” and the size of the arc are all
parameters that need to be determined and, to a large extent, that depend on the scale of the
animations that the character will use.

Cars and Motorbikes

Typical motor vehicles are highly constrained. They cannot turn while stationary, and they cannot
control or initiate sideways movement (skidding). At speed, they typically have limits to their
turning capability, which is determined by the grip of their tires on the ground.

In a straight line, a motor vehicle will be able to brake more quickly than accelerate and will
be able to move forward at a higher speed (though not necessarily with greater acceleration) than
backward. Motorbikes almost always have the constraint of not being able to travel backward
at all.

There are two decision arcs used for motor vehicles, as shown in Figure 3.71. The forward arc
contains targets for which the car will simply turn without braking. The rear arc contains targets
for which the car will attempt to reverse. This rear arc is zero for motorbikes and will usually have
a maximum range to avoid cars reversing for miles to reach a target behind them.

At high speeds, the arcs shrink, although the rate at which they do so depends on the grip
characteristics of the tires and must be found by tweaking. If the car is at low speed (but not

3.8 Motor Control 177

Braking
zone

Braking
zone

Rear
arc

Rear
arc

Front
arc

Front
arc

Maximum
reversing
distance

Stationary/very slow Very fast

Figure 3.71 Decision arcs for motor vehicles

at rest), then the two arcs should touch, as shown in the figure. The two arcs must still be touching
when the car is moving slowly. Otherwise, the car will attempt to brake to stationary in order
to turn toward a target in the gap. Because it cannot turn while stationary, this will mean it will
be unable to reach its goal. If the arcs are still touching at too high a speed, then the car may be
traveling too fast when it attempts to make a sharp turn and might skid.

� If the car is stationary, then it should accelerate.
� If the car is moving and the target lies between the two arcs, then the car should brake while

turning at the maximum rate that will not cause a skid. Eventually, the target will cross back
into the forward arc region, and the car can turn and accelerate toward it.

� If the target is inside the forward arc, then continue moving forward and steer toward it. Cars
that should move as fast as possible should accelerate in this case. Other cars should accelerate
to their optimum speed, whatever that might be (the speed limit for a car on a public road,
for example).

� If the target is inside the rearward arc, then accelerate backward and steer toward it.

This heuristic can be a pain to parameterize, especially when using a physics engine to drive
the dynamics of the car. Finding the forward arc angle so that it is near the grip limit of the tires
but doesn’t exceed it (to avoid skidding all the time) can be a pain. In most cases it is best to err
on the side of caution, giving a healthy margin of error.

A common tactic is to artificially boost the grip of AI-controlled cars. The forward arc can
then be set so it would be right on the limit, if the grip was the same as for the player’s car. In this
case it is the AI that is limiting the capabilities of the car, not the physics, but its vehicle does not
behave in an unbelievable or unfair way. The only downside with this approach is that the car will
never skid out, which may be a desired feature of the game.

These heuristics are designed to make sure the car does not skid. In some games lots of wheel
spinning and handbrake turns are the norm, and the parameters need to be tweaked to allow this.

178 Chapter 3 Movement

Tracked Vehicles (Tanks)

Tanks behave in a very similar manner to cars and bikes. They are capable of moving forward and
backward (typically with much smaller acceleration than a car or bike) and turning at any speed.
At high speeds, their turning capabilities are limited by grip once more. At low speed or when
stationary, they can turn very rapidly.

Tanks use decision arcs in exactly the same way as cars. There are two differences in the
heuristic.

� The two arcs may be allowed to touch only at zero speed. Because the tank can turn without
moving forward, it can brake right down to nothing to perform a sharp turn. In practice this
is rarely needed, however. The tank can turn sharply while still moving forward. It doesn’t
need to stop.

� The tank does not need to accelerate when stationary.

3.9 Movement in the Third Dimension

So far we have looked at 2D steering behavior. We allowed the steering behavior to move vertically
in the third dimension, but forced its orientation to remain about the up vector. This is 2 1

2 D,
suitable for most development needs.

Full 3D movement is required if your characters aren’t limited by gravity. Characters scurrying
along the roof or wall, airborne vehicles that can bank and twist, and turrets that rotate in any
direction are all candidates for steering in full three dimensions.

Because 2 1
2 D algorithms are so easy to implement, it is worth thinking hard before you take

the plunge into full three dimensions. There is often a way to shoehorn the situation into 2 1
2 D

and take advantage of the faster execution that it provides. At the end of this chapter is an
algorithm, for example, that can model the banking and twisting of aerial vehicles using 2 1

2 D
math. There comes a point, however, where the shoehorning takes longer to perform than the
3D math.

This section looks at introducing the third dimension into orientation and rotation. It then
considers the changes that need to be made to the primitive steering algorithms we saw earlier.
Finally, we’ll look at a common problem in 3D steering: controlling the rotation for air and space
vehicles.

3.9.1 Rotation in Three Dimensions

To move to full three dimensions we need to expand our orientation and rotation to be about
any angle. Both orientation and rotation in three dimensions have three degrees of freedom. We
can represent rotations using a 3D vector. But for reasons beyond the scope of this book, it is
impossible to practically represent an orientation with three values.

3.9 Movement in the Third Dimension 179

The most useful representation for 3D orientation is the quaternion: a value with 4 real
components, the size of which (i.e., the Euclidean size of the 4 components) is always 1. The
requirement that the size is always 1 reduces the degrees of freedom from 4 (for 4 values) to 3.

Mathematically, quaternions are hypercomplex numbers. Their mathematics is not the same
as that of a 4-element vector, so dedicated routines are needed for multiplying quaternions and
multiplying position vectors by them. A good 3D math library will have the relevant code, and
the graphics engine you are working with will almost certainly use quaternions.

It is possible to also represent orientation using matrices, and this was the dominant technique
up until the mid-1990s. These 9-element structures have additional constraints to reduce the
degrees of freedom to 3. Because they require a good deal of checking to make sure the constraints
are not broken, they are no longer widely used.

The rotation vector has three components. It is related to the axis of rotation and the speed
of rotation according to:

�r =
[axω

ayω

azω

]
, [3.11]

where [ax ay az]T is the axis of rotation, and ω is the angular velocity, in radians per second
(units are critical; the math is more complex if degrees per second are used).

The orientation quaternion has four components: [r i j k] (sometimes called
[w x y z]—although we think that confuses them with a position vector, which in homo-
geneous form has an additional w coordinate).

It is also related to an axis and angle. This time the axis and angle correspond to the minimal
rotation required to transform from a reference orientation to the desired orientation. Every
possible orientation can be represented as some rotation from a reference orientation about a
single fixed axis.

The axis and angle are converted into a quaternion using the following equation:

p̂ =

⎡
⎢⎢⎢⎣

cos θ
2

ax sin θ
2

ay sin θ
2

az sin θ
2

⎤
⎥⎥⎥⎦ , [3.12]

where [ax ay az]T is the axis, as before, θ is the angle, and p̂ indicates that p is a quaternion.
Note that different implementations use different orders for the elements in a quaternion.

Often, the r component appears at the end.
We have four numbers in the quaternion, but we only need 3 degrees of freedom. The quater-

nion needs to be further constrained, so that it has a size of 1 (i.e., it is a unit quaternion). This
occurs when:

r2 + i2 + j2 + k2 = 1.

Verifying that this always follows from the axis and angle representation is left as an exercise.
Even though the maths of quaternions used for geometrical applications normally ensure that

180 Chapter 3 Movement

quaternions remain of unit length, numerical errors can make them wander. Most quaternion
math libraries have extra bits of code that periodically normalize the quaternion back to unit
length. We will rely on the fact that quaternions are unit length.

The mathematics of quaternions is a wide field, and we will only cover those topics that we
need in the following sections. Other books in this series, particularly Eberly [2004], contain
in-depth mathematics for quaternion manipulation.

3.9.2 Converting Steering Behaviors to Three
Dimensions

In moving to three dimensions, only the angular mathematics has changed. To convert our
steering behaviors into three dimensions, we divide them into those that do not have an angular
component, such as pursue or arrive, and those that do, such as align. The former translates
directly to three dimensions, and the latter requires different math for calculating the angular
acceleration required.

Linear Steering Behaviors in Three Dimensions

In the first two sections of the chapter we looked at 14 steering behaviors. Of these, 10 did not
explicitly have an angular component: seek, flee, arrive, pursue, evade, velocity matching, path
following, separation, collision avoidance, and obstacle avoidance.

Each of these behaviors works linearly. They try to match a given linear position or velocity,
or they try to avoid matching a position. None of them requires any modification to move from
2 1

2 D to 3 dimensions. The equations work unaltered with 3D positions.

Angular Steering Behaviors in Three Dimensions

The remaining four steering behaviors are align, face, look where you’re going, and wander. Each
of these has an explicit angular component. Align, look where you’re going, and face are all purely
angular. Align matches another orientation, face orients toward a given position, and look where
you’re going orients toward the current velocity vector.

Between the three purely angular behaviors we have orientation based on three of the four
elements of a kinematic (it is difficult to see what orientation based on rotation might mean). We
can update each of these three behaviors in the same way.

The wander behavior is different. Its orientation changes semi-randomly, and the orientation
then motivates the linear component of the steering behavior. We will deal with wander separately.

3.9.3 Align

Align takes as input a target orientation and tries to apply a rotation to change the character’s
current orientation to match the target.

3.9 Movement in the Third Dimension 181

In order to do this, we’ll need to find the required rotation between the target and current
quaternions. The quaternion that would transform the start orientation to the target orientation is

q̂ = ŝ−1 t̂ ,

where ŝ is the current orientation, and t̂ is the target quaternion. Because we are dealing with
unit quaternions (the square of their elements sum to 1), the quaternion inverse is equal to the
conjugate q̂∗ and is given by:

q̂−1 =
⎡
⎢⎣

r
i
j
k

⎤
⎥⎦

−1

=
⎡
⎢⎣

r
−i
−j
−k

⎤
⎥⎦ .

In other words, the axis components are flipped. This is because the inverse of the quaternion
is equivalent to rotating about the same axis, but by the opposite angle (i.e., θ−1 = −θ). For each of
the x , y , and z components, related to sin θ, we have sin −θ = − sin θ, whereas the w component
is related to cos θ, and cos −θ = − cos θ, leaving the w component unchanged.

We now need to convert this quaternion into a rotation vector. First, we split the quaternion
back into an axis and angle:

θ = 2 arccos qw,

�a = 1

sin θ
2

[qi

qj

qk

]
.

In the same way as for the original align behavior, we would like to choose a rotation so that
the character arrives at the target orientation with zero rotation speed. We know the axis through
which this rotation needs to occur, and we have a total angle that needs to be achieved. We only
need to find the rotation speed to choose.

Finding the correct rotation speed is equivalent to starting at zero orientation in two dimen-
sions and having a target orientation of θ. We can apply the same algorithm used in two dimensions
to generate a rotation speed, ω, and then combine this with the axis, �a, above to produce an output
rotation, using Equation 3.11.

3.9.4 Align to Vector

Both the face steering behavior and look where you’re going started with a vector along which the
character should align. In the former case it is a vector from the current character position to a
target, and in the latter case it is the velocity vector. We are assuming that the character is trying
to position its z-axis (the axis it is looking down) in the given direction.

In two dimensions it is simple to calculate a target orientation from a vector using the atan2
function available in most languages. In three dimensions there is no such shortcut to generate a
quaternion from a target facing vector.

182 Chapter 3 Movement

In fact, there are an infinite number of orientations that look down a given vector, as illustrated
in Figure 3.72. The dotted vector is the projection of the solid vector onto the x–z plane: a shadow
to give you a visual clue. The gray vectors represent the three axes.

This means that there is no single way to convert a vector to an orientation. We have to make
some assumptions to simplify things.

The most common assumption is to bias the target toward a “base” orientation. We’d like to
choose an orientation that is as near to the base orientation as possible. In other words, we start
with the base orientation and rotate it through the minimum angle possible (about an appropriate
axis) so that its local z-axis points along our target vector.

This minimum rotation can be found by converting the z-direction of the base orientation
into a vector and then taking the vector product of this and the target vector. The vector product
gives:

�zb × �t = �r,
where �zb is the vector of the local z-direction in the base orientation, �t is the target vector, and �r
being a cross product is defined to be

�r = �zb × �t = (|�zb||�t | sin θ
)�ar = sin θ�ar ,

where θ is the angle, and �ar is the axis of minimum rotation. Because the axis will be a unit vector
(i.e., |�ar | = 1), we can recover angle θ = arcsin |�r | and divide �r by this to get the axis. This will
not work if sin θ = 0 (i.e., θ = nπ for all n ∈ Z). This corresponds to our intuition about the
physical properties of rotation. If the rotation angle is 0, then it doesn’t make sense to talk about
any rotation axis. If the rotation is through π radians (90◦), then any axis will do; there is no
particular axis that requires a smaller rotation than any other.

As long as sin θ �= 0, we can generate a target orientation by first turning the axis and angle
into a quaternion, r̂ (using Equation 3.12), and applying the formula:

t̂ = b̂−1r̂,

x

z

y

Figure 3.72 Infinite number of orientations per vector

3.9 Movement in the Third Dimension 183

where b̂ is the quaternion representation of the base orientation, and t̂ is the target orientation to
align to.

If sin θ = 0, then we have two possible situations: either the target z-axis is the same as the
base z-axis or it is π radians away from it. In other words, �zb = ±�zt . In each case we use the base
orientation’s quaternion, with the appropriate sign change:

t̂ =
{

+b̂ if �zb = �zt ,
−b̂ otherwise.

The most common base orientation is the zero orientation: [1 0 0 0]. This has the effect
that the character will stay upright when its target is in the x–z plane. Tweaking the base vector can
provide visually pleasing effects. We could tilt the base orientation when the character’s rotation
is high to force it to lean into its turns, for example.

We will implement this process in the context of the face steering behavior below.

3.9.5 Face

Using the align to vector process, both face and look where you’re going can be easily implemented
using the same algorithm as we used at the start of the chapter, by replacing the atan2 calculation
with the procedure above to calculate the new target orientation.

By way of an illustration, we’ll give an implementation for the face steering behavior in three
dimensions. Since this is a modification of the algorithm given earlier in the chapter, we won’t
discuss the algorithm in any depth (see the previous version for more information).

1 class Face3D (Align3D):
2

3 # The base orientation used to calculate facing
4 baseOrientation
5

6 # Overridden target
7 target
8

9 # ... Other data is derived from the superclass ...
10

11 # Calculate an orientation for a given vector
12 def calculateOrientation(vector):
13

14 # Get the base vector by transforming the z-axis by base
15 # orientation (this only needs to be done once for each base
16 # orientation, so could be cached between calls).
17 baseZVector = new Vector(0,0,1) * baseOrientation
18

19 # If the base vector is the same as the target, return

184 Chapter 3 Movement

20 # the base quaternion
21 if baseZVector == vector:
22 return baseOrientation
23

24 # If it is the exact opposite, return the inverse of the base
25 # quaternion
26 if baseZVector == -vector:
27 return -baseOrientation
28

29 # Otherwise find the minimum rotation from the base to the target
30 change = baseZVector x vector
31

32 # Find the angle and axis
33 angle = arcsin(change.length())
34 axis = change
35 axis.normalize()
36

37 # Pack these into a quaternion and return it
38 return new Quaternion(cos(angle/2),
39 sin(angle/2)*axis.x,
40 sin(angle/2)*axis.y,
41 sin(angle/2)*axis.z)
42

43

44 # Implemented as it was in Pursue
45 def getSteering():
46

47 # 1. Calculate the target to delegate to align
48

49 # Work out the direction to target
50 direction = target.position -
51 character.position
52

53 # Check for a zero direction, and make no change if so
54 if direction.length() == 0: return target
55

56 # Put the target together
57 Align3D.target = explicitTarget
58 Align3D.target.orientation = calculateOrientation(direction)
59

60 # 2. Delegate to align
61 return Align3D.getSteering()

3.9 Movement in the Third Dimension 185

This implementation assumes that we can take the vector product of two vectors using the
syntax vector1 x vector2. The x operator doesn’t exist in most languages. In C++, for example,
you could use either a function call or perhaps the overload modular division operator % for this
purpose.

We also need to look at the mechanics of transforming a vector by a quaternion. In the
code above this is performed with the * operator, so vector * quaternion should return a vec-
tor that is equivalent to rotating the given vector by the quaternion. Mathematically, this is
given by:

v̂′ = q̂v̂q̂∗,

where v̂ is a quaternion derived from the vector, according to:

v̂ =
⎡
⎢⎣

0
vx

vy

vz

⎤
⎥⎦ ,

and q̂∗ is the conjugate of the quaternion, which is the same as the inverse for unit quaternions.
This can be implemented as:

1 # Transforms the vector by the given quaternion
2 def transform(vector, orientation):
3

4 # Convert the vector into a quaternion
5 vectorAsQuat = Quaternion(0, vector.x, vector.y, vector.z)
6

7 # Transform it
8 vectorAsQuat = orientation * vectorAsQuat * (-orientation)
9

10 # Unpick it into the resulting vector
11 return new Vector(vectorAsQuat.i, vectorAsQuat.j, vectorAsQuat.k)

Quaternion multiplication, in turn, is defined by:

p̂q̂ =

⎡
⎢⎢⎣

pr qr − piqi − pj qj − pkqk

pr qi + piqr + pj qk − pkqj

pr qj + pj qr − piqk + pkqi

pr qk + pkqr + piqj − pj qi

⎤
⎥⎥⎦ .

It is important to note that the order does matter. Unlike normal arithmetic, quaternion
multiplication isn’t commutative. In general, p̂q̂ �= q̂p̂.

186 Chapter 3 Movement

3.9.6 Look Where You’re Going

Look where you’re going would have a very similar implementation to face. We simply replace the
calculation for the direction vector in the getSteering method with a calculation based on the
character’s current velocity:

1 # Work out the direction to target
2 direction = character.velocity
3 direction.normalize()

3.9.7 Wander

In the 2D version of wander, a target point was constrained to move around a circle offset in front
of the character at some distance. The target moved around this circle randomly. The position
of the target was held at an angle, representing how far around the circle the target lay, and the
random change in that was generated by adding a random amount to the angle.

In three dimensions, the equivalent behavior uses a 3D sphere on which the target is con-
strained, again offset at a distance in front of the character. We cannot use a single angle to
represent the location of the target on the sphere, however. We could use a quaternion, but it
becomes difficult to change it by a small random amount without a good deal of math.

Instead, we represent the position of the target on the sphere as a 3D vector, constraining
the vector to be of unit length. To update its position, we simply add a random amount to each
component of the vector and normalize it again. To avoid the random change making the vector
0 (and hence making it impossible to normalize), we make sure that the maximum change in any
component is smaller than 1√

3
.

After updating the target position on the sphere, we transform it by the orientation of the
character, scale it by the wander radius, and then move it out in front of the character by the
wander offset, exactly as in the 2D case. This keeps the target in front of the character and makes
sure that the turning angles are kept low.

Rather than using a single value for the wander offset, we now use a vector. This would allow
us to locate the wander circle anywhere relative to the character. This is not a particularly useful
feature. We will want it to be in front of the character (i.e., having only a positive z coordinate, with
0 for x and y values). Having it in vector form does simplify the math, however. The same thing
is true of the maximum acceleration property: replacing the scalar with a 3D vector simplifies the
math and provides more flexibility.

With a target location in world space, we can use the 3D face behavior to rotate toward it and
accelerate forward to the greatest extent possible.

In many 3D games we want to keep the impression that there is an up and down direction. This
illusion is damaged if the wanderer can change direction up and down as fast as it can in the x–z
plane. To support this, we can use two radii for scaling the target position: one for scaling the x
and z components and the other for scaling the y component. If the y scale is smaller, then the
wanderer will turn more quickly in the x–z plane. Combined with using the face implementation

3.9 Movement in the Third Dimension 187

described above, with a base orientation where up is in the direction of the y-axis, this gives a
natural look for flying characters, such as bees, birds, or aircraft.

The new wander behavior can be implemented as follows:

1 class Wander3D (Face3D):
2

3 # Holds the radius and offset of the wander circle. The
4 # offset is now a full 3D vector.
5 wanderOffset
6 wanderRadiusXZ
7 wanderRadiusY
8

9 # Holds the maximum rate at which the wander orientation
10 # can change. Should be strictly less than
11 # 1/sqrt(3) = 0.577 to avoid the chance of ending up with
12 # a zero length wanderVector.
13 wanderRate
14

15 # Holds the current offset of the wander target
16 wanderVector
17

18 # Holds the maximum acceleration of the character, this
19 # again should be a 3D vector, typically with only a
20 # non-zero z value.
21 maxAcceleration
22

23 # ... Other data is derived from the superclass ...
24

25 def getSteering():
26

27 # 1. Calculate the target to delegate to face
28

29 # Update the wander direction
30 wanderVector.x += randomBinomial() * wanderRate
31 wanderVector.y += randomBinomial() * wanderRate
32 wanderVector.z += randomBinomial() * wanderRate
33 wanderVector.normalize()
34

35 # Calculate the transformed target direction and scale it
36 target = wanderVector * character.orientation
37 target.x *= wanderRadiusXZ
38 target.y *= wanderRadiusY
39 target.z *= wanderRadiusXZ

188 Chapter 3 Movement

40

41 # Offset by the center of the wander circle
42 target += character.position +
43 wanderOffset * character.orientation
44

45 # 2. Delegate it to face
46 steering = Face3D.getSteering(target)
47

48 # 3. Now set the linear acceleration to be at full
49 # acceleration in the direction of the orientation
50 steering.linear = maxAcceleration * character.orientation
51

52 # Return it
53 return steering

Again, this is heavily based on the 2D version and shares its performance characteristics. See
the original definition for more information.

3.9.8 Faking Rotation Axes

A common issue with vehicles moving in three dimensions is their axis of rotation. Whether
spacecraft or aircraft, they have different turning speeds for each of their three axes (see
Figure 3.73): roll, pitch, and yaw. Based on the behavior of aircraft, we assume that roll is faster
than pitch, which is faster than yaw.

If a craft is moving in a straight line and needs to yaw, it will first roll so that its up direction
points toward the direction of the turn, then it can pitch up to turn in the correct direction. This
is how aircraft are piloted, and it is a physical necessity imposed by the design of the wing and
control surfaces. In space there is no such restriction, but we want to give the player some kind
of sense that craft obey physical laws. Having them yaw rapidly looks unbelievable, so we tend to
impose the same rule: roll and pitch produce a yaw.

Most aircraft don’t roll far enough so that all the turn can be achieved by pitching. In a
conventional aircraft flying level, using only pitch to perform a right turn would involve rolling by
π radians. This would cause the nose of the aircraft to dive sharply toward the ground, requiring
significant compensation to avoid losing the turn (in a light aircraft it would be a hopeless
attempt). Rather than tip the aircraft’s local up vector so that it is pointing directly into the turn,
we angle it slightly. A combination of pitch and yaw then provides the turn. The amount to tip
is determined by speed: the faster the aircraft, the greater the roll. A Boeing 747 turning to come
into land might only tip up by π

6 radians (15◦); an F-22 Raptor might tilt by π
2 radians (45◦),

or the same turn in an X-Wing might be 5π
6 (75◦).

Most craft moving in three dimensions have an “up–down” axis. This can be seen in 3D space
shooters as much as in aircraft simulators. Homeworld, for example, had an explicit up and down
direction, to which craft would orient themselves when not moving. The up direction is significant

3.9 Movement in the Third Dimension 189

RollYaw

Pitch

Figure 3.73 Local rotation axes of an aircraft

because craft moving in a straight line, other than in the up direction, tend to align themselves
with up.

The up direction of the craft points as near to up as the direction of travel will allow. This
again is a consequence of aircraft physics: the wings of an aircraft are designed to produce lift in
the up direction, so if you don’t keep your local up direction pointing up, you are eventually going
to fall out of the sky.

It is true that in a dog fight, for example, craft will roll while traveling in a straight line to get
a better view, but this is a minor effect. In most cases the reason for rolling is to perform a turn.

It is possible to bring all this processing into an actuator to calculate the best way to trade off
pitch, roll, and yaw based on the physical characteristics of the aircraft. If you are writing an AI
to control a physically modeled aircraft, you may have to do this. For the vast majority of cases,
however, this is overkill. We are interested in having enemies that just look right.

It is also possible to add a steering behavior that forces a bit of roll whenever there is a rotation.
This works well but tends to lag. Pilots will roll before they pitch, rather than afterward. If the
steering behavior is monitoring the rotational speed of the craft and rolling accordingly, there is
a delay. If the steering behavior is being run every frame, this isn’t too much of a problem. If the
behavior is running only a couple of times a second, it can look very strange.

Both of the above approaches rely on techniques already covered in this chapter, so we won’t
revisit them here. There is another approach, used in some aircraft games and many space shooters,
that fakes rotations based on the linear motion of the craft. It has the advantages that it reacts
instantly and it doesn’t put any burden on the steering system because it is a post-processing step.
It can be applied to 2 1

2 D steering, giving the illusion of full 3D rotations.

190 Chapter 3 Movement

The Algorithm

Movement is handled using steering behaviors as normal. We keep two orientation values. One
is part of the kinematic data and is used by the steering system, and one is calculated for display.
This algorithm calculates the latter value based on the kinematic data.

First, we find the speed of the vehicle: the magnitude of the velocity vector. If the speed is zero,
then the kinematic orientation is used without modification. If the speed is below a fixed threshold,
then the result of the rest of the algorithm will be blended with the kinematic orientation. Above
the threshold the algorithm has complete control. As it drops below the threshold, there is a
blend of the algorithmic orientation and the kinematic orientation, until at a speed of zero, the
kinematic orientation is used.

At zero speed the motion of the vehicle can’t produce any sensible orientation; it isn’t moving.
So we’ll have to use the orientation generated by the steering system. The threshold and blending
are there to make sure that the vehicle’s orientation doesn’t jump as it slows to a halt. If your
application never has stationary vehicles (aircraft without the ability to hover, for example), then
this blending can be removed.

The algorithm generates an output orientation in three stages. This output can then be blended
with the kinematic orientation, as described above.

First, the vehicle’s orientation about the up vector (its 2D orientation in a 2 1
2 D system) is

found from the kinematic orientation. We’ll call this value θ.
Second, the tilt of the vehicle is found by looking at the component of the vehicle’s velocity in

the up direction. The output orientation has an angle above the horizon given by:

φ = sin−1 �v.�u
|�v| ,

where v is its velocity (taken from the kinematic data) and u is a unit vector in the up direction.
Third, the roll of the vehicle is found by looking at the vehicle’s rotation speed about the up

direction (i.e., the 2D rotation in a 2 1
2 D system). The roll is given by:

ψ = tan−1 r

k
,

where r is the rotation, and k is a constant that controls how much lean there should be. When
the rotation is equal to k , then the vehicle will have a roll of π

2 radians. Using this equation, the
vehicle will never achieve a roll of π radians, but very fast rotation will give very steep rolls.

The output orientation is calculated by combining the three rotations in the order θ, φ, ψ.

Pseudo-Code

The algorithm has the following structure when implemented:

1 def getFakeOrientation(kinematic, speedThreshold,
2 rollScale):
3

3.9 Movement in the Third Dimension 191

4 # Find the speed
5 speed = kinematic.velocity.length()
6

7 # Find the blend factors
8 if speed < speedThreshold:
9 # Check for all kinematic

10 if speed == 0:
11 return kinematic.orientation
12 else:
13 kinematicBlend = speed / speedThreshold
14 fakeBlend = 1.0 - kinematicBlend
15 else:
16 # We’re completely faked
17 fakeBlend = 1.0
18 kinematicBlend = 0.0
19

20 # Find the y-axis orientation
21 yaw = kinematic.orientation
22

23 # Find the tilt
24 pitch = asin(kinematic.velocity.y / speed)
25

26 # Find the roll
27 roll = atan2(kinematic.rotation, rollScale)
28

29 # Find the output orientation by combining the three
30 # component quaternions
31 result = orientationInDirection(roll, Vector(0,0,1))
32 result *= orientationInDirection(pitch, Vector(1,0,0))
33 result *= orientationInDirection(yaw, Vector(0,1,0))
34 return result

Data Structures and Interfaces

The code relies on appropriate vector and quaternion mathematics routines being available, and
we have assumed that we can create a vector using a three argument constructor.

Most operations are fairly standard and will be present in any vector math library. The orien-
tationInDirection function of a quaternion is less common. It returns an orientation quaternion
representing a rotation by a given angle about a fixed axis. It can be implemented in the follow-
ing way:

1 def orientationInDirection(angle, axis):
2

3 result = new Quaternion()

192 Chapter 3 Movement

4

5 result.r = cos(angle*0.5)
6

7 sinAngle = sin(angle*0.5)
8 result.i = axis.x * sinAngle
9 result.j = axis.y * sinAngle

10 result.k = axis.z * sinAngle
11 return result

which is simply Equation 3.12 in code form.

Implementation Notes

The same algorithm also comes in handy in other situations. By reversing the direction of roll
(ψ), the vehicle will roll outward with a turn. This can be applied to the chassis of cars driving
(excluding the φ component, since there will be no controllable vertical velocity) to fake the effect
of soggy suspension. In this case a high k value is needed.

Performance

The algorithm is O(1) in both memory and time. It involves an arcsine and an arctangent call and
three calls to the orientationInDirection function. Arcsine and arctan calls are typically slow,
even compared to other trigonometry functions. Various faster implementations are available.
In particular, an implementation using a low-resolution lookup table (256 entries or so) would
be perfectly adequate for our needs. It would provide 256 different levels of pitch or roll, which
would normally be enough for the player not to notice that the tilting isn’t completely smooth.

Exercises

1. In the following figure, assume that the center of an AI character is p = (5,6) and that it is
moving with velocity v = (3,3):

p

v

q

Exercises 193

Assuming that the target is at location q = (8,2), what is the desired direction to seek the
target? (Hint: No trigonometry is required for this and other questions like it, just simple
vector arithmetic.)

2. Using the same scenario as in question 1, what is the desired direction to flee the target?

3. Using the same scenario as question 1 and assuming the maximum speed of the AI character
is 5, what are the final steering velocities for seek and flee?

4. Explain why the randomBinomial function described in Section 3.2.2 is more likely to return
values around zero.

5. Using the same scenario as in question 1, what are the final steering velocities for seek and flee
if we use the dynamic version of seek and assume a maximum acceleration of 4.

6. Using the dynamic movement model and the answer from question 5, what is the final position
and orientation of the character after the update call? Assume that the time is 1

60 sec and that
the maximum speed is still 5.

7. If the target in question 1 is moving at some velocity u = (3,4) and the maximum prediction
time is 1

2 sec, what is the predicted position of the target?

8. Using the predicted target position from question 7 what are the resulting steering vectors for
pursuit and evasion?

9. The three diagrams below represent Craig Reynolds’s concepts of separation, cohesion, and
alignment that are commonly used for flocking behavior:

Assume the following table gives the positions (in relative coordinates) and velocities of the
3 characters (including the first) in the first character’s neighborhood:

Character Position Velocity Distance Distance2

1 (0, 0) (2, 2) 0 0

2 (3, 4) (2, 4)

3 (5, 12) (8, 2)

a. Fill in the the remainder of the table.

b. Use the values you filled in for the table to calculate the unnormalized separation direction
using the inverse square law (assume k = 1 and that there is no maximum acceleration).

194 Chapter 3 Movement

c. Now calculate the center of mass of all the characters to determine the unnormalized
cohesion direction.

d. Finally, calculate the unnormalized alignment direction as the average velocity of the other
characters.

10. Use the answers to question 9 and weighting factors 1
5 ,

2
5 ,

2
5 for (respectively) separation, cohe-

sion, and alignment to show that the desired (normalized) flocking direction is approximately:
(0.72222,0.69166).

11. Suppose a character A is located at (4,2) with a velocity of (3,4) and another character B is
located at (20,12) with velocity (−5,−1). By calculating the time of closest approach (see 3.1),
determine if they will collide. If they will collide, determine a suitable evasive steering vector
for character A.

12. Suppose an AI-controlled spaceship is pursuing a target through an asteroid field and the
current velocity is (3,4). If the high-priority collision avoidance group suggests a steering
vector of (0.01,0.03), why might it be reasonable to consider a lower priority behavior instead?

13. Extend the Steering Pipeline program on the website to a simple game where one character
chases another. You will have to extend the decomposers, constraints, and actuators to balance
the desire to avoid collisions with achieving the overarching goals of chasing or fleeing.

14. Use Equation 3.3 to calculate the time before a ball in a soccer computer game lands on the
pitch again if it is kicked from the ground at location (11,4) with speed 10 in a direction
(3

5 ,
4
5).

15. Use your answer to question 14 and the simplified version of Equation 3.4 to calculate the
position of impact of the ball. Why might the ball not actually end up at this location even if
no other players interfere with it?

16. Derive the firing vector Equation 3.5.

17. With reference to Figure 3.49, suppose a character is heading toward the jump point and will
arrive in 0.1 time units and is currently traveling at velocity (0,5), what is the required velocity
matching steering vector if the minimum jump velocity is (0,7)?

18. Show that in the case when the jump point and landing pad are the same height, Equation 3.8
reduces to approximately t = 0.204vy .

19. Suppose there is a jump point at (10,3,12) and a landing pad at (12,3,20), what is the
required jump velocity if we assume a maximum jump velocity in the y-direction of 2.

20. Use the approach described at the beginning of Section 3.7.3 to write code that generates an
emergent V formation.

21. Suppose we have three characters in a V formation with coordinates and velocities given by
the following table:

Character Assigned Slot Position Actual Position Actual Velocity

1 (20, 18) (20, 16) (0, 1)

2 (8, 12) (6, 11) (3, 1)

3 (32, 12) (28, 9) (9, 7)

Exercises 195

First calculate the center of mass of the formation pc and the average velocity vc . Use these
values and Equation 3.9 (with koffset = 1) to calculate panchor.

Now use your previous calculations to update the slot positions using the new calculated
anchor point as in Equation 3.10.

What would be the effect on the anchor and slot positions if character 3 was killed?

22. In Figure 3.60 if the 2 empty slots in the formation on the right (with 2 elves and 7 fighters)
are filled with the unassigned fighters, what is the total slot cost? Use the same table that was
used to calculate the slot costs in Figure 3.61.

23. Calculate the ease of assignment value for each of the four character types (archer, elf, fighter,
mage) used in Figure 3.61 (assume k = 1600).

24. Write code to implement the baseball double play described in Figure 3.62.

25. Use the heuristics for the movement of human characters given in Section 3.8.3 to write code
for a simple human movement simulator.Program ming

26. Verify that the axis and angle representation always results in unit quaternions.

27. Suppose a character’s current orientation in a 3D world is pointing along the x-axis, what is
the required rotation (as a quaternion) to align the character with a rotation of 2π

3 around the
axis (8

17 , 15
17 ,0)?

28. Implement a 3D wander steering behavior, like the one described in Section 3.9.7.

29. Suppose a plane in a flight simulator game has velocity (5,4,1), orientation π
4 , rotation π

16 ,
and roll scale π

4 . What is the associated fake rotation?

This page intentionally left blank

4
Pathfinding

ame characters usually need to move around their level. Sometimes this movement is setG in stone by the developers, such as a patrol route that a guard can follow blindly or a small
fenced region in which a dog can randomly wander around. Fixed routes are simple to implement,
but can easily be fooled if an object is pushed in the way. Free wandering characters can appear
aimless and can easily get stuck.

More complex characters don’t know in advance where they’ll need to move. A unit in a real-
time strategy game may be ordered to any point on the map by the player at any time, a patroling
guard in a stealth game may need to move to its nearest alarm point to call for reinforcements,
and a platform game may require opponents to chase the player across a chasm using available
platforms.

For each of these characters the AI must be able to calculate a suitable route through the game
level to get from where it is now to its goal. We’d like the route to be sensible and as short or rapid
as possible (it doesn’t look smart if your character walks from the kitchen to the lounge via the
attic).

This is pathfinding, sometimes called path planning, and it is everywhere in game AI.
In our model of game AI (Figure 4.1), pathfinding sits on the border between decision making

and movement. Often, it is used simply to work out where to move to reach a goal; the goal is
decided by another bit of AI, and the pathfinder simply works out how to get there. To accomplish
this, it can be embedded in a movement control system so that it is only called when it is needed
to plan a route. This is discussed in Chapter 3 on movement algorithms.

But pathfinding can also be placed in the driving seat, making decisions about where to move
as well as how to get there. We’ll look at a variation of pathfinding, open goal pathfinding, that
can be used to work out both the path and the destination.

The vast majority of games use pathfinding solutions based on an algorithm called A*.
Although it’s efficient and easy to implement, A* can’t work directly with the game level data. It

Copyright © 2009 by Elsevier Inc. All rights reserved. 197

198 Chapter 4 Pathfinding

Character AI

Group AI

Execution management

Strategy

Decision making

Movement

Animation Physics
W

or
ld

 in
te

rf
ac

e

Pathfinding

Figure 4.1 The AI model

requires that the game level be represented in a particular data structure: a directed non-negative
weighted graph.

This chapter introduces the graph data structure and then looks at the older brother of the
A* algorithm, the Dijkstra algorithm. Although Dijkstra is more often used in tactical decision
making than in pathfinding, it is a simpler version of A*, so we’ll cover it here on the way to the
full A* algorithm.

Because the graph data structure isn’t the way that most games would naturally represent their
level data, we’ll look in some detail at the knowledge representation issues involved in turning the
level geometry into pathfinding data. Finally, we’ll look at a handful of the many tens of useful
variations of the basic A* algorithm.

4.1 The Pathfinding Graph

Neither A* nor Dijkstra (nor their many variations) can work directly on the geometry that makes
up a game level. They rely on a simplified version of the level to be represented in the form of a
graph. If the simplification is done well (and we’ll look at how later in the chapter), then the plan
returned by the pathfinder will be useful when translated back into game terms. On the other
hand, in the simplification we throw away information, and that might be significant information.
Poor simplification can mean that the final path isn’t so good.

Pathfinding algorithms use a type of graph called a directed non-negative weighted graph.
We’ll work up to a description of the full pathfinding graph via simpler graph structures.

4.1.1 Graphs

A graph is a mathematical structure often represented diagrammatically. It has nothing to do with
the more common use of the word “graph” to mean any diagram, such as a pie chart or histogram.

4.1 The Pathfinding Graph 199

Figure 4.2 A general graph

A graph consists of two different types of element: nodes are often drawn as points or circles
in a graph diagram, while connections link nodes together with lines. Figure 4.2 shows a graph
structure.

Formally, the graph consists of a set of nodes and a set of connections, where a connection is
simply an unordered pair of nodes (the nodes on either end of the connection).

For pathfinding, each node usually represents a region of the game level, such as a room,
a section of corridor, a platform, or a small region of outdoor space. Connections show which
locations are connected. If a room adjoins a corridor, then the node representing the room will
have a connection to the node representing the corridor. In this way the whole game level is split
into regions, which are connected together. Later in the chapter, we’ll see a way of representing
the game level as a graph that doesn’t follow this model, but in most cases this is the approach
taken.

To get from one location in the level to another, we use connections. If we can go directly
from our starting node to our target node, then life is simple. Otherwise, we may have to use
connections to travel through intermediate nodes on the way.

A path through the graph consists of zero or more connections. If the start and end node are
the same, then there are no connections in the path. If the nodes are connected, then only one
connection is needed, and so on.

4.1.2 Weighted Graphs

A weighted graph is made up of nodes and connections, just like the general graph. In addition
to a pair of nodes for each connection, we add a numerical value. In mathematical graph theory
this is called the weight, and in game applications it is more commonly called the cost (although
the graph is still called a “weighted graph” rather than a “costed graph”).

200 Chapter 4 Pathfinding

1 0.3

2.1

0.6

0.6

1.5
1.2

0.2

0.3

0.35

Figure 4.3 A weighted graph

Drawing the graph (Figure 4.3), we see that each connection is labeled with an associated cost
value.

The costs in a pathfinding graph often represent time or distance. If a node representing
a platform is a long distance from a node representing the next platform, then the cost of the
connection will be large. Similarly, moving between two rooms that are both covered in traps will
take a long time, so the cost will be large.

The costs in a graph can represent more than just time or distance. We will see a number of
applications of pathfinding to situations where the cost is a combination of time, distance, and
other factors.

For a whole route through a graph, from a start node to a target node, we can work out the
total path cost. It is simply the sum of the costs of each connection in the route. In Figure 4.4, if
we are heading from node A to node C, via node B, and if the costs are 4 from A to B and 5 from B
to C, then the total cost of the route is 9.

Representative Points in a Region

You might notice immediately that if two regions are connected (such as a room and a corridor),
then the distance between them (and therefore the time to move between them) will be zero. If
you are standing in a doorway, then moving from the room side of the doorway to the corridor
side is instant. So shouldn’t all connections have a zero cost?

We tend to measure connection distances or times from a representative point in each region.
So we pick the center of the room and the center of the corridor. If the room is large and the
corridor is long, then there is likely to be a large distance between their center points, so the cost
will be large.

4.1 The Pathfinding Graph 201

A

D

C

B
4 5

5

6

Figure 4.4 Total path cost

Figure 4.5 Weighted graph overlaid onto level geometry

You will often see this in diagrams of pathfinding graphs, such as Figure 4.5: a representative
point is marked in each region.

A complete analysis of this approach will be left to a later section. It is one of the subtleties
of representing the game level for the pathfinder, and we’ll return to the issues it causes at some
length.

The Non-Negative Constraint

It doesn’t seem to make sense to have negative costs. You can’t have a negative distance between
two points, and it can’t take a negative amount of time to move there.

202 Chapter 4 Pathfinding

Mathematical graph theory does allow negative weights, however, and they have direct
applications in some practical problems. These problems are entirely outside of normal game
development, and all of them are beyond the scope of this book. Writing algorithms that can
work with negative weights is typically more complex than for those with strictly non-negative
weights.

In particular, the Dijkstra and A* algorithms should only be used with non-negative weights.
It is possible to construct a graph with negative weights such that a pathfinding algorithm will
return a sensible result. In the majority of cases, however, Dijkstra and A* would go into an infinite
loop. This is not an error in the algorithms. Mathematically, there is no such thing as a shortest
path across many graphs with negative weights; a solution simply doesn’t exist.

When we use the term “cost” in this book, it means a non-negative weight. Costs are always
positive. We will never need to use negative weights or the algorithms that can cope with them.
We’ve never needed to use them in any game development project we’ve worked on, and we can’t
foresee a situation when we might.

4.1.3 Directed Weighted Graphs

For many situations a weighted graph is sufficient to represent a game level, and we have seen
implementations that use this format. We can go one stage further,however. The major pathfinding
algorithms support the use of a more complex form of graph, the directed graph (see Figure 4.6),
which is often useful to developers.

So far we’ve assumed that if it is possible to move between node A and node B (the room and
corridor, for example), then it is possible to move from node B to node A. Connections go both

1 0.3

2.1

0.6

0.6

1.5
1.2

0.2

0.3

0.35

Figure 4.6 A directed weighted graph

4.1 The Pathfinding Graph 203

ways, and the cost is the same in both directions. Directed graphs instead assume that connections
are in one direction only. If you can get from node A to node B, and vice versa, then there will be
two connections in the graph: one for A to B and one for B to A.

This is useful in many situations. First, it is not always the case that the ability to move from A
to B implies that B is reachable from A. If node A represents an elevated walkway and node B
represents the floor of the warehouse underneath it, then a character can easily drop from A to B
but will not be able to jump back up again.

Second, having two connections in different directions means that there can be two different
costs. Let’s take the walkway example again but add a ladder. Thinking about costs in terms of time,
it takes almost no time at all to fall off the walkway, but it may take several seconds to climb back
up the ladder. Because costs are associated with each connection, this can be simply represented:
the connection from A (the walkway) to B (the floor) has a small cost, and the connection from B
to A has a larger cost.

Mathematically, a directed graph is identical to a non-directed graph, except that the pair of
nodes that makes up a connection is now ordered. Whereas a connection 〈node A, node B, cost〉
in a non-directed graph is identical to 〈node B, node A, cost〉 (so long as the costs are equal), in a
directed graph they are different connections.

4.1.4 Terminology

Terminology for graphs varies. In mathematical texts you often see vertices rather than nodes and
edges rather than connections (and, as we’ve already seen, weights rather than costs). Many AI
developers who actively research pathfinding use this terminology from exposure to the math-
ematical literature. It can be confusing in a game development context because vertices more
commonly mean something altogether different.

There is no agreed terminology for pathfinding graphs in games articles and seminars. We
have seen locations and even “dots” for nodes, and we have seen arcs, paths, links, and “lines” for
connections.

We will use the nodes and connections terminology throughout this chapter because it is
common, relatively meaningful (unlike dots and lines), and unambiguous (arcs and vertices both
have meaning in game graphics).

In addition, while we have talked about directed non-negative weighted graphs, almost all
pathfinding literature just calls them graphs and assumes that you know what kind of graph is
meant. We’ll do the same.

4.1.5 Representation

We need to represent our graph in such a way that pathfinding algorithms such as A* and Dijkstra
can work with it.

As we will see, the algorithms need to find out the outgoing connections from any given node.
And for each such connection, they need to have access to its cost and destination.

204 Chapter 4 Pathfinding

We can represent the graph to our algorithms using the following interface:

1 class Graph:
2 # Returns an array of connections (of class
3 # Connection) outgoing from the given node
4 def getConnections(fromNode)
5

6 class Connection:
7 # Returns the non-negative cost of the
8 # connection
9 def getCost()

10

11 # Returns the node that this connection came
12 # from
13 def getFromNode()
14

15 # Returns the node that this connection leads to
16 def getToNode()

The graph class simply returns an array of connection objects for any node that is queried.
From these objects the end node and cost can be retrieved.

A simple implementation of this class would store the connections for each node and simply
return the list. Each connection would have the cost and end node stored in memory.

A more complex implementation might calculate the cost only when it is required, using
information from the current structure of the game level.

Notice that there is no specific data type for a node in this interface, because we don’t need to
specify one. In many cases it is sufficient just to give nodes a unique number and to use integers
as the data type. In fact, we will see that this is a particularly powerful implementation because it
opens up some specific, very fast optimizations of the A* algorithm.

4.2 Dijkstra

The Dijkstra algorithm is named for Edsger Dijkstra, the mathematician who devised it (and the
same man who coined the famous programming phrase “GOTO considered harmful”).

Dijkstra’s algorithm wasn’t originally designed for pathfinding as games understand it. It was
designed to solve a problem in mathematical graph theory, confusingly called “shortest path.”

Where pathfinding in games has one start point and one goal point, the shortest path algorithm
is designed to find the shortest routes to everywhere from an initial point. The solution to this
problem will include a solution to the pathfinding problem (we’ve found the shortest route to
everywhere, after all), but it is wasteful if we are going to throw away all the other routes. It
can be modified to generate only the path we are interested in, but is still quite inefficient at
doing that.

4.2 Dijkstra 205

Because of these issues, we have seen Dijkstra used only once in production pathfinding, not
as the main pathfinding algorithm but to analyze general properties of a level in the very complex
pathfinding system of a military simulation.

Nonetheless, it is an important algorithm for tactical analysis (covered in Chapter 6, Tactical
and Strategic AI) and has uses in a handful of other areas of game AI. We will examine it here
because it is a simpler version of the main pathfinding algorithm A*.

4.2.1 The Problem

Given a graph (a directed non-negative weighted graph) and two nodes (called start and goal) in
that graph, we would like to generate a path such that the total path cost of that path is minimal
among all possible paths from start to goal.

There may be any number of paths with the same minimal cost. Figure 4.7 has 10 possible
paths, all with the same minimal cost. When there is more than one optimal path, we only expect
one to be returned, and we don’t care which one it is.

Recall that the path we expect to be returned consists of a set of connections, not nodes. Two
nodes may be linked by more than one connection, and each connection may have a different cost
(it may be possible to either fall off a walkway or climb down a ladder, for example). We therefore
need to know which connections to use; a list of nodes will not suffice.

Many games don’t make this distinction. There is, at most, one connection between any pair
of nodes. After all, if there are two connections between a pair of nodes, the pathfinder should
always take the one with the lower cost. In some applications, however, the costs change over the
course of the game or between different characters, and keeping track of multiple connections is
useful.

There is no more work in the algorithm to cope with multiple connections. And for those
applications where it is significant, it is often essential. We’ll always assume a path consists of
connections.

1 1 1

1 1 1

1 1 1

1

1

1

1

1

1

1

1

Start

Goal

Figure 4.7 All optimal paths

206 Chapter 4 Pathfinding

4.2.2 The Algorithm

Informally, Dijkstra works by spreading out from the start node along its connections. As it spreads
out to more distant nodes, it keeps a record of the direction it came from (imagine it drawing
chalk arrows on the floor to indicate the way back to the start). Eventually, it will reach the goal
node and can follow the arrows back to its start point to generate the complete route. Because of
the way Dijkstra regulates the spreading process, it guarantees that the chalk arrows always point
back along the shortest route to the start.

Let’s break this down in more detail.
Dijkstra works in iterations. At each iteration it considers one node of the graph and follows

its outgoing connections. At the first iteration it considers the start node. At successive iterations
it chooses a node to consider using an algorithm we’ll discuss shortly. We’ll call each iteration’s
node the “current node.”

Processing the Current Node

During an iteration, Dijkstra considers each outgoing connection from the current node. For each
connection it finds the end node and stores the total cost of the path so far (we’ll call this the
“cost-so-far”), along with the connection it arrived there from.

In the first iteration, where the start node is the current node, the total cost-so-far for each
connection’s end node is simply the cost of the connection. Figure 4.8 shows the situation after
the first iteration. Each node connected to the start node has a cost-so-far equal to the cost of the
connection that led there, as well as a record of which connection that was.

For iterations after the first, the cost-so-far for the end node of each connection is the sum
of the connection cost and the cost-so-far of the current node (i.e., the node from which the
connection originated). Figure 4.9 shows another iteration of the same graph. Here the cost-so-far
stored in node E is the sum of cost-so-far from node B and the connection cost of Connection IV
from B to E.

C

D

A

B
current
node

cost-so-far: 0
connection: None

Connection III
cost: 3.3

cost-so-far: 3.3
connection: III

cost-so-far: 1.6
connection: II

cost-so-far: 1.3
connection: I

Connection II
cost: 1.6

Connection I
cost: 1.3

Figure 4.8 Dijkstra at the first node

4.2 Dijkstra 207

B

C

A

D

F

E

start
node

cost-so-far: 0
connection: none

Connection I
cost: 1.3

Connection II
cost: 1.6

cost-so-far: 3.3
connection: III

Connection III
cost: 3.3

cost-so-far: 1.6
connection: II

current
node

cost-so-far: 1.3
connection: I

Connection IV
cost: 1.5

Connection V
cost: 1.9

cost-so-far: 3.2
connection: V

cost-so-far: 2.8
connection: IV

Figure 4.9 Dijkstra with a couple of nodes

In implementations of the algorithm, there is no distinction between the first and successive
iterations. By setting the cost-so-far value of the start node as 0 (since the start node is at zero
distance from itself), we can use one piece of code for all iterations.

The Node Lists

The algorithm keeps track of all the nodes it has seen so far in two lists: open and closed. In the
open list it records all the nodes it has seen, but that haven’t had their own iteration yet. It also
keeps track of those nodes that have been processed in the closed list. To start with, the open list
contains only the start node (with zero cost-so-far), and the closed list is empty.

Each node can be thought of as being in one of three categories: it can be in the closed list,
having been processed in its own iteration; it can be in the open list, having been visited from
another node, but not yet processed in its own right; or it can be in neither list. The node is
sometimes said to be closed, open, or unvisited.

At each iteration, the algorithm chooses the node from the open list that has the smallest
cost-so-far. This is then processed in the normal way. The processed node is then removed from
the open list and placed on the closed list.

There is one complication. When we follow a connection from the current node,we’ve assumed
that we’ll end up at an unvisited node. We may instead end up at a node that is either open or
closed, and we’ll have to deal slightly differently with them.

Calculating Cost-So-Far for Open and Closed Nodes

If we arrive at an open or closed node during an iteration, then the node will already have a
cost-so-far value and a record of the connection that led there. Simply setting these values will
overwrite the previous work the algorithm has done.

208 Chapter 4 Pathfinding

B

C

A

D

F

E

start
node

cost-so-far: 0
connection: none

Connection I
cost: 1.3

Connection II
cost: 1.6

cost-so-far: 3.3
connection: III

Connection III
cost: 3.3

cost-so-far: 1.6
connection: II

current
node

cost-so-far: 1.3
connection: I

Connection IV
cost: 1.5

Connection V
cost: 1.9

cost-so-far: 3.2
connection: V

cost-so-far: 2.8
connection: IV

cost-so-far: 2.9
connection: VI

Is updated

Connection VI
cost: 1.3

Open list Closed list

E, F, D A, B, C

Figure 4.10 Open node update

Instead, we check if the route we’ve now found is better than the route that we’ve already
found. Calculate the cost-so-far value as normal, and if it is higher than the recorded value (and
it will be higher in almost all cases), then don’t update the node at all and don’t change what list
it is on.

If the new cost-so-far value is smaller than the node’s current cost-so-far, then update it with
the better value, and set its connection record. The node should then be placed on the open list.
If it was previously on the closed list, it should be removed from there.

Strictly speaking, Dijkstra will never find a better route to a closed node, so we could check if
the node is closed first and not bother doing the cost-so-far check. A dedicated Dijkstra imple-
mentation would do this. We will see that the same is not true of the A* algorithm, however, and
we will have to check for faster routes in both cases.

Figure 4.10 shows the updating of an open node in a graph. The new route, via node C, is
faster, and so the record for node D is updated accordingly.

Terminating the Algorithm

The basic Dijkstra algorithm terminates when the open list is empty: it has considered every node
in the graph that be reached from the start node, and they are all on the closed list.

For pathfinding, we are only interested in reaching the goal node, however, so we can stop
earlier. The algorithm should terminate when the goal node is the smallest node on the open list.

Notice that this means we will have already reached the goal on a previous iteration, in order
to move it onto the open list. Why not simply terminate the algorithm as soon as we’ve found
the goal?

4.2 Dijkstra 209

Consider Figure 4.10 again. If D is the goal node, then we’ll first find it when we’re processing
node B. So if we stop here, we’ll get the route A–B–D, which is not the shortest route. To make
sure there can be no shorter routes, we have to wait until the goal has the smallest cost-so-far. At
this point, and only then, we know that a route via any other unprocessed node (either open or
unvisited) must be longer.

In practice, this rule is often broken. The first route found to the goal is very often the shortest,
and even when there is a shorter route, it is usually only a tiny amount longer. For this reason,
many developers implement their pathfinding algorithms to terminate as soon as the goal node
is seen, rather than waiting for it to be selected from the open list.

Retrieving the Path

The final stage is to retrieve the path.
We do this by starting at the goal node and looking at the connection that was used to arrive

there. We then go back and look at the start node of that connection and do the same. We continue
this process, keeping track of the connections, until the original start node is reached. The list
of connections is correct, but in the wrong order, so we reverse it and return the list as our
solution.

Figure 4.11 shows a simple graph after the algorithm has run. The list of connections found
by following the records back from the goal is reversed to give the complete path.

B

C

A

D

F

E

G

start
node

cost-so-far: 0
connection: none

Connection I
cost: 1.3

Connection II
cost: 1.6

Connection III
cost: 3.3

cost-so-far: 1.6
connection: II

cost-so-far: 1.3
connection: I

Connection IV
cost: 1.5

Connection V
cost: 1.9

cost-so-far: 3.2
connection: V

cost-so-far: 2.8
connection: IV

Connection VI
cost: 1.3

goal
node

cost-so-far: 4.6
connection: VII

Connection: VII
cost: 1.4

cost-so-far: 2.9
connection: VI

Connections working back from goal: VII, V, I
Final path: I, V, VII

Figure 4.11 Following the connections to get a plan

210 Chapter 4 Pathfinding

4.2.3 Pseudo-Code

The Dijkstra pathfinder takes as input a graph (conforming to the interface given in the previous
section), a start node, and an end node. It returns an array of connection objects that represent a
path from the start node to the end node.

1 def pathfindDijkstra(graph, start, end):
2

3 # This structure is used to keep track of the
4 # information we need for each node
5 struct NodeRecord:
6 node
7 connection
8 costSoFar
9

10 # Initialize the record for the start node
11 startRecord = new NodeRecord()
12 startRecord.node = start
13 startRecord.connection = None
14 startRecord.costSoFar = 0
15

16 # Initialize the open and closed lists
17 open = PathfindingList()
18 open += startRecord
19 closed = PathfindingList()
20

21 # Iterate through processing each node
22 while length(open) > 0:
23

24 # Find the smallest element in the open list
25 current = open.smallestElement()
26

27 # If it is the goal node, then terminate
28 if current.node == goal: break
29

30 # Otherwise get its outgoing connections
31 connections = graph.getConnections(current)
32

33 # Loop through each connection in turn
34 for connection in connections:
35

36 # Get the cost estimate for the end node
37 endNode = connection.getToNode()

4.2 Dijkstra 211

38 endNodeCost = current.costSoFar +
39 connection.getCost()
40

41 # Skip if the node is closed
42 if closed.contains(endNode): continue
43

44 # .. or if it is open and we’ve found a worse
45 # route
46 else if open.contains(endNode):
47

48 # Here we find the record in the open list
49 # corresponding to the endNode.
50 endNodeRecord = open.find(endNode)
51

52 if endNodeRecord.cost <= endNodeCost:
53 continue
54

55 # Otherwise we know we’ve got an unvisited
56 # node, so make a record for it
57 else:
58 endNodeRecord = new NodeRecord()
59 endNodeRecord.node = endNode
60

61 # We’re here if we need to update the node
62 # Update the cost and connection
63 endNodeRecord.cost = endNodeCost
64 endNodeRecord.connection = connection
65

66 # And add it to the open list
67 if not open.contains(endNode):
68 open += endNodeRecord
69

70 # We’ve finished looking at the connections for
71 # the current node, so add it to the closed list
72 # and remove it from the open list
73 open -= current
74 closed += current
75

76 # We’re here if we’ve either found the goal, or
77 # if we’ve no more nodes to search, find which.
78 if current.node != goal:
79

80 # We’ve run out of nodes without finding the
81 # goal, so there’s no solution

212 Chapter 4 Pathfinding

82 return None
83

84 else:
85

86 # Compile the list of connections in the path
87 path = []
88

89 # Work back along the path, accumulating
90 # connections
91 while current.node != start:
92 path += current.connection
93 current = current.connection.getFromNode()
94

95 # Reverse the path, and return it
96 return reverse(path)

Other Functions

The pathfinding list is a specialized data structure that acts very much like a regular list. It holds
a set of NodeRecord structures and supports the following additional methods:

� The smallestElement() method returns the NodeRecord structure in the list with the lowest
costSoFar value.

� The contains(node) method returns true only if the list contains a NodeRecord structure
whose node member is equal to the given parameter.

� The find(node) method returns the NodeRecord structure from the list whose node member
is equal to the given parameter.

In addition, we have used a function, reverse(array), that returns a reversed copy of a normal
array.

4.2.4 Data Structures and Interfaces

There are three data structures used in the algorithm: the simple list used to accumulate the
final path, the pathfinding list used to hold the open and closed lists, and the graph used to find
connections from a node (and their costs).

Simple List

The simple list is not very performance critical, since it is only used at the end of the pathfinding
process. It can be implemented as a basic linked list (a std::list in C++, for example) or even a
resizable array (such as std::vector in C++).

4.2 Dijkstra 213

Pathfinding List

The open and closed lists in the Dijkstra algorithm (and in A*) are critical data structures that
directly affect the performance of the algorithm. Almost all optimization effort in pathfinding
goes into their implementation. In particular, there are four operations on the list that are critical:

1. Adding an entry to the list (the += operator);

2. Removing an entry from the list (the -= operator);

3. Finding the smallest element (the smallestElement method);

4. Finding an entry in the list corresponding to a particular node (the contains and find methods
both do this).

Finding a suitable balance between these four operations is key to building a fast implemen-
tation. Unfortunately, the balance is not always identical from game to game.

Because the pathfinding list is most commonly used with A* for pathfinding, a number of its
optimizations are specific to that algorithm. We will wait to examine it in more detail until we
have looked at A*.

Graph

We have covered the interface presented by the graph in the first section of this chapter.
The getConnections method is called low down in the loop and is typically a critical perfor-

mance element to get right. The most common implementation has a lookup table indexed by
a node (where nodes are numbered as consecutive integers). The entry in the lookup table is an
array of connection objects. Thus, the getConnections method needs to do minimal processing
and is efficient.

Some methods of translating a game level into a pathfinding graph do not allow for this
simple lookup approach and can therefore lead to much slower pathfinding. Such situations are
described in more detail in Section 4.4 on world representation later in the chapter.

The getToNode and getCost methods of the Connection class are even more performance
critical. In an overwhelming majority of implementations, however, no processing is performed
in these methods, and they simply return a stored value in each case. The Connection class might
therefore look like the following:

1 class Connection:
2 cost
3 fromNode
4 toNode
5

6 def getCost(): return cost
7 def getFromNode(): return fromNode
8 def getToNode(): return toNode

214 Chapter 4 Pathfinding

For this reason the Connection class is rarely a performance bottleneck.
Of course, these values need to be calculated somewhere. This is usually done when the game

level is converted into a graph and is an offline process independent of the pathfinder.

4.2.5 Performance of Dijkstra

The practical performance of Dijkstra in both memory and speed depends mostly on the perfor-
mance of the operations in the pathfinding list data structure.

Ignoring the performance of the data structure for a moment, we can see the theoretical
performance of the overall algorithm. The algorithm considers each node in the graph that is
closer than the end node. We call this number n. For each of these nodes, it processes the inner
loop once for each outgoing connection. We call the average number of outgoing connections
per node m. So the algorithm itself is O(nm) in execution speed. The total memory use depends
on both the size of the open list and the size of the closed list. When the algorithm terminates
there will be n elements in the closed list and no more than nm elements in the open list (in
fact, there will typically be fewer than n elements in the open list). So the worst case memory use
is O(nm).

To include the data structure times, we note that both the list addition and the find operation
(see the section on the pathfinding list data structure, above) are called nm times, while the
extraction and smallestElement operations are called n times. If the order of the execution time
for the addition or find operations is greater than O(m), or if the extraction and smallestElement
operations are greater than O(1), then the actual execution performance will be worse than O(nm).

In order to speed up the key operations, data structure implementations are often chosen that
have worse than O(nm) memory requirements.

When we look in more depth at the list implementations in the next section, we will consider
their impact on performance characteristics.

If you look up Dijkstra in a computer science textbook, it may tell you that it is O(n2). In fact,
this is exactly the result above. The worst conceivable performance occurs when the graph is so
densely connected that m = n. In this case for games, however, there’ll be a direct path to the goal
anyway, so we can avoid Dijkstra altogether.

4.2.6 Weaknesses

The principle problem with Dijkstra is that it searches the entire graph indiscriminately for the
shortest possible route. This is useful if we’re trying to find the shortest path to every possible
node (the problem that Dijkstra was designed for), but wasteful for point-to-point pathfinding.

We can visualize the way the algorithm works by showing the nodes currently on its open and
closed lists at various stages through a typical run. This is shown in Figure 4.12.

In each case the boundary of the search is made up of nodes on the open list. This is because
the nodes closer to the start (i.e., with lower distance values) have already been processed and
placed on the closed list.

4.3 A* 215

Start
Goal

1

Start
Goal

2

Start
Goal

3

Start
Goal

4

Key
Open nodes
Closed nodes
Unvisited nodes

NB: connections are
hidden for simplicity

Figure 4.12 Dijkstra in steps

The final part of Figure 4.12 shows the state of the lists when the algorithm terminates. The
line shows the best path that has been calculated. Notice that most of the level has still been
explored, even well away from the path that is generated.

The number of nodes that were considered, but never made part of the final route, is called
the fill of the algorithm. In general, you want to consider as few nodes as possible, because each
takes time to process.

Sometimes Dijkstra will generate a search pattern with a relatively small amount of fill. This
is the exception rather than the rule, however. In the vast majority of cases, Dijkstra suffers from
a terrible amount of fill.

Algorithms with big fills, like Dijkstra, are inefficient for point-to-point pathfinding and are
rarely used. This brings us to the star of pathfinding algorithms: A*. It can be thought of as a
low-fill version of Dijkstra.

4.3 A*

Pathfinding in games is synonymous with the A* algorithm. A* is simple to implement, is very
efficient, and has lots of scope for optimization. Every pathfinding system we’ve come across in
the last 10 years has used some variation of A* as its key algorithm, and it has applications well

216 Chapter 4 Pathfinding

beyond pathfinding too. In Chapter 5, we will see how A* can be used to plan complex series of
actions for characters.

Unlike the Dijkstra algorithm, A* is designed for point-to-point pathfinding and is not used
to solve the shortest path problem in graph theory. It can neatly be extended to more complex
cases, as we’ll see later, but it always returns a single path from source to goal.

4.3.1 The Problem

The problem is identical to that solved by our Dijkstra pathfinding algorithm.
Given a graph (a directed non-negative weighted graph) and two nodes in that graph (start

and goal), we would like to generate a path such that the total path cost of that path is minimal
among all possible paths from start to goal. Any minimal cost path will do, and the path should
consist of a list of connections from the start node to the goal node.

4.3.2 The Algorithm

Informally, the algorithm works in much the same way as Dijkstra does. Rather than always
considering the open node with the lowest cost-so-far value, we choose the node that is most
likely to lead to the shortest overall path. The notion of “most likely” is controlled by a heuristic.
If the heuristic is accurate, then the algorithm will be efficient. If the heuristic is terrible, then it
can perform even worse than Dijkstra.

In more detail, A* works in iterations. At each iteration it considers one node of the graph and
follows its outgoing connections. The node (again called the “current node”) is chosen using a
selection algorithm similar to Dijkstra’s, but with the significant difference of the heuristic, which
we’ll return to later.

Processing the Current Node

During an iteration, A* considers each outgoing connection from the current node. For each
connection it finds the end node and stores the total cost of the path so far (the “cost-so-far”) and
the connection it arrived there from, just as before.

In addition, it also stores one more value: the estimate of the total cost for a path from the
start node through this node and onto the goal (we’ll call this value the estimated-total-cost).
This estimate is the sum of two values: the cost-so-far and how far it is from the node to the goal.
This estimate is generated by a separate piece of code and isn’t part of the algorithm.

These estimates are called the “heuristic value” of the node, and it cannot be negative (since
the costs in the graph are non-negative, it doesn’t make sense to have a negative estimate). The
generation of this heuristic value is a key concern in implementing the A* algorithm, and we’ll
return to it later in some depth.

Figure 4.13 shows the calculated values for some nodes in a graph. The nodes are labeled
with their heuristic values, and the two calculated values (cost-so-far and estimated-total-cost)
are shown for the nodes that the algorithm has considered.

4.3 A* 217

BA

C E

GF

D

Node A (start node)
heuristic: 4.2
cost-so-far: 0
connection: none
estimated-total-cost: 4.2
closed

Node C
heuristic: 3.7
cost-so-far: 1.1
connection: AC
estimated-total-cost: 4.8
open

Node B
heuristic: 3.2
cost-so-far: 1.3
connection: AB
estimated-total-cost: 4.5
closed

Node D
heuristic: 2.8
cost-so-far: 2.8
connection: BD
estimated-total-cost: 5.6
open

Node E
heuristic: 1.6
cost-so-far: 3.0
connection: BE
estimated-total-cost: 4.6
open

Node F
heuristic: 1.4
unvisited

Node G (goal node)
heuristic: 0.0
unvisited

1.3 1.5

1.5

1.1
1.7

1.6 1.4

Figure 4.13 A* estimated-total-costs

The Node Lists

As before, the algorithm keeps a list of open nodes that have been visited but not processed and
closed nodes that have been processed. Nodes are moved onto the open list as they are found at
the end of connections. Nodes are moved onto the closed list as they are processed in their own
iteration.

Unlike previously, the node from the open list with the smallest estimated-total-cost is selected
at each iteration. This is almost always different from the node with the smallest cost-so-far.

This alteration allows the algorithm to examine nodes that are more promising first. If a node
has a small estimated-total-cost, then it must have a relatively short cost-so-far and a relatively
small estimated distance to go to reach the goal. If the estimates are accurate, then the nodes that
are closer to the goal are considered first, narrowing the search into the most profitable area.

Calculating Cost-So-Far for Open and Closed Nodes

As before, we may arrive at an open or closed node during an iteration, and we will have to revise
its recorded values.

We calculate the cost-so-far value as normal, and if the new value is lower than the existing
value for the node, then we will need to update it. Notice that we do this comparison strictly on

218 Chapter 4 Pathfinding

the cost-so-far value (the only reliable value, since it doesn’t contain any element of estimate), not
the estimated-total-cost.

Unlike Dijkstra, the A* algorithm can find better routes to nodes that are already on the closed
list. If a previous estimate was very optimistic, then a node may have been processed thinking it
was the best choice when, in fact, it was not.

This causes a knock-on problem. If a dubious node has been processed and put on the closed
list, then it means all its connections have been considered. It may be possible that a whole set of
nodes have had their cost-so-far values based on the cost-so-far of the dubious node. Updating
the value for the dubious node is not enough. All its connections will also have to be checked
again to propagate the new value.

In the case of revising a node on the open list, this isn’t necessary, since we know that connec-
tions from a node on the open list haven’t been processed yet.

Fortunately, there is a simple way to force the algorithm to recalculate and propagate the new
value. We can remove the node from the closed list and place it back on the open list. It will then
wait until it is closed and have its connections reconsidered. Any nodes that rely on its value will
also eventually be processed once more.

Figure 4.14 shows the same graph as the previous diagram, but two iterations later. It illustrates
the updating of a closed node in a graph. The new route to E, via node C, is faster, and so the
record for node E is updated accordingly, and it is placed on the open list. On the next iteration
the value for node G is correspondingly revised.

So closed nodes that have their values revised are removed from the closed list and placed on
the open list. Open nodes that have their values revised stay on the open list, as before.

Terminating the Algorithm

In many implementations, A* terminates when the goal node is the smallest node on the
open list.

But as we have already seen, a node that has the smallest estimated-total-cost value (and will
therefore be processed next iteration and put on the closed list) may later need its values revised.
We can no longer guarantee, just because the node is the smallest on the open list, that we have
the shortest route there. So terminating A* when the goal node is the smallest on the open list will
not guarantee that the shortest route has been found.

It is natural, therefore, to ask whether we could run A* a little longer to generate a guaranteed
optimal result. We can do this by requiring that the algorithm only terminates when the node in
the open list with the smallest cost-so-far (not estimated-total-cost) has a cost-so-far value greater
than the cost of the path we found to the goal. Then and only then can we guarantee that no
future path will be found that forms a shortcut.

This is effectively the same termination condition we saw in Dijkstra, and it can be shown that
imposing this condition will generate the same amount of fill as running the Dijkstra pathfinding
algorithm. The nodes may be searched in a different order, and there may be slight differences in
the set of nodes on the open list, but the approximate fill level will be the same. In other words, it
robs A* of any performance advantage and makes it effectively worthless.

4.3 A* 219

BA

C E

GF

D

Node A (start node)
heuristic: 4.2
cost-so-far: 0
connection: none
estimated-total-cost: 4.2
closed

Node C
heuristic: 3.7
cost-so-far: 1.1
connection: AC
estimated-total-cost: 4.8
current node

Node B
heuristic: 3.2
cost-so-far: 1.3
connection: AB
estimated-total-cost: 4.5
closed

Node D
heuristic: 2.8
cost-so-far: 2.8
connection: BD
estimated-total-cost: 5.6
open

Node E
heuristic: 1.6
cost-so-far: 3.0
connection: BE
estimated-total-cost: 4.6
closed

Node E
heuristic: 1.6
cost-so-far: 2.6
connection: CE
estimated-total-cost: 4.2
open

Node F
heuristic: 1.4
cost-so-far: 2.7
connection: CF
estimated-total-cost: 4.1
open

Node G (goal node)
heuristic: 0.0
cost-so-far: 4.4
connection: EG
estimated-total-cost: 4.4
open

1.3 1.5

1.5

1.1
1.7

1.6 1.4

Is updated

Figure 4.14 Closed node update

A* implementations completely rely on the fact that they can theoretically produce non-
optimal results. Fortunately, this can be controlled using the heuristic function. Depending on
the choice of heuristic function, we can guarantee optimal results, or we can deliberately allow
sub-optimal results to give us faster execution. We’ll return to the influence of the heuristic later
in this section.

Because A* so often flirts with sub-optimal results, a large number of A* implementations
instead terminate when the goal node is first visited without waiting for it to be the smallest on
the open list. The performance advantage is not as great as doing the same thing in Dijkstra, but
many developers feel that every little bit counts, especially as the algorithm won’t necessarily be
optimal in any case.

Retrieving the Path

We get the final path in exactly the same way as before: by starting at the goal and accumulating
the connections as we move back to the start node. The connections are again reversed to form
the correct path.

220 Chapter 4 Pathfinding

4.3.3 Pseudo-Code

Exactly as before, the pathfinder takes as input a graph (conforming to the interface given in
the previous section), a start node, and an end node. It also requires an object that can generate
estimates of the cost to reach the goal from any given node. In the code this object is “heuristic.”
It is described in more detail later in the data structures section.

The function returns an array of connection objects that represents a path from the start node
to the end node.

1 def pathfindAStar(graph, start, end, heuristic):
2

3 # This structure is used to keep track of the
4 # information we need for each node
5 struct NodeRecord:
6 node
7 connection
8 costSoFar
9 estimatedTotalCost

10

11 # Initialize the record for the start node
12 startRecord = new NodeRecord()
13 startRecord.node = start
14 startRecord.connection = None
15 startRecord.costSoFar = 0
16 startRecord.estimatedTotalCost =
17 heuristic.estimate(start)
18

19 # Initialize the open and closed lists
20 open = PathfindingList()
21 open += startRecord
22 closed = PathfindingList()
23

24 # Iterate through processing each node
25 while length(open) > 0:
26

27 # Find the smallest element in the open list
28 # (using the estimatedTotalCost)
29 current = open.smallestElement()
30

31 # If it is the goal node, then terminate
32 if current.node == goal: break
33

34 # Otherwise get its outgoing connections

4.3 A* 221

35 connections = graph.getConnections(current)
36

37 # Loop through each connection in turn
38 for connection in connections:
39

40 # Get the cost estimate for the end node
41 endNode = connection.getToNode()
42 endNodeCost = current.costSoFar +
43 connection.getCost()
44

45 # If the node is closed we may have to
46 # skip, or remove it from the closed list.
47 if closed.contains(endNode):
48

49 # Here we find the record in the closed list
50 # corresponding to the endNode.
51 endNodeRecord = closed.find(endNode)
52

53 # If we didn’t find a shorter route, skip
54 if endNodeRecord.costSoFar <= endNodeCost:
55 continue;
56

57 # Otherwise remove it from the closed list
58 closed -= endNodeRecord
59

60 # We can use the node’s old cost values
61 # to calculate its heuristic without calling
62 # the possibly expensive heuristic function
63 endNodeHeuristic = endNodeRecord.cost -
64 endNodeRecord.costSoFar
65

66 # Skip if the node is open and we’ve not
67 # found a better route
68 else if open.contains(endNode):
69

70 # Here we find the record in the open list
71 # corresponding to the endNode.
72 endNodeRecord = open.find(endNode)
73

74 # If our route is no better, then skip
75 if endNodeRecord.costSoFar <= endNodeCost:
76 continue;
77

78 # We can use the node’s old cost values

222 Chapter 4 Pathfinding

79 # to calculate its heuristic without calling
80 # the possibly expensive heuristic function
81 endNodeHeuristic = endNodeRecord.cost -
82 endNodeRecord.costSoFar
83

84 # Otherwise we know we’ve got an unvisited
85 # node, so make a record for it
86 else:
87 endNodeRecord = new NodeRecord()
88 endNodeRecord.node = endNode
89

90 # We’ll need to calculate the heuristic value
91 # using the function, since we don’t have an
92 # existing record to use
93 endNodeHeuristic = heuristic.estimate(endNode)
94

95 # We’re here if we need to update the node
96 # Update the cost, estimate and connection
97 endNodeRecord.cost = endNodeCost
98 endNodeRecord.connection = connection
99 endNodeRecord.estimatedTotalCost =

100 endNodeCost + endNodeHeuristic
101

102 # And add it to the open list
103 if not open.contains(endNode):
104 open += endNodeRecord
105

106 # We’ve finished looking at the connections for
107 # the current node, so add it to the closed list
108 # and remove it from the open list
109 open -= current
110 closed += current
111

112 # We’re here if we’ve either found the goal, or
113 # if we’ve no more nodes to search, find which.
114 if current.node != goal:
115

116 # We’ve run out of nodes without finding the
117 # goal, so there’s no solution
118 return None
119

120 else:
121

122 # Compile the list of connections in the path

4.3 A* 223

123 path = []
124

125 # Work back along the path, accumulating
126 # connections
127 while current.node != start:
128 path += current.connection
129 current = current.connection.getFromNode()
130

131 # Reverse the path, and return it
132 return reverse(path)

Changes from Dijkstra

The algorithm is almost identical to the Dijkstra algorithm. It adds an extra check to see if a
closed node needs updating and removing from the closed list. It also adds two lines to calculate
the estimated-total-cost of a node using the heuristic function and adds an extra field in the
NodeRecord structure to hold this information.

A set of calculations can be used to derive the heuristic value from the cost values of an existing
node. This is done simply to avoid calling the heuristic function any more than is necessary. If a
node has already had its heuristic calculated, then that value will be reused when the node needs
updating.

Other than these minor changes, the code is identical.
As for the supporting code, the smallestElement method of the pathfinding list data structure

should now return the NodeRecord with the smallest estimated-total-cost value, not the smallest
cost-so-far value as before. Otherwise, the same implementations can be used.

4.3.4 Data Structures and Interfaces

The graph data structure and the simple path data structure used to accumulate the path are
both identical to those used in the Dijkstra algorithm. The pathfinding list data structure has a
smallestElement method that now considers estimated-total-cost rather than cost-so-far but is
otherwise the same.

Finally, we have added a heuristic function that generates estimates of the distance from a
given node to the goal.

Pathfinding List

Recall from the discussion on Dijkstra that the four component operations required on the
pathfinding list are the following:

1. Adding an entry to the list (the += operator);

2. Removing an entry from the list (the -= operator);

224 Chapter 4 Pathfinding

3. Finding the smallest element (the smallestElement method);

4. Finding an entry in the list corresponding to a particular node (the contains and find methods
both do this).

Of these operations, numbers 3 and 4 are typically the most fruitful for optimization (although
optimizing these often requires changes to numbers 1 and 2 in turn). We’ll look at a particular
optimization for number 4, which uses a non-list structure, later in this section.

A naive implementation of number 3, finding the smallest element in the list, involves looking
at every node in the open list, every time through the algorithm, to find the lowest total path
estimate.

There are lots of ways to speed this up, and all of them involve changing the way the list is
structured so that the best node can be found quickly. This kind of specialized list data structure
is usually called a priority queue. It minimizes the time it takes to find the best node.

In this book we won’t cover each possible priority queue implementation in depth. Priority
queues are a common data structure detailed in any good algorithms text.

Priority Queues

The simplest approach is to require that the open list be sorted. This means that we can get the
best node immediately because it is the first one in the list.

But making sure the list is sorted takes time. We could sort it each time we need it, but this
would take a very long time. A more efficient way is to make sure that when we add things to the
open list, they are in the right place. Previously, we have appended new nodes to the list with no
regard for order, a very fast process. Inserting the new node in its correct sorted position in the
list takes longer.

This is a common trade-off when designing data structures: if you make it fast to add an item,
it may be costly to get it back, and if you optimize retrieval, then adding may take time.

If the open list is already sorted, then adding a new item involves finding the correct insertion
point in the list for the new item. In our implementation so far, we have used a linked list. To find
the insertion point in a linked list we need to go through each item in the list until we find one
with a higher total path estimate than ours. This is faster than searching for the best node, but still
isn’t too efficient.

If we use an array rather than a linked list, we can use a binary search to find the insertion
point. This is faster, and for a very large list (and the open list is often huge) it provides a massive
speed up.

Adding to a sorted list is faster than removing from an unsorted list. If we added nodes about
as often as we removed them, then it would be better to have a sorted list. Unfortunately, A* adds
many more nodes than it retrieves to the open list. It rarely removes nodes from the closed list
at all.

Priority Heaps

Priority heaps are an array-based data structure which represents a tree of elements. Each item in
the tree can have up to two children, both of which must have higher values.

4.3 A* 225

3 8

5 10 94

76

2

2 3 8 4 5 10 9 6 7

Tree representation

Layers fill
left to right

Right children connections

Left children connections

Array representation

Figure 4.15 Priority heap

The tree is balanced, so that no branch is more than one level deeper than any other. In
addition, it fills up each level from the left to the right. This is shown in Figure 4.15.

This structure is useful because it allows the tree to be mapped to a simple array in memory:
the left and right children of a node are found in the array at position 2i and 2i + 1, respectively,
where i is the position of the parent node in the array. See Figure 4.15 for an example, where the
tree connections are overlaid onto the array representation.

With this ultra-compact representation of the heap, the well-known sorting algorithm heap-
sort can be applied, which takes advantage of the tree structure to keep nodes in order. Finding the
smallest element takes constant time (it is always the first element: the head of the tree). Removing
the smallest element, or adding any new element, takes O(log n), where n is the number of elements
in the list.

The priority heap is a well-known data structure commonly used for scheduling problems
and is the heart of an operating system’s process manager.

Bucketed Priority Queues

Bucketed priority queues are more complex data structures that have partially sorted data. The
partial sorting is designed to give a blend of performance across different operations, so adding
items doesn’t take too long and removing them is still fast.

The eponymous buckets are small lists that contain unsorted items within a specified range
of values. The buckets themselves are sorted, but the contents of the buckets aren’t.

To add to this kind of priority queue, you search through the buckets to find the one your
node fits in. You then add it to the start of the bucket’s list. This is illustrated in Figure 4.16.

The buckets can be arranged in a simple list, as a priority queue themselves, or as a fixed array.
In the latter case, the range of possible values must be fairly small (total path costs often lie in a
reasonably small range). Then the buckets can be arranged with fixed intervals: the first bucket
might contain values from 0 to 10, the second from 10 to 20, and so on. In this case the data
structure doesn’t need to search for the correct bucket. It can go directly there, speeding up node
adding even more.

226 Chapter 4 Pathfinding

0–5

6–12

13–20

21–40 22

11

3 2 5 1

7

36 27

Sorted list or array
of buckets

Unsorted list of entries
in each bucket

Figure 4.16 Bucketed priority queues

To find the node with the lowest score, you go to the first non-empty bucket and search its
contents for the best node.

By changing the number of buckets, you can get just the right blend of adding and removal
time. Tweaking the parameters is time consuming, however, and is rarely needed. For very large
graphs, such as those representing levels in massively multi-player online games, the speed up can
be worth the programming effort. In most cases it is not.

There are still more complex implementations, such as “multi-level buckets,” which have
sorted lists of buckets containing lists of buckets containing unsorted items (and so on). We built
a pathfinding system that used a multi-level bucket list, but it was more an act of hubris than a
programming necessity, and we wouldn’t do it again!

Implementations

In our experience there is little to choose from between priority heaps and bucketed queues in
many applications. We’ve built production implementations using both approaches. For very
large pathfinding problems (with millions of nodes in the graph), bucketed priority queues can
be written that are kinder to the processor’s memory cache and are therefore much faster. For
indoor levels with a few thousand or tens of thousands of nodes, the simplicity of a priority heap
is often sufficient.

Library

In the source code on the website the A* implementation uses a simple priority queue imple-
mentation for its pathfinding lists, for simplicity’s sake.

Heuristic Function

The heuristic is often talked about as a function, and it can be implemented as a function.
Throughout this book, we’ve preferred to show it in pseudo-code as an object. The heuristic
object we used in the algorithm has a simple interface:

4.3 A* 227

1 class Heuristic:
2 # Generates an estimated cost to reach the goal
3 # from the given node
4 def estimate(node)

A Heuristic for Any Goal

Because it is inconvenient to produce a different heuristic function for each possible goal in
the world, the heuristic is often parameterized by the goal node. In that way a general heuristic
implementation can be written that estimates the distance between any two nodes in the graph.
The interface might look something like:

1 class Heuristic:
2

3 # Stores the goal node that this heuristic is
4 # estimating for
5 goalNode
6

7 # Constructor, takes a goal node for estimating.
8 def Heuristic(goal): goalNode = goal
9

10 # Generates an estimated cost to reach the
11 # stored goal from the given node
12 def estimate(node)

which can then be used to call the pathfinder in code such as

1 pathfindAStar(graph, start, end, new Heuristic(end))

Heuristic Speed

The heuristic is called at the lowest point in the loop. Because it is making an estimate, it might
involve some algorithmic process. If the process is complex, the time spent evaluating heuristics
might quickly dominate the pathfinding algorithm.

While some situations may allow you to build a lookup table of heuristic values, in most cases
the number of combinations is huge so this isn’t practical.

It is essential that you run a profiler on the pathfinding system and look for ways to
optimize the heuristic. We’ve seen situations where developers tried to squeeze extra speed
from the pathfinding algorithm when over 80% of the execution time was spent evaluating
heuristics.

228 Chapter 4 Pathfinding

4.3.5 Implementation Notes

The design of the A* algorithm we’ve looked at so far is the most general. It can work with any
kind of cost value, with any kind of data type for nodes, and with graphs that have a huge range
of sizes.

This generality comes at a price. There are better implementations of A* for most game
pathfinding tasks. In particular, if we can assume that there is only a relatively small number (up
to a 100,000, say, to fit in around 2Mb of memory) of nodes in the graph, and that these nodes can
be numbered using sequential integers, then we can speed up our implementation significantly.

We call this node array A* (although you should be aware that we’ve made this name up;
strictly, the algorithm is still just A*), and it is described in detail below.

Depending on the structure of the cost values returned and the assumptions that can be
made about the graph, even more efficient implementations can be created. Most of these
are outside the scope of this book (we could easily fill the whole book with just pathfind-
ing variations), but the most important are given in a brief introduction at the end of this
chapter.

The general A* implementation is still useful, however. In some cases you may need a variable
number of nodes (if your game’s level is being paged into memory in sections, for example),
or there just isn’t enough memory available for more complex implementations. We’ve used the
general A* implementation on several occasions where more efficient implementations were not
suitable.

4.3.6 Algorithm Performance

Once again, the biggest factor in determining the performance of A* is the performance of its key
data structures: the pathfinding list, the graph, and the heuristic.

Once again, ignoring these, we can look simply at the algorithm (this is equivalent to assuming
that all data structure operations take constant time).

The number of iterations that A* performs is given by the number of nodes whose total
estimated-path-cost is less than that of the goal. We’ll call this number l , different from n in
the performance analysis of Dijkstra. In general, l should be less than n. The inner loop of A*
has the same complexity as Dijkstra, so the total speed of the algorithm is O(lm), where m is
the average number of outgoing connections from each node, as before. Similarly for memory
usage, A* ends with O(lm) entries in its open list, which is the peak memory usage for the
algorithm.

In addition to Dijkstra’s performance concerns of the pathfinding list and the graph, we add
the heuristic function. The heuristic function is called very low in the loop, in the order of O(lm)
times. Often, the heuristic function requires some processing and can dominate the execution
load of the algorithm. It is rare, however, for its implementation to directly depend on the
size of the pathfinding problem. Although it may be time-consuming, the heuristic will most
commonly have O(1) execution time and memory and so will not have an effect on the order
of the performance of the algorithm. This is an example of when the algorithm’s order doesn’t
necessarily tell you very much about the real performance of the code.

4.3 A* 229

4.3.7 Node Array A*

Node array A* is our name for a common implementation of the A* algorithm that is faster in
many cases than the general A*. In the implementation we looked at so far, data are held for each
node in the open or closed lists, and these data are held as a NodeRecord instance. Records are
created when a node is first considered and then moved between the open and closed lists, as
required.

There is a key step in the algorithm where the lists are searched for a node record corresponding
to a particular node.

Keeping a Node Array

We can make a trade-off by increasing memory use to improve execution speed. To do this, we
create an array of all the node records for every node in the whole graph before the algorithm
begins. This node array will include records for nodes that will never be considered (hence the
waste of memory), as well as for those that would have been created anyway.

If nodes are numbered using sequential integers, we don’t need to search for a node in the two
lists at all. We can simply use the node number to look up its record in the array (this is the logic
of using node integers that we mentioned at the start of the chapter).

Checking if a Node Is in Open or Closed

We need to find the node data in order to check if we’ve found a better route to a node or if we
need to add the node to one of the two lists.

Our original algorithm checked through each list, open and closed, to see if the node was
already there. This is a very slow process, especially if there are many nodes in each list. It would
be useful if we could look at a node and immediately discover what list, if any, it was in.

To find out which list a node is in, we add a new value to the node record. This value tells us
which of the three categories the node is in: unvisited, open, or closed. This makes the search step
very fast indeed (in fact, there is no search, and we can go straight to the information we need).

The new NodeRecord structure looks like the following:

1 # This structure is used to keep track of the
2 # information we need for each node
3 struct NodeRecord:
4 node
5 connection
6 costSoFar
7 estimatedTotalCost
8 category

where the category member is OPEN, CLOSED, or UNVISITED.

230 Chapter 4 Pathfinding

The Closed List Is Irrelevant

Because we’ve created all the nodes in advance, and they are located in an array, we no longer need
to keep a closed list at all. The only time the closed list is used is to check if a node is contained
within it and, if so, to retrieve the node record. Because we have the node records immediately
available, we can find the record. With the record, we can look at the category value and see if it
has been closed.

The Open List Implementation

We can’t get rid of the open list in the same way because we still need to be able to retrieve the
element with the lowest score. We can use the array for times when we need to retrieve a node
record, from either open or closed lists, but we’ll need a separate data structure to hold the priority
queue of nodes.

Because we no longer need to hold a complete node record in the priority queue, it can be
simplified. Often, the priority queue simply needs to contain the node numbers, whose records
can be immediately looked up from the node array.

Alternatively, the priority queue can be intertwined with the node array records by making
the node records part of a linked list:

1 # This structure is used to keep track of the
2 # information we need for each node
3 struct NodeRecord:
4 node
5 connection
6 costSoFar
7 estimatedTotalCost
8 category
9 nextRecordInList

Although the array will not change order, each element of the array has a link to the next
record in a linked list. The sequence of nodes in this linked list jumps around the array and can
be used as a priority queue to retrieve the best node on the open list.

Although we’ve seen implementations that add other elements to the record to support full
bucketed priority queues, our experience is that this general approach leads to wasted memory
(most nodes aren’t in the list, after all), unnecessary code complexity (the code to maintain the
priority queue can look very ugly), and cache problems (jumping around memory should be
avoided when possible).

Library

The node array pathfinding implementation on the website uses the separate priority
queue approach. We’d recommend you do the same, unless you have a good reason to do
otherwise.

4.3 A* 231

A Variation for Large Graphs

Creating all the nodes in advance is a waste of space if you aren’t going to consider most of them.
For small graphs on a PC, the memory waste is often worth it for the speed up. For large graphs,
or for consoles with limited memory, it can be problematic.

In C, or other languages with pointers, we can blend the two approaches to create an array
of pointers to node records, rather than an array of records themselves, setting all the pointers to
NULL initially.

In the A* algorithm, we create the nodes when they are needed, as before, and set the appro-
priate pointer in the array. When we come to find what list a node is in, we can see if it has been
created by checking if its pointer is NULL (if it is, then it hasn’t been created and, by deduction,
must be unvisited), if it is there, and if it is in either the closed or open list.

This approach requires less memory than allocating all the nodes in advance, but may still
take up too much memory for very large graphs.

4.3.8 Choosing a Heuristic

The more accurate the heuristic, the less fill A* will experience, and the faster it will run. If you
can get a perfect heuristic (one that always returns the exact minimum path distance between
two nodes), A* will go straight to the correct answer: the algorithm becomes O(p), where p is the
number of steps in the path.

Unfortunately, to work out the exact distance between two nodes, you typically have to find
the shortest route between them. This would mean solving the pathfinding problem—which is
what we’re trying to do in the first place! In only a few cases will a practical heuristic be accurate.

For non-perfect heuristics, A* behaves slightly differently depending on whether the heuristic
is too low or too high.

Underestimating Heuristics

If the heuristic is too low, so that it underestimates the actual path length, A* takes longer to
run. The estimated-total-cost will be biased toward the cost-so-far (because the heuristic value is
smaller than reality). So A* will prefer to examine nodes closer to the start node, rather than those
closer to the goal. This will increase the time it takes to find the route through to the goal.

If the heuristic underestimates in all possible cases, then the result that A* produces will be
the best path possible. It will be the exact same path that the Dijkstra algorithm would generate.
This avoids the problem we discussed earlier with sub-optimal paths.

If the heuristic ever overestimates, however, this guarantee is lost.
In applications where accuracy is more important than performance, it is important to ensure

that the heuristic is underestimating. When you read articles about path planning in commercial
and academic problems, accuracy is often very important, and so underestimating heuristics
abound. This bias in the literature to underestimating heuristics often influences game developers.

232 Chapter 4 Pathfinding

In practice, try to resist dismissing overestimating heuristics outright. A game isn’t about optimum
accuracy; it’s about believability.

Overestimating Heuristics

If the heuristic is too high, so that it overestimates the actual path length, A* may not return the
best path. A* will tend to generate a path with fewer nodes in it, even if the connections between
nodes are more costly.

The estimated-total-cost value will be biased toward the heuristic. The A* algorithm will pay
proportionally less attention to the cost-so-far and will tend to favor nodes that have less distance
to go. This will move the focus of the search toward the goal faster, but with the prospect of
missing the best routes to get there.

This means that the total length of the path may be greater than that of the best path.
Fortunately, it doesn’t mean you’ll suddenly get very poor paths. It can be shown that if the
heuristic overestimates by at most x (i.e., x is the greatest overestimate for any node in the graph),
then the final path will be no more than x too long.

An overestimating heuristic is sometimes called an“inadmissible heuristic.”This doesn’t mean
you can’t use it; it refers to the fact that the A* algorithm no longer returns the shortest path.

Overestimates can make A* faster if they are almost perfect, because they home in on the goal
more quickly. If they are only slightly overestimating, they will tend to produce paths that are
often identical to the best path, so the quality of results is not a major issue.

But the margin for error is small. As a heuristic overestimates more, it rapidly makes A*
perform worse. Unless your heuristic is consistently close to perfect, it can be more efficient to
underestimate, and you get the added advantage of getting the correct answer.

Let’s look at some common heuristics used in games.

Euclidean Distance

Imagine that the cost values in our pathfinding problem refer to distances in the game level. The
connection cost is generated by the distance between the representative points of two regions.
This is a common case, especially in first-person shooter (FPS) games where each route through
the level is equally possible for each character.

In this case (and in others that are variations on the pure distance approach), a common
heuristic is Euclidean distance. It is guaranteed to be underestimating.

Euclidean distance is “as the crow flies” distance. It is measured directly between two points
in space, through walls and obstructions.

Figure 4.17 shows Euclidean distances measured in an indoor level. The cost of a connection
between two nodes is given by the distance between the representative points of each region. The
estimate is given by the distance to the representative point of the goal node, even if there is no
direct connection.

Euclidean distance is always either accurate or an underestimate. Traveling around walls or
obstructions can only add extra distance. If there are no such obstructions, then the heuristic is
accurate. Otherwise, it is an underestimate.

4.3 A* 233

Goal

1

1

1

1

11

2.2 1.4

Key

Connection cost
Heuristic value

Figure 4.17 Euclidean distance heuristic

In outdoor settings, with few constraints on movement, Euclidean distance can be very accu-
rate and provide fast pathfinding. In indoor environments, such as that shown in Figure 4.17, it
can be a dramatic underestimate, causing less than optimal pathfinding.

Figure 4.18 shows the fill visualized for a pathfinding task through both tile-based indoor and
outdoor levels. With the Euclidean distance heuristic, the fill for the indoor level is dramatic, and
performance is poor. The outdoor level has minimal fill, and performance is good.

Cluster Heuristic

The cluster heuristic works by grouping nodes together in clusters. The nodes in a cluster represent
some region of the level that is highly interconnected. Clustering can be done automatically using
graph clustering algorithms that are beyond the scope of this book. Often, clustering is manual,
however, or a by-product of the level design (portal-based game engines lend themselves well to
having clusters for each room).

A lookup table is then prepared that gives the smallest path length between each pair of clus-
ters. This is an offline processing step that requires running a lot of pathfinding trials between all
pairs of clusters and accumulating their results. A sufficiently small set of clusters is selected
so that this can be done in a reasonable time frame and stored in a reasonable amount of
memory.

234 Chapter 4 Pathfinding

Indoor level Outdoor level

Closed node
Open node
Unvisited node

Key

Figure 4.18 Euclidean distance fill characteristics

When the heuristic is called in the game, if the start and goal nodes are in the same cluster, then
Euclidean distance (or some other fallback) is used to provide a result. Otherwise, the estimate is
looked up in the table. This is shown in Figure 4.19 for a graph where each connection has the
same cost in both directions.

The cluster heuristic often dramatically improves pathfinding performance in indoor areas
over Euclidean distance, because it takes into account the convoluted routes that link seemingly
nearby locations (the distance through a wall may be tiny, but the route to get between the rooms
may involve lots of corridors and intermediate areas).

It has one caveat, however. Because all nodes in a cluster are given the same heuristic value,
the A* algorithm cannot easily find the best route through a cluster. Visualized in terms of fill,
a cluster will tend to be almost completely filled before the algorithm moves on to the next
cluster.

If cluster sizes are small, then this is not a problem, and the accuracy of the heuristic can be
excellent. On the other hand, the lookup table will be large (and the pre-processing time will be
huge).

If cluster sizes are too large, then there will be marginal performance gain, and a simpler
heuristic would be a better choice.

We’ve seen various modifications to the cluster heuristic to provide better estimates within
a cluster, including some that include several Euclidean distance calculations for each estimate.
There are opportunities for performance gain here, but as yet there are no accepted techniques
for reliable improvement. It seems to be a case of experimenting in the context of your game’s
particular level design.

4.3 A* 235

Cluster A

Cluster B

Cluster C

10

12

11 15

9

10
7

13

14
7

5

6
8

8

11

10

12

7

8

2913x

7x13

x729

A

A

B

C

B C

Lookup table

Figure 4.19 The cluster heuristic

Clustering is intimately related to hierarchical pathfinding, explained in Section 4.6, which
also clusters sets of locations together. Some of the calculations we’ll meet there for distance
between clusters can be adapted to calculate the heuristics between clusters.

Even without such optimizations, the cluster heuristic is worth trying for labyrinthine indoor
levels.

Fill Patterns in A*

Figure 4.20 shows the fill patterns of a tile-based indoor level using A* with different heuristics.
The first example uses a cluster heuristic tailored specifically to this level. The second example

used a Euclidean distance, and the final example has a zero heuristic which always returns 0 (the
most dramatic underestimate possible). The fill increases in each example; the cluster heuristic
has very little fill, whereas the zero heuristic fills most of the level.

This is a good example of the knowledge vs. search trade-off we looked at in Chapter 2.
If the heuristic is more complex and more tailored to the specifics of the game level, then the

A* algorithm needs to search less. It provides a good deal of knowledge about the problem. The
ultimate extension of this is a heuristic with ultimate knowledge: completely accurate estimates.
As we have seen, this would produce optimum A* performance with no search.

On the other hand, the Euclidean distance provides a little knowledge. It knows that the cost
of moving between two points depends on their distance apart. This little bit of knowledge goes
a long way, but still requires more searching than the perfect heuristic.

The zero heuristic has no knowledge, and it requires lots of search.

236 Chapter 4 Pathfinding

Cluster heuristic Euclidean distance heuristic Null heuristic

Closed node
Open node
Unvisited node

Key

Figure 4.20 Fill patterns indoors

In our indoor example, where there are large obstructions, the Euclidean distance is not the
best indicator of the actual distance. In outdoor maps, it is far more accurate. Figure 4.21 shows
the zero and Euclidean heuristics applied to an outdoor map, where there are fewer obstructions.
Now the Euclidean heuristic is more accurate, and the fill is correspondingly lower.

In this case Euclidean distance is a very good heuristic, and we have no need to try to produce
a better one. In fact, cluster heuristics don’t tend to improve performance (and can dramatically
reduce it) in open outdoor levels.

Quality of Heuristics

Producing a heuristic is far more of an art than a science. Its significance is massively underesti-
mated by AI developers. In our experience, many developers drop in a simple Euclidean distance
heuristic without thought and hope for the best.

The only surefire way to get a decent heuristic is to visualize the fill of your algorithm. This
can be in-game or using output statistics that you can later examine. We’ve found to our cost that
tweaks to the heuristic we thought would be beneficial have often produced inferior results.

There has been some research done into automatically generating heuristics based on exam-
ining the structure of the graph and its connections. This may lead in time to automated heuristic
algorithms that can produce better than Euclidean performance and may support graphs with
non-distance-based costs. It is an interesting line of attack, but the results have yet to prove
compelling.

4.4 World Representations 237

Closed node
Open node
Unvisited node

Euclidean distance heuristic Null heuristic

Key

Figure 4.21 Fill patterns outdoors

Most developers aim for heuristics that are close, but err on the side of underestimating. The
simplest, and most common, heuristic is Euclidean distance, and it will continue to be so for some
time.

Dijkstra Is A*

It is worth noticing that the Dijkstra algorithm is a subset of the A* algorithm. In A* we calculate
the estimated-total-cost of a node by adding the heuristic value to the cost-so-far. A* then chooses
a node to process based on this value.

If the heuristic always returns 0, then the estimated-total-cost will always be equal to the
cost-so-far. When A* chooses the node with the smallest estimated-total-cost, it is choosing
the node with the smallest cost-so-far. This is identical to Dijkstra. A* with a zero heuristic is
the pathfinding version of Dijkstra.

4.4 World Representations

So far we’ve assumed that pathfinding takes place on a graph made up of nodes and connections
with costs. This is the world that the pathfinding algorithm knows about, but games aren’t made
up of nodes and connections.

238 Chapter 4 Pathfinding

To squeeze your game level into the pathfinder you need to do some translation—from
the geometry of the map and the movement capabilities of your characters to the nodes and
connections of the graph and the cost function that values them.

For each pathfinding world representation, we will divide the game level into linked regions
that correspond to nodes and connections. The different ways this can be achieved are called
division schemes. Each division scheme has three important properties we’ll consider in turn:
quantization/localization, generation, and validity.

You might also be interested in Chapter 11, Tools and Content Creation, which looks at how
the pathfinding data are created by the level designer or by an automatic process. In a complete
game, the choice of world representation will have as much to do with your toolchain as technical
implementation issues.

Quantization and Localization

Because the pathfinding graph will be simpler than the actual game level, some mechanism is
needed to convert locations in the game into nodes in the graph. When a character decides it
wants to reach a switch, for example, it needs to be able to convert its own position and the
position of the switch into graph nodes. This process is called quantization.

Similarly, if a character is moving along a path generated by the pathfinder, it needs to convert
nodes in the plan back into game world locations so that it can move correctly. This is called
localization.

Generation

There are many ways of dividing up a continuous space into regions and connections for path-
finding. There are a handful of standard methods used regularly. Each works either manually
(the division being done by hand) or algorithmically.

Ideally, of course, we’d like to use techniques that can be run automatically. On the other
hand, manual techniques often give the best results, as they can be tuned for each particular game
level.

The most common division scheme used for manual techniques is the Dirichlet domain. The
most common algorithmic methods are tile graphs, points of visibility, and navigation meshes. Of
these, navigation meshes and points of visibility are often augmented so that they automatically
generate graphs with some user supervision.

Validity

If a plan tells a character to move along a connection from node A to node B, then the character
should be able to carry out that movement. This means that wherever the character is in node A,
it should be able to get to any point in node B. If the quantization regions around A and B don’t
allow this, then the pathfinder may have created a useless plan.

4.4 World Representations 239

Figure 4.22 Two poor quantizations show that a path may not be viable

A division scheme is valid if all points in two connected regions can be reached from each
other. In practice, most division schemes don’t enforce validity. There can be different levels of
validity, as Figure 4.22 demonstrates.

In the first part of the figure, the issue isn’t too bad. An “avoid walls” algorithm (see Chapter 3)
would easily cope with the problem. In the second figure with the same algorithm, it is terminal.
Using a division scheme that gave the second graph would not be sensible. Using the first scheme
will cause fewer problems. Unfortunately, the dividing line is difficult to predict, and an easily
handled invalidity is only a small change away from being pathological.

It is important to understand the validity properties of graphs created by each division scheme;
at the very least it has a major impact on the types of character movement algorithm that can be
used.

So, let’s look at the major division schemes used in games.

4.4.1 Tile Graphs

Tile-based levels, in the form of two-dimensional (2D) isometric graphics, have almost disap-
peared from mainstream games. The tile is far from dead, however. Although strictly not made
up of tiles, a large number of games use grids in which they place their three-dimensional (3D)
models. Underlying the graphics is still a regular grid.

This grid can be simply turned into a tile-based graph. Many real-time strategy (RTS) games
still use tile-based graphs extensively, and many outdoor games use graphs based on height and
terrain data.

Tile-based levels split the whole world into regular,usually square, regions (although hexagonal
regions are occasionally seen in turn-based war simulation games).

Division Scheme

Nodes in the pathfinder’s graph represent tiles in the game world. Each tile in the game world
normally has an obvious set of neighbors (the eight surrounding tiles in a rectangular grid, for
example). The connections between nodes connect to their immediate neighbors.

240 Chapter 4 Pathfinding

Quantization and Localization

We can determine which tile any point in the world is within, and this is often a fast process. In
the case of a square grid, we can simply use a character’s x and z coordinates to determine the
square it is contained in. For example,

1 tileX = floor(x / tileSize)
2 tileZ = floor(z / tileSize)

where floor() is a function that returns the highest valued integer less than or equal to its
argument, and tileX and tileZ identify the tile within the regular grid of tiles.

Similarly, for localization we can use a representative point in the tile (often the center of the
tile) to convert a node back into a game location.

Generation

Tile-based graphs are generated automatically. In fact, because they are so regular (always having
the same possible connections and being simple to quantize), they can be generated at runtime.
An implementation of a tile-based graph doesn’t need to store the connections for each node in
advance. It can generate them as they are requested by the pathfinder.

Most games allow tiles to be blocked. In this case the graph will not return connections to
blocked tiles, and the pathfinder will not try to move through them.

For tile-based grids representing outdoor height fields (a rectangular grid of height values),
the costs often depend on gradient. The height field data are used to calculate a connection cost
based both on distance and on gradient. Each sample in the height field represents the center point
of a tile in the graph, and costs can be calculated based on distance and the change in elevation
between the two points. In this way it will cost less to go downhill than uphill.

Validity

In many games that use tile-based layouts, a tile will be either completely blocked or completely
empty. In this case, if the only tiles that are connected are empty, then the graph will be guaranteed
to be valid.

When a graph node is only partially blocked, then the graph may not be valid, depending on
the shape of the blockage. Figure 4.23 shows two cases: one in which a partial blockage does not
make the graph invalid, and another in which it does.

Usefulness

While tile-based levels are one of the easiest to convert to a graph representation, there are often
a vast number of tiles in the game. A small RTS level can have many hundreds of thousands of
tiles. This means that the pathfinder has to work hard to plan sensible paths.

4.4 World Representations 241

Valid partial blockage Invalid partial blockage

Figure 4.23 Tile-based graph with partially blocked validity

When the plans returned by the pathfinder are drawn on the graph (using localization for
each node in the plan), they can appear blocky and irregular. Characters following the plan will
look strange. This is illustrated in Figure 4.24.

While this is a problem with all division schemes, it is most noticeable for tile-based graphs
(see Section 4.4.7 on path smoothing for an approach to solving this problem).

4.4.2 Dirichlet Domains

A Dirichlet domain, also referred to as a Voronoi polygon in two dimensions, is a region around
one of a finite set of source points whose interior consists of everywhere that is closer to that
source point than any other.

Division Scheme

Pathfinding nodes have an associated point in space called the characteristic point, and the quan-
tization takes place by mapping all locations in the point’s Dirichlet domain to the node. To
determine the node for a location in the game, we find the characteristic point that is closest.

The set of characteristic points is usually specified by a level designer as part of the level data.
You can think of Dirichlet domains as being cones originating from the source point. If you

view them from the top, as in Figure 4.25, the area of each cone that you see is the area that
“belongs” to that source point. This is often a useful visualization for troubleshooting.

The basic idea has been extended to use different falloff functions for each node, so some
nodes have a larger “pull” than others in the quantization step. This is sometimes called a weighted
Dirichlet domain: each point has an associated weight value that controls the size of its region.
Changing the weight is equivalent to changing the slope on the cone; squatter cones end up with
larger regions. But care needs to be taken. Once you change the slope, you can get strange effects.

242 Chapter 4 Pathfinding

Key

Output blocky plan

Ideal direct plan

Figure 4.24 Tile-based plan is blocky

Figure 4.25 Dirichlet domains as cones

4.4 World Representations 243

A B A!

Top viewSide view

A B

Figure 4.26 Problem domains with variable falloff

Figure 4.26 shows the Dirichlet domains in a passageway. You can see that the end of the
passageway belongs to the wrong source point: the fat cone has peaked back out. This can make
it difficult to debug pathfinding problems.

If you are manually assigning weighted Dirichlet domains, it’s a good idea to have them
displayed to check for overlapping problems.

Connections are placed between bordering domains. The pattern of connections can be found
using a mathematical structure that has deep connections to Voronoi diagrams, called a Delaunay
triangulation. The edges of the Delaunay triangulation are the connections in the graph, and the
vertices are the characteristic points of the domains. Creating a Delaunay triangulation of a set of
points is beyond the scope of this book. There are many websites dedicated to the algorithms for
constructing Delaunay triangulations.

Most developers don’t bother with a mathematically correct algorithm, however. They either
make the artist specify connections as part of their level design, or they ray cast between points to
check for connections (see the points of visibility method below). Even if you use the Delaunay
triangulation method, you will need to check that domains that touch can actually be moved
between, as there might be a wall in the way, for example.

Quantization and Localization

Positions are quantized by finding the characteristic point that is closest.
Searching through all points to find the closest is a time-consuming process (an O(n) process,

where n is the number of domains). Typically, we will use some kind of spatial partitioning
algorithm (quad-tree, octree, binary space partition, or multi-resolution map) to allow us to
consider only those points that are nearby.

The localization of a node is given by the position of the characteristic point that forms the
domain (i.e., the tip of the cone in the example above).

Validity

Dirichlet domains can form intricate shapes. There is no way to guarantee that traveling from a
point in one domain to a point in a connected domain will not pass through a third domain. This

244 Chapter 4 Pathfinding

third domain might be impassable and might have been discounted by the pathfinder. In this case,
following the path will lead to a problem. Strictly, therefore, Dirichlet domains produce invalid
graphs.

In practice, however, the placement of nodes is often based on the structure of obstacles.
Obstacles are not normally given their own domains, and so the invalidity of the graph is rarely
exposed.

To make sure, you can provide some kind of backup mechanism (like an avoid walls steering
behavior) to solve the issue and avoid your characters happily running headfirst into walls.

Usefulness

Dirichlet domains are very widely used. They have the advantage of being very easy to program
(automatic generation of connections aside) and easy to change. It is possible to rapidly change
the structure of the pathfinding graph in a level editing program without having to change any
level geometry.

4.4.3 Points of Visibility

It can be shown that the optimal path through any 2D environment will always have inflection
points (i.e., points on the path where the direction changes) at convex vertices in the environment.
If the character that is moving has some radius, these inflection points are replaced by arcs of a
circle at a distance away from the vertex. This is illustrated in Figure 4.27.

In three dimensions, the same thing applies, but inflection points are located at either convex
polygon edges or vertices.

In either case, we can approximate these inflection points by choosing a characteristic point
that is shifted out from the vertices a short distance. This will not give us the curves, but it will
give us believable paths. These new characteristic points can be calculated from the geometry by
extending out the geometry a little way and calculating where the edges of the new geometry are.

Division Scheme

Since these inflection points naturally occur in the shortest path, we can use them as nodes in the
pathfinding graph.

Working on the actual level geometry will provide us with far too many inflection points.
A simplified version is needed so that we can find inflection points where the large-scale geometry
changes. It may be possible to take these points from collision geometry, or they may need to be
generated specially.

These inflection points can then be used as the node locations to build a graph.
To work out how these points are connected, rays are cast between them, and a connection

is made if the ray doesn’t collide with any other geometry. This is almost equivalent to saying
that one point can be seen from the other. For this reason it is called a “points of visibility”

4.4 World Representations 245

Key

Optimal path for zero-width character

Path for character with width

Path using vertex offsets

Original characteristic points at vertices

Offset characteristic points

Figure 4.27 Path with inflections at vertices

approach. In many cases the resultant graph is huge. A complex cavern, for example, may have
many hundreds of inflection points, each of which may be able to see most of the others. This is
shown in Figure 4.28.

Quantization, Localization, and Validity

Points of visibility are usually taken to represent the centers of Dirichlet domains for the purpose
of quantization.

246 Chapter 4 Pathfinding

Connection between nodes

Key

Figure 4.28 Points of visibility graph bloat

In addition, if Dirichlet domains are used for quantization, points quantized to two connected
nodes may not be able to reach each other. As we saw in Dirichlet domains above, this means that
the graph is strictly invalid.

Usefulness

Despite its major shortcomings, a points of visibility approach is a relatively popular method for
automatic graph generation.

However, we think the results are not worth the effort. In our experience a lot of fiddling and
clearing up by hand is needed, which defeats the object. We’d recommend looking at navigation
meshes instead.

Some AI developers will passionately disagree, however, and swear by points of visibility.

4.4.4 Navigation Meshes

Tile-based graphs, Dirichlet domans, and points of visibility are all useful division schemes to have
in your toolbox, but the majority of modern games use navigation meshes (often abbreviated to
“navmesh”) for pathfinding.

4.4 World Representations 247

The navigation mesh approach to pathfinding takes advantage of the fact that the level designer
already needs to specify the way the level is connected, the regions it has, and whether there is any
AI in the game or not. The level itself is made up of polygons connected to other polygons. We
can use this graphical structure as the basis of a pathfinding representation.

Division Scheme

Many games use floor polygons, as defined by artists, as regions. Each polygon acts as a node in
the graph, as shown in Figure 4.29.

The graph is based on the mesh geometry of the level and therefore is often called a navigation
mesh, or just “navmesh.”

Nodes are connected if their corresponding polygons share an edge. Floor polygons are typi-
cally triangles, but may be quads. Nodes therefore have either three or four connections.

Creating a navigation mesh usually involves the artist labeling particular polygons as floor
in their modeling package. They may need to do this anyway to specify sound effects or grip
characteristics. Navigation meshes require less artist intervention than other approaches, with the
exception of tile-based graphs.

Key

Edge of a floor polygon
Connection between nodes

Figure 4.29 Polygonal mesh graph

248 Chapter 4 Pathfinding

Quantization and Localization

A position is localized into the floor polygon that contains it. We could search a large number of
polygons to find the right one, or we could use a coherence assumption.

Coherence refers to the fact that, if we know which location a character was in at the previous
frame, it is likely to be in the same node or an immediate neighbor on the next frame. We can
check these nodes first.

This approach is useful in lots of division schemes, but is particular crucial when dealing with
navigation maps.

The only wrinkle occurs when a character is not touching the floor. We can simply find the
first polygon below it and quantize it to that. Unfortunately, it is possible for the character to be
placed in a completely inappropriate node as it falls or jumps. In Figure 4.30, for example, the
character is quantized to the bottom of the room, even though it is actually using the walkways
above. This may then cause the character to replan its route as if it were in the bottom of the
room; not the desired effect.

Localization can choose any point in the polygon, but normally uses the geometric center
(the average position of its vertices). This works fine for triangles. For quads or polygons with
more sides, the polygon must be concave for this to work. Geometric primitives used in graphics
engines have this requirement anyway. So if we are using the same primitives used for rendering,
we are safe.

Figure 4.30 Quantization into a gap

4.4 World Representations 249

Figure 4.31 Non-interpolation of the navigation mesh

Validity

The regions generated by navigation meshes can be problematic. We have assumed that any point
in one region can move directly to any point in a connected region, but this may not be the case.
See Figure 4.31 for an example that contains a pair of triangles with areas where traveling directly
between them causes a collision.

Because floor polygons are created by the level designer, this situation can be mitigated.
The geometry naturally created by most sensible level designers does not suffer from major
problems.

Usefulness

Using this approach also requires additional processing to take into account the agent’s geometry.
Since not all locations in a floor polygon may be occupied by a character (some are too close to
the wall), some trimming is required; this may affect the connections generated by finding shared
edges. This problem is especially evident at convex areas such as doorways.

Despite this, it is an overwhelmingly popular approach. Games such as Jak and Daxter
[Naughty Dog, Inc., 2001] and hundreds of others use this approach, as does the PathEngine
middleware solution.

For the occasional game that needs it, this approach offers the additional benefit of allowing
characters to plan routes up walls, across ceilings, or for any other kind of geometry. This might
be useful if characters stick to walls, for example. It is much more difficult to achieve the same
result with other world representations.

Edges as Nodes

Floor polygons can also be converted into a pathfinding graph by assigning nodes to the
edges between polygons and using connections across the face of each polygon. Figure 4.32
illustrates this.

250 Chapter 4 Pathfinding

Figure 4.32 Portal representation of a navigation mesh

Figure 4.33 Different node positions for different directions

This approach is also commonly used in association with portal-based rendering, where
nodes are assigned to portals and where connections link all portals within the line of sight of one
another. Portal rendering is a graphics technique where the geometry of the whole level is split
into chunks, linked by portals, a 2D polygonal interface between the regions. By separating the
level into chunks, it is easier to test which chunks need to be drawn, reducing the rendering time.
Full details are beyond the scope of this book, but should be covered in any good modern text on
game engine design.

In the navigation mesh, the edges of every floor polygon act like a portal and therefore have
their own node. We don’t need to do the line-of-sight tests. By definition, each edge of a convex
floor polygon can be seen from every other edge.

Some articles we’ve come across suggest that the nodes on the edges of floor polygons are placed
dynamically in the best position as the pathfinder does its work. Depending on the direction that
the character is moving, the nodes should be at a different location. This is shown in Figure 4.33.

This is a kind of continuous pathfinding, and we’ll look at the algorithm for continuous
pathfinding later in the chapter. In our opinion, however, this approach is overkill. It is better to
work with the faster fixed graph. If the resulting path looks too crinkled, then a path smoothing
step (which we’ll cover in Section 4.4.7) is perfectly sufficient.

Both the polygon-as-node and the edge-as-node representations are known as navigation
meshes. Often, one or the other approach is assumed, so it is worth making sure that whatever
source you are using makes it clear which version they are talking about.

4.4 World Representations 251

4.4.5 Non-Translational Problems

There is nothing in the above discussion about regions and connections that requires us to be
dealing with positions only.

In some tile-based games, where agents cannot turn quickly, tiles are created for each location
and orientation, so an agent with a large turning circle can only move to a tile with a slightly
different orientation in one step.

In Figure 4.34 an agent cannot turn without moving and can only turn by 90◦ at a time.
Nodes A1, A2, A3, and A4 all correspond to the same location. They represent different orienta-
tions, however, and they have different sets of connections. The quantization of an agent’s state
into a graph node needs to take account of both its position and its orientation.

The result from planning on this graph will be a sequence of translations and rotations. A plan
on the graph in Figure 4.34 is shown in Figure 4.35.

4.4.6 Cost Functions

In the simplest cases, where we are interested in finding the shortest path, the cost of a connection
can represent distance. The higher the cost, the larger the distance between nodes.

If we are interested in finding the quickest path to move along, we could use costs that depend
on time. This isn’t the same thing as distance; it is quicker to run 10 feet than to climb a 10-foot
ladder.

We can add all sorts of other concerns to the costs on a graph. In an RTS, for example,
we could make certain connections more costly if they were exposed to enemy fire or if they
wandered too near to dangerous terrain. The final path would then be the one with the lowest
danger.

Often, the cost function is a blend of many different concerns, and there can be differ-
ent cost functions for different characters in a game. A reconnaissance squad, for example,
may be interested in visibility and speed. A heavy artillery weapon would be more inter-
ested in terrain difficulty. This is called tactical pathfinding, and we’ll look at it in depth in
Chapter 6.

4.4.7 Path Smoothing

A path that travels from node to node through a graph can appear erratic. Sensible node placing
can give rise to very odd looking paths. Figure 4.36 shows a section of a level with nodes placed
in a reasonable manner. The path shown constantly switches direction; a character following the
path will not look intelligent.

Some world representations are more prone to rough paths than others. Portal representations
with points of visibility connections can give rise to very smooth paths, while tile-based graphs
tend to be highly erratic. The final appearance also depends on how characters act on the path. If
they are using some kind of path following steering behavior (see Chapter 3), then the path will

252 Chapter 4 Pathfinding

A1 B1

C1

A2 B2

C2

A4 B4

C4

A3 B3

C3

Figure 4.34 A non-translational tile-based world

A1 B1

C1

A2 B2

C2

A4 B4

C4

A3 B3

C3

Move forward

Rotate right 90 degrees

Rotate right 90 degrees

Move forward

Figure 4.35 Plan on a non-translational tile graph

4.4 World Representations 253

Key

Original path

Smoothed path

Optimal smoothing

Figure 4.36 Smoothed path with optimal smoothing indicated

be gently smoothed by the steering. It is worth testing your game before assuming the path will
need smoothing.

For some games, path smoothing is essential to get the AI looking smart. The path smoothing
algorithm is relatively simple to implement but involves queries to the level geometry. Therefore,
it can be somewhat time-consuming.

The Algorithm

We will assume in this algorithm that there is a clear route between any two adjacent nodes in the
input path. In other words, we are assuming that the division scheme is valid.

First, we create a new empty path. This is the output path. We add the start node to it. The
output path will start and end at the same nodes as the input path.

Starting at the third node in the input path, a ray is cast to each node in turn from the last
node in the output path. We start at the third node because we are assuming that there is a clear
line (a passed ray cast) between the first and second nodes.

When a ray fails to get through, the previous node in the input path is added to the output
path. Ray casting starts again from the next node in the input path. When the end node is reached,
it is added to the output path. The output path is used as the path to follow.

Figure 4.36 illustrates a path that has been smoothed with this algorithm.
Although this algorithm produces a smooth path, it doesn’t search all possible smoothed paths

to find the best one. The figure shows the smoothest possible path in our example; it cannot be
generated by this algorithm. To generate the smoothest path, we’d need another search among all
possible smoothed paths. This is rarely, if ever, necessary.

254 Chapter 4 Pathfinding

Pseudo-Code

The path smoothing algorithm takes an input path made up of nodes and returns a smoothed
output path:

1 def smoothPath(inputPath):
2

3 # If the path is only two nodes long, then
4 # we can’t smooth it, so return
5 if len(inputPath) == 2: return inputPath
6

7 # Compile an output path
8 outputPath = [inputPath[0]]
9

10 # Keep track of where we are in the input path
11 # We start at 2, because we assume two adjacent
12 # nodes will pass the ray cast
13 inputIndex = 2
14

15 # Loop until we find the last item in the input
16 while inputIndex < len(inputPath)-1:
17

18 # Do the ray cast
19 if not rayClear(outputPath[len(outputPath)-1],
20 inputPath[inputIndex]):
21

22 # The ray text failed, add the last node that
23 # passed to the output list
24 outputPath += inputPath[inputIndex-1]
25

26 # Consider the next node
27 inputIndex ++
28

29 # We’ve reached the end of the input path, add the
30 # end node to the output and return it
31 outputPath += inputPath[len(inputPath)-1]
32 return outputPath

Data Structures and Interfaces

The pseudo-code works with paths that are a list of nodes. The pathfinding algorithms so far have
returned a path as a list of connections. Although we could take this kind of path as input, the
output path cannot be made up of connections. The smoothing algorithm links nodes that are in

4.6 Hierarchical Pathfinding 255

line of sight, but are unlikely to have any connections between them (if they were connected in
the graph, the pathfinder would have found the smoothed route directly, unless their connections
had dramatically large costs).

Performance

The path smoothing algorithm is O(1) in memory, requiring only temporary storage. It is O(n)
in time, where n is the number of nodes in the path.

The majority of the time spent in this algorithm is spent carrying out ray casting checks.

4.5 Improving on A*

With a good heuristic, A* is a very efficient algorithm. Even simple implementations can plan
across many tens of thousands of nodes in a frame. Even better performance can be achieved
using additional optimizations, such as those we considered in the previous sections.

Many game environments are huge and contain hundreds of thousands or even millions of
locations. Massively multi-player online games (MMOGs) may be hundreds of times larger still.
While it is possible to run an A* algorithm on an environment of this size, it will be extremely
slow and take a huge amount of memory. The results are also less than practical. If a character is
trying to move between cities in an MMOG, then a route that tells it how to avoid a small boulder
in the road five miles away is overkill. This problem can be better solved using hierarchical
pathfinding.

Often, many different plans need to be made in quick succession: a whole army may need to
plan its routes through a battlefield, for example. Other techniques, such as dynamic pathfinding,
can increase the speed of replanning, and a number of A* variations dramatically reduce the
amount of memory required to find a path, at the cost of some performance.

The remainder of this chapter will look at some of these issues in detail and will try to give a
flavor for the range of different A* variations that are possible.

4.6 Hierarchical Pathfinding

Hierarchical pathfinding plans a route in much the same way as a person would. We plan an
overview route first and then refine it as needed. The high-level overview route might be “To get
to the rear parking lot, we’ll go down the stairs, out of the front lobby, and around the side of the
building,” or “We’ll go through the office, out the fire door, and down the fire escape.” For a longer
route, the high-level plan would be even more abstract: “To get to the London office, we’ll go to
the airport, catch a flight, and get a cab from the airport.”

Each stage of the path will consist of another route plan. To get to the airport, for example,
we need to know the route. The first stage of this route might be to get to the car. This, in turn,
might require a plan to get to the rear parking lot, which in turn will require a plan to maneuver
around the desks and get out of the office.

256 Chapter 4 Pathfinding

This is a very efficient way of pathfinding. To start with, we plan the abstract route, take the
first step of that plan, find a route to complete it, and so on down to the level where we can actually
move. After the initial multi-level planning, we only need to plan the next part of the route when
we complete a previous section. When we arrive at the bottom of the stairs, on our way to the
parking lot (and from there to the London office), we plan our route through the lobby. When we
arrive at our car, we then have completed the “get to the car” stage of our more abstract plan, and
we can plan the “drive to the airport” stage.

The plan at each level is typically simple, and we split the pathfinding problem over a long
period of time, only doing the next bit when the current bit is complete.

4.6.1 The Hierarchical Pathfinding Graph

To be able to pathfind at higher levels we can still use the A* algorithm and all its optimizations.
In order to support hierarchical pathfinding, we need to alter the graph data structure.

Nodes

This is done by grouping locations together to form clusters. The individual locations for a whole
room, for example, can be grouped together. There may be 50 navigation points in the room, but
for higher level plans they can be treated as one. This group can be treated as a single node in the
pathfinder, as shown in Figure 4.37.

This process can be repeated as many times as needed. The nodes for all the rooms in one
building can be combined into a single group, which can then be combined with all the buildings
in a complex, and so on. The final product is a hierarchical graph. At each level of the hierarchy,
the graph acts just like any other graph you might pathfind on.

Figure 4.37 Hierarchical nodes

4.6 Hierarchical Pathfinding 257

To allow pathfinding on this graph, you need to be able to convert a node at the lowest level
of the graph (which is derived from the character’s position in the game level) to one at a higher
level. This is the equivalent of the quantization step in regular graphs. A typical implementation
will store a mapping from nodes at one level to groups at a higher level.

Connections

Pathfinding graphs require connections as well as nodes. The connections between higher level
nodes need to reflect the ability to move between grouped areas. If any low-level node in one
group is connected to any low-level node in another group, then a character can move between
the groups, and the two groups should have a connection.

Figure 4.38 shows the connections between two nodes based on the connectivity of their
constituent nodes at the next level down in the hierarchy.

Connection Costs

The cost of a connection between two groups should reflect the difficulty of traveling between
them. This can be specified manually, or it can be calculated from the cost of the low-level
connections between those groups.

Level 1
Connection details omitted

Level 2 Level 3

End node

Start node

End node

Start node

End node

Start node

Figure 4.38 A hierarchical graph

258 Chapter 4 Pathfinding

A1

B1

C1

C6

C2

C3

C4 C5

C7

D1

D2

Figure 4.39 A tile-based representation of a level with groups marked

This is a complex calculation, however. Figure 4.39 shows that the cost of moving from
group C to group D depends on whether you entered group C from group A (a cost of 5) or from
group B (a cost of 2).

In general, the grouping should be chosen to minimize this problem, but it cannot be resolved
easily.

There are three heuristics that are commonly used, straight or blended, to calculate the con-
nection cost between groups.

Minimum Distance

The first is minimum distance. This heuristic says that the cost of moving between two groups
is the cost of the cheapest link between any nodes in those groups. This makes sense because the
pathfinder will try to find the shortest route between two locations. In the example above, the
cost of moving from C to D would be 1. Note that if you entered C from either A or B, it would
take more than one move to get to D. The value of 1 is almost certainly too low, but this may be
an important property depending on how accurate you want your final path to be.

Maximin Distance

The second is the “maximin” distance. For each incoming link, the minimum distance to any
suitable outgoing link is calculated. This calculation is usually done with a pathfinder. The largest
of these values is then added to the cost of the outgoing link and used as the cost between
groups.

In the example, to calculate the cost of moving from C to D, two costs are calculated: the
minimum cost from C1 to C5 (4) and the minimum cost from C6 to C7 (1). The largest of these
(C1 to C5) is then added to the cost of moving from C5 to D1 (1). This leaves a final cost from C
to D of 5. To get from C to D from anywhere other than C1, this value will be too high. Just like
the previous heuristic, this may be what you need.

4.6 Hierarchical Pathfinding 259

Average Minimum Distance

A value in the middle of these extremes is sometimes better. The “average minimum” distance is
a good general choice. This can be calculated in the same way as the maximin distance, but the
values are averaged, rather than simply selecting the largest. In our example, to get from C to D
coming from B (i.e., via C6 and C7), the cost is 2, and when coming from A (via C2 to C5) it is 5.
So the average cost of moving from C to D is 31

2 .

Summary of the Heuristics

The minimum distance heuristic is very optimistic. It assumes that there will never be any cost to
moving around the nodes within a group. The maximin distance heuristic is pessimistic. It finds
one of the largest possible costs and always uses that. The average minimum distance heuristic is
pragmatic. It gives the average cost you’ll pay over lots of different pathfinding requests.

The approach you choose isn’t only dictated by accuracy; each heuristic has an effect on the
kinds of paths returned by a hierarchical pathfinder. We’ll return to why this is so after we look in
detail at the hierarchical pathfinding algorithm.

4.6.2 Pathfinding on the Hierarchical Graph

Pathfinding on a hierarchical graph uses the normal A* algorithm. It applies the A* algorithm
several times, starting at a high level of the hierarchy and working down. The results at high levels
are used to limit the work it needs to do at lower levels.

Algorithm

Because a hierarchical graph may have many different levels, the first task is to find which level to
begin on. We want as high a level as possible, so we do the minimum amount of work. However,
we also don’t want to be solving trivial problems either.

The initial level should be the first in which the start and goal locations are not at the same
node. Any lower and we would be doing unnecessary work; any higher and the solution would be
trivial, since the goal and start nodes are identical.

In Figure 4.38 the pathfinding should take place initially at level 2, because level 3 has the start
and end locations at the same node.

Once a plan is found at the start level, then the initial stages of the plan need to be refined. We
refine the initial stages because those are the most important for moving the character. We won’t
initially need to know the fine detail of the end of the plan; we can work that out nearer the time.

The first stage in the high-level plan is considered (occasionally, it can be useful to consider
the first few; this is a heuristic that needs to be tried for different game worlds). This small section
will be refined by planning at a slightly lower level in the hierarchy.

The start point is the same, but if we kept the end point the same we’d be planning through
the whole graph at this level, so our previous planning would be wasted. So, the end point is set
at the end of the first move in the high-level plan.

260 Chapter 4 Pathfinding

For example, if we are planning through a set of rooms, the first level we consider might give
us a plan that takes us from where our character is in the lobby to the guardroom and from there
to its goal in the armory. At the next level we are interested in maneuvering around obstacles in
the room, so we keep the start location the same (where the character currently is), but set the
end location to be the doorway between the lobby and the guardroom. At this level we will ignore
anything we may have to do in the guardroom and beyond.

This process of lowering the level and resetting the end location is repeated until we reach
the lowest level of the graph. Now we have a plan in detail for what the character needs to do
immediately. We can be confident that, even though we have only looked in detail at the first few
steps, making those moves will still help us complete our goal in a sensible way.

Pseudo-Code

The algorithm for hierarchical pathfinding has the following form:

1 def hierarchicalPathfind(graph, start, end, heuristic):
2

3 # Check if we have no path to find
4 if start == end: return None
5

6 # Set up our initial pair of nodes
7 startNode = start
8 endNode = end
9 levelOfNodes = 0

10

11 # Descend through levels of the graph
12 currentLevel = graph.getLevels()-1
13 while currentLevel >= 0:
14

15 # Find the start and end nodes at this level
16 startNode = graph.getNodeAtLevel(0, start,
17 currentLevel)
18 endNode = graph.getNodeAtLevel(levelOfNodes,
19 endNode, currentLevel)
20 levelOfNodes = currentLevel
21

22 # Are the start and end node the same?
23 if startNode == endNode:
24

25 # Skip this level
26 continue
27

28 # Otherwise we can perform the plan

4.6 Hierarchical Pathfinding 261

29 graph.setLevel(currentLevel)
30 path = pathfindAStar(graph, startNode, endNode, heuristic)
31

32 # Now take the first move of this plan and use it
33 # for the next run through
34 endNode = path[0].getToNode()
35

36 # The last path we considered would have been the
37 # one at level zero: we return it.
38 return path

Data Structures and Interfaces

We have made some additions to our graph data structure. Its interface now looks like the
following:

1 class HierarchicalGraph (Graph):
2

3 # ... Inherits getConnections from graph ...
4

5 # Returns the number of levels in the graph
6 def getLevels()
7

8 # Sets the graph so all future calls to getConnections
9 # are treated as requests at the given level

10 def setLevel(level)
11

12 # Converts the node at the input level into a node
13 # at the output level.
14 def getNodeAtLevel(inputLevel, node, outputLevel)

The setLevel method switches the graph into a particular level. All calls to getConnections
then act as if the graph was just a simple, non-hierarchical graph at that level. The A* function
has no way of telling that it is working with a hierarchical graph; it doesn’t need to.

The getNodeAtLevel method converts nodes between different levels of the hierarchy. When
increasing the level of a node, we can simply find which higher level node it is mapped to. When
decreasing the level of a node, however, one node might map to any number of nodes at the next
level down.

This is just the same process as localizing a node into a position for the game. There are
any number of positions in the node, but we select one in localization. The same thing needs to
happen in the getNodeAtLevel method. We need to select a single node that can be representative
of the higher level node. This is usually a node near the center, or it could be the node that covers

262 Chapter 4 Pathfinding

the greatest area or the most connected node (an indicator that it is a significant one for route
planning).

We have personally used a fixed node at a lower level, generated by finding the node closest
to the center of all those mapped to the same higher level node. This is a fast, geometric, pre-
processing step that doesn’t require human intervention. This node is then stored with the higher
level node, and it can be returned when needed without additional processing. This has worked
well and produced no problems for us, but you may prefer to try different methods or manual
specification by the level designer.

Performance

The A* algorithm has the same performance characteristics as before, since we are using it
unchanged.

The hierarchical pathfinder function is O(1) in memory and O(p) in time, where p is the
number of levels in the graph. Overall, the function is O(plm) in time. Obviously, this appears to
be slower than the basic pathfinding algorithm.

And it may be. It is possible to have a hierarchical graph that is so poorly structured that the
overall performance is lower. In general, however, there are p stages of the O(lm) A* algorithm,
but in each case the number of iterations (l) should be much smaller than a raw A* call, and the
practical performance will be significantly higher.

For large graphs (tens of thousands of nodes, for example) it is not uncommon to see two
orders of magnitude improvement in running speed, using several levels in the hierarchy. We’ve
used this technique to allow characters to pathfind on a graph with a hundred million nodes in
real time (with the AI getting 10% of the processor time).

4.6.3 Hierarchical Pathfinding on Exclusions

A character can only follow the plan generated by the previous algorithm for a short time. When
it reaches the end of the lowest level plan, it will need to plan its next section in more detail.

When its plan runs out, the algorithm is called again, and the next section is returned. If you
use a pathfinding algorithm that stores plans (see Section 4.7, Other Ideas in Pathfinding), the
higher level plans won’t need to be rebuilt from scratch (although that is rarely a costly process).

In some applications, however, you might prefer to get the whole detailed plan up front. In
this case hierarchical pathfinding can still be used to make the planning more efficient.

The same algorithm is followed, but the start and end locations are never moved. Without
further modification, this would lead to a massive waste of effort, as we are performing a complete
plan at each level.

To avoid this, at each lower level, the only nodes that the pathfinder can consider are those
that are within a group node that is part of the higher level plan.

For example, in Figure 4.40 the first high-level plan is shown. When the low-level plan is made
(from the same start and end locations), all the shaded nodes are ignored. They are not even
considered by the pathfinder. This dramatically reduces the size of the search, but it can also miss
the best route, as shown.

4.6 Hierarchical Pathfinding 263

High-level plan Low-level plan

Key

Excluded nodes

Plan found

Better plan missed

Figure 4.40 Switching off nodes as the hierarchy is descended

It is not as efficient as the standard hierarchical pathfinding algorithm, but it can still be a very
powerful technique.

4.6.4 Strange Effects of Hierarchies on Pathfinding

It is important to realize that hierarchical pathfinding gives an approximate solution. Just like
any other heuristic, it can perform well in certain circumstances and poorly in others. It may be
that high-level pathfinding finds a route that can be a shortcut at a lower level. This shortcut will
never be found, because the high-level route is “locked in” and can’t be reconsidered.

The source of this approximation is the link costs we calculated when we turned the lowest
level graph into a hierarchical graph. Because no single value can accurately represent all the
possible routes through a group of nodes, they will always be wrong some of the time.

Figures 4.41 and 4.42 show cases in which each method of calculating the link cost produces
the wrong path.

In Figure 4.41 we see that because the minimum cost is 1 for all connections between rooms,
the path planner chooses the route with the smallest number of rooms, rather than the much more
direct route. The minimum cost method works well for situations where each room is roughly
the same size.

We see in Figure 4.42 that the obvious, direct route is not used because the connection has
a very large maximin value. The maximin algorithm works better when every route has to pass
through many rooms.

264 Chapter 4 Pathfinding

Level 1 Level 2

Key

Generated path: cost = 25

Optimal path: cost = 9

End node

Start node

1

1

11

1
1

1

1
1

1

1

End node

Start node

7

5

4

8
3

Figure 4.41 Pathological example of the minimum method

Level 1 Level 2

Key

Generated path: cost = 25

Optimal path: cost = 12

End node

Start node

1

10

1
1

1
1

10

1

1

1End node

Start node

7

5

4

2

3

1

Figure 4.42 Pathological example of the maximin method

4.6 Hierarchical Pathfinding 265

In the same example, using the average minimum method does not help, since there is only
one route between rooms. The direct route is still not used. The average minimum method often
performs better than the maximin method, except in cases where most of the rooms are long
and thin with entrances at each end (networks of corridors, for example) or when there are few
connections between rooms.

The failure of each of these methods doesn’t indicate that there is another, better method that
we haven’t found yet; all possible methods will be wrong in some cases. Whatever method you
use, it is important to understand what effects the wrongness has. One of the scenarios above, or a
blend of them, is likely to provide the optimum trade-off for your game, but finding it is a matter
of tweaking and testing.

4.6.5 Instanced Geometry

In a single-player game or a level-based multi-player game, all the detail for a level is typically
unique. If multiple copies of the same geometry are used, then they are usually tweaked to be
slightly different. The pathfinding graph is unique for the whole level, and it doesn’t make sense
to use the same subsection of the graph for more than one area in the level.

For massively multi-player games, the whole world can consist of a single level. There is no way
to have the same detailed, unique modeling on this scale. Most MMOGs use one large definition
for the topology of the landscape (typically, a height field grid that can be represented to the
pathfinding system as a tile-based graph). Onto this landscape buildings are placed, either as a
whole or as entrances to a separate mini-level representing the inside of the building. Tombs,
castles, caves, or spaceships can all be implemented in this way. We’ve used the technique to model
bridges connecting islands in a squad-based game, for example. For simplicity, we’ll refer to them
all as buildings in this section.

These placed buildings are sometimes unique (for special areas with significance to the game
content). In most cases, however, they are generic. There may be 20 farmhouse designs, for
example, but there may be hundreds of farmhouses across the world. In the same way that the
game wouldn’t store many copies of the geometry for the farmhouse, it shouldn’t store many
copies of the pathfinding graph.

We would like to be able to instantiate the pathfinding graph so that it can be reused for every
copy of the building.

Algorithm

For each type of building in the game, we have a separate pathfinding graph. The pathfinding
graph contains some special connections labeled as “exits” from the building. These connections
leave from nodes that we’ll call “exit nodes.” They are not connected to any other node in the
building’s graph.

For each instance of a building in the game, we keep a record of its type and which nodes in
the main pathfinding graph (i.e., the graph for the whole world) each exit is attached to. Similarly,
we store a list of nodes in the main graph that should have connections into each exit node in
the building graph. This provides a record of how the building’s pathfinding graph is wired into
the rest of the world.

266 Chapter 4 Pathfinding

Instance Graph

The building instance presents a graph to be used by the pathfinder. Let’s call this the instance
graph. Whenever it is asked for a set of connections from a node, it refers to the corresponding
building type graph and returns the results.

To avoid the pathfinder getting confused about which building instance it is in, the instance
makes sure that the nodes are changed so that they are unique to each instance.

The instance graph is simply acting as a translator. When asked for connections from a node,
it translates the requested node into a node value understood by the building graph. It then
delegates the connection request to the building graph, as shown in Figure 4.43. Finally, it trans-
lates the results so that the node values are all instance-specific again and returns the result to the
pathfinder.

For exit nodes, the process adds an additional stage. The building graph is called in the normal
way, and its results are translated. If the node is an exit node, then the instance graph adds the
exit connections, with destinations set to the appropriate nodes in the main pathfinding graph.

Because it is difficult to tell the distance between nodes in different buildings, the connection
costs of exit connections are often assumed to be zero. This is equivalent to saying that the source
and destination nodes of the connection are at the same point in space.

World Graph

To support entrance into the building instance, a similar process needs to occur in the main
pathfinding graph. Each node requested has its normal set of connections (the eight adjacent

Node 101 Node 1
Instance graph Building graph

Node 102

Node 103

is translated into
Current node

Node 2

Node 3

Figure 4.43 The delegation in progress

4.6 Hierarchical Pathfinding 267

Node 101 Node 1World graph Building graph

Node 102

Node 103

is translated into
Current node

Node 2

Node 3

Node 3 Node 4

Node 1 Node 2

Figure 4.44 An instance in the world graph

neighbors in a tile-based graph, for example). It may also have connections into a building
instance. If so, the world graph adds the appropriate connection to the list. The destination node
of this connection is looked up in the instance definition, and its value is in instance graph format.
This is illustrated in Figure 4.44.

The pathfinder, as we’ve implemented it in this chapter, can only handle one graph at a time.
The world graph manages all the instance graphs to make it appear as if it is generating the
whole graph. When asked for the connections from a node, it first works out which building
instance the node value is from or if it is from the main pathfinding graph. If the node is
taken from a building, it delegates to that building to process the getConnections request and
returns the result unchanged. If the node is not taken from a building instance, it delegates
to the main pathfinding graph, but this time adds connections for any entrance nodes into a
building.

If you are building a pathfinder from scratch to use in a game where you need instancing, it is
possible to include the instancing directly in the pathfinding algorithm, so it makes calls to both
the top-level graph and the instanced graphs. This approach makes it much more difficult to later
incorporate other optimizations such as hierarchical pathfinding, or node array A*, however, so
we’ll stick with the basic pathfinding implementation here.

Pseudo-Code

To implement instanced geometry we need two new implicit graphs: one for building instances
and one for the main pathfinding graph.

268 Chapter 4 Pathfinding

We’ve added the data used to store the building instance with the instance graph class, since
the same data are needed for each. The instance graph implementation therefore has the following
form:

1 class InstanceGraph (Graph):
2

3 # Holds the building graph to delegate to
4 buildingGraph
5

6 # Holds data for exit nodes
7 struct ExitNodeAssignment:
8 fromNode
9 toWorldNode

10

11 # Holds a hash of exit node assignments for
12 # connections to the outside world
13 exitNodes
14

15 # Stores the offset for the nodes values used in
16 # this instance.
17 nodeOffset
18

19 def getConnections(fromNode):
20

21 # Translate the node into building graph values+
22 buildingFromNode = fromNode - nodeOffset
23

24 # Delegate to the building graph
25 connections =
26 buildingGraph.getConnections(buildingFromNode)
27

28 # Translate the returned connections into instance
29 # node values
30 for connection in connections:
31 connection.toNode += nodeOffset
32

33 # Add connections for each exit from this node
34 for exitAssignment in exitNodes[fromNode]:
35 connection = new Connection
36 connection.fromNode = fromNode
37 connection.toNode = exitAssignment.toWorldNode
38 connection.cost = 0

4.6 Hierarchical Pathfinding 269

39 connections += connection
40

41 return connections

The main pathfinding graph has the following structure:

1 class MainGraph (Graph):
2

3 # Holds the graph for the rest of the world
4 worldGraph
5

6 # Holds data for a building instance
7 struct EntranceNodeAssignment:
8 fromNode
9 toInstanceNode

10 instanceGraph
11

12 # Holds entrance node assignments. This data structure
13 # can act as a hash, and is described below.
14 buildingInstances
15

16 # Holds a record of
17

18 def getConnections(fromNode):
19

20 # Check if the fromNode is in the range of any
21 # building instances
22 building = buildingInstances.getBuilding(fromNode)
23

24 # If we have a building, then delegate to the building
25 if building:
26 return building.getConnections(fromNode)
27

28 # Otherwise, delegate to the world graph
29 else:
30 connections = worldGraph.getConnections(fromNode)
31

32 # Add connections for each entrance from this node.
33 for building in buildingInstances[fromNode]:
34 connection = new Connection
35 connection.fromNode = fromNode

270 Chapter 4 Pathfinding

36 connection.toNode = building.toInstanceNode
37 connection.cost = 0
38 connections += connection
39

40 return connections

Data Structures and Interfaces

In the instance graph class, we access the exit nodes as a hash, indexed by node number and
returning a list of exit node assignments. This process is called every time the graph is asked for
connections, so it needs to be implemented in an efficient a manner as possible. The building
instances structure in the world graph class is used in exactly the same way, with the same efficiency
requirements.

The building instances structure also has a getBuilding method in the pseudo-code above.
This method takes a node and returns a building instance from the list if the node is part
of the instance graph. If the node is part of the main pathfinding graph, then the method
returns a null value. This method is also highly speed critical. Because a range of node val-
ues is used by each building, however, it can’t be easily implemented as a hash table. A good
solution is to perform a binary search on the nodeOffsets of the buildings. A further speed
up can be made using coherence, taking advantage of the fact that if the pathfinder requests
a node in a building instance, it is likely to follow it with requests to other nodes in the same
building.

Implementation Notes

The translation process between instance node values and building node values assumes that
nodes are numeric values. This is the most common implementation of nodes. However, they
can be implemented as opaque data instead. In this case the translation operations (adding and
subtracting nodeOffset in the pseudo-code) would be replaced by some other operation on the
node data type.

The main pathfinding graph for a tile-based world is usually implicit. Rather than delegating
from a new implicit graph implementation to another implicit implementation, it is probably
better to combine the two. The getConnections method compiles the connections to each neigh-

Library

boring tile, as well as checks for building entrances. The implementation on the website follows
this pattern.

Performance

Both the instance graph and the world graph need to perform a hash lookup for entrance or exit
connections. This check takes place at the lowest part of the pathfinding loop and therefore is
speed critical. For a well-balanced hash, the speed of hash lookup approaches O(1).

4.7 Other Ideas in Pathfinding 271

The world graph also needs to look up a building instance from a node value. In the case
where nodes are numeric, this cannot be performed using a reasonably sized hash table. A binary
search implementation is O(log2 n) in time, where n is the number of buildings in the world.
Judicial use of caching can reduce this to almost O(1) in practice, although pathological graph
structures can theoretically foil any caching scheme and give the O(log2 n) worst case.

Both algorithms are O(1) in memory, requiring only temporary storage.

Weaknesses

This approach introduces a fair amount of complexity low down in the pathfinding loop. The
performance of the pathfinder is extremely sensitive to inefficiencies in the graph data structure.
We’ve seen a halving of execution speed by using this method. It is not worth the extra time if the
game level is small enough to create a single master graph.

For massive worlds with instanced buildings,however, this may not be an option,and instanced
graphs are the only way to go. We would personally not consider using instanced graphs in
a production environment unless the pathfinding system was hierarchical (if the graph is big
enough to need instanced buildings, it is big enough to need hierarchical pathfinding). In this
case each building instance can be treated as a single node higher up the hierarchy. When using a
hierarchical pathfinding algorithm, moving to instanced geometry usually produces a negligible
drop in pathfinding speed.

Setting Node Offsets

In order for this code to work, we need to make sure that every building instance has a unique
set of node values. The node values should not only be unique within instances of the same
building type, but also between different building types. If node values are numeric, this can be
simply accomplished by assigning the first building instance a nodeOffset equal to the number
of nodes in the main pathfinding graph. Thereafter, subsequent building instances have offsets
which differ from the previous building by the number of nodes in the previous building’s
graph.

For example, let’s say we have a pathfinding graph of 10,000 nodes and three building instan-
ces. The first and third buildings are instances of a type with 100 nodes in the graph. The second
building has 200 nodes in its graph. Then the node offset values for the building instances would
be 10,000, 10,200, and 10,300.

4.7 Other Ideas in Pathfinding

There are many variations on the A* algorithm that have been developed for specific applications.
It would take a book this size to describe them all. This section takes a whirlwind tour of some of
the most interesting. There are pointers to more information, including algorithm specifications,
in the references at the end of the book.

272 Chapter 4 Pathfinding

4.7.1 Open Goal Pathfinding

In many applications there may be more than one possible node in the graph that is a goal. If a
character is pathfinding to an alarm point, for example, then any alarm will do, and there will be
multiple possible goals.

Rather than checking if a node is the goal, we need to check if the node is a goal. This has
implications for the design of the heuristic: the heuristic needs to accurately report the distance
to the nearest goal. To do that it needs to understand which goal will eventually be chosen.

Imagine a situation where a character is trying to reach one of two alarm points to raise the
alarm. Alarm point A is near, but has been blocked by the player; alarm point B is much further
away. The heuristic gives a low score for the area of the level close to point A, including the area
that is in completely the wrong direction to get to point B. This low score is given because the
heuristic believes that point A will be the chosen goal for these areas.

The pathfinder will search all around A, including all the areas in completely the wrong
direction to get to B, before it starts to look at routes to B. In the worst case scenario, it could
search the whole level before realizing that A is blocked.

Because of these kinds of issues, it is rare for game AI to use multiple goals at a great distance
from one another. Usually, some kind of decision making process decides which alarm point to
go to, and the pathfinding simply finds a route.

4.7.2 Dynamic Pathfinding

So far we have always assumed that the pathfinder can know everything about the game level it
is working in. We also assumed that what it knows cannot change: a connection will always be
useable, and its cost will always be the same.

The methods we have looked at so far do not work well if the environment is changing in
unpredictable ways or if its information is otherwise incomplete.

Imagine human soldiers navigating through enemy terrain. They will have a map and possibly
satellite intelligence showing the position of enemy encampments and defenses. Despite this
information, they may come across a new site not shown on their map. Human beings will be able
to accommodate this information, changing their route ahead to avoid detection by the newly
discovered enemy squad.

We can achieve the same thing using the standard pathfinding algorithms. Each time we find
some information that doesn’t match what we expected, we can replan. This new pathfinding
attempt would include the new information we’ve found.

This approach works, and in many cases it is perfectly adequate. But if the game level is
constantly changing, there will be lots of replanning. This can eventually swamp the pathfinder;
it has to start again before it finishes the previous plan, so no progress is ever made.

Dynamic pathfinding is an interesting modification to the pathfinding algorithm that allows
the pathfinder to only recalculate the parts of the plan that may have changed. The dynamic
version of A* is called D*. While it dramatically reduces the time required to pathfind in an
uncertain environment, it requires a lot of storage space to keep intermediate data that might be
required later.

4.7 Other Ideas in Pathfinding 273

4.7.3 Other Kinds of Information Reuse

The intermediate information gained while pathfinding (such as the path estimates and the parents
of nodes in the open list) can be useful if the task changes midway through. This is the approach
used by D* and similar dynamic pathfinders.

Even if the task doesn’t change, the same information can be useful to speed up successive
pathfinding attempts. For example, if we calculate that the shortest path from A to D is [A B C D],
then we know that the shortest path from B to D will be [B C D].

Keeping partial plans in storage can dramatically speed up future searches. If a pathfinder
comes across a pre-built section of plan, it can often use it directly and save a lot of proces-
sing time.

Complete plans are easy to store and check. If exactly the same task is performed a second
time, the plan is ready to use. However, the chance of having exactly the same task many times
is small. More sophisticated algorithms, such as LPA* (lifelong planning A*), keep information
about small sections of a plan, which are much more likely to be useful in a range of different
pathfinding tasks.

Like dynamic pathfinding, the storage requirements of this kind of algorithm are large. While
they may be suited to small pathfinding graphs in first-person shooters, they are unlikely to be
useful for large open air levels. Ironically, this is exactly the application where their increased
speed would be useful.

4.7.4 Low Memory Algorithms

Memory is a major issue in designing a pathfinding algorithm. There are two well-known varia-
tions on the A* algorithm that have lower memory requirements. Accordingly, they are less open
to optimizations such as dynamic pathfinding.

IDA*—Iterative Deepening A*

Iterative deepening A* has no open or closed list and doesn’t look very much like the standard A*
algorithm.

IDA* starts with a “cut-off” value, a total path length beyond which it will stop searching.
Effectively, it searches all possible paths until it finds one to the goal that is less than this cut-off
value.

The initial cut-off value is small (it is the heuristic value of the starting node, which usually
underestimates the path length), so there is unlikely to be a suitable path that gets to the goal.

Each possible path is considered, recursively. The total path estimate is calculated exactly as it
is in the regular A* algorithm. If the total path estimate is less than the cut-off, then the algorithm
extends the path and continues looking. Once all possible paths less than the cut-off are exhausted,
the cut-off is increased slightly and the process starts again.

The new cut-off value should be the smallest path length, greater than the previous cut-off
value, that was found in the previous iteration.

274 Chapter 4 Pathfinding

Because the cut-off value keeps increasing, eventually the cut-off value will be larger than the
distance from the start to the goal, and the correct path will be found.

This algorithm requires no storage other than the list of nodes in the current plan being
tested. It is very simple to implement, taking no more than 50 lines of code.

Unfortunately, by restarting the planning over and over, it is much less efficient than regular
A* and is less efficient than Dijkstra in some cases. It should probably be reserved for instances
when memory is the key limiting factor (such as on handheld devices, for example).

In some non-pathfinding situations, IDA* can be an excellent variation to use, however. It
will get its moment of glory when we look at goal-oriented action planning, a decision making
technique, in Chapter 5 (see Chapter 5 for a full implementation of IDA*).

SMA*—Simplified Memory-Bounded A*

Simplified memory-bounded A* solves the storage problem by putting a fixed limit on the size of
the open list. When a new node is processed, if it has a total path length (including heuristic) that
is larger than any node in the list, it is discarded. Otherwise, it is added, and the node already in
the list with the largest path length is removed.

This approach can be far more efficient than the IDA* approach, although it can still revisit the
same node multiple times during a search. It is highly sensitive to the heuristic used. A heuristic
that is a dramatic underestimate can see useless nodes eject important nodes from the open list.

SMA* is an example of a “lossy” search mechanism. In order to reduce search efficiency, it
throws away information, assuming that the information it discards is not important. There is
no guarantee that it is unimportant, however. In all cases with SMA*, the final path returned
has no guarantee of being the optimal path. An early, unpromising node can be rejected from
consideration, and the algorithm will never know that by following this seemingly unpromising
line, it would have found the shortest path.

Setting a large limit on the size of the open list helps ease this problem, but defeats the object
of limiting memory usage. At the other extreme, a limit of 1 node in the open list will see the
algorithm wander toward its target, never considering any but the most promising path.

We feel that SMA* is underrated as an alternative to A*. One of the key problems in optimizing
pathfinding is memory cache performance (see the section on memory issues in Chapter 2). By
limiting the size of the open list to exactly the right size, SMA* can avoid problems that A* has
with cache misses and aliasing.

4.7.5 Interruptible Pathfinding

Planning is a time-consuming process. For large graphs, even the best pathfinding algorithm may
take tens of milliseconds to plan a route. If the pathfinding code has to run in the constraints
imposed by rendering every 60th or 30th of a second, it is likely to not have enough time to
complete.

Pathfinding is an easily interruptible process. The A* algorithm, in the form described in this
chapter, can be stopped after any iteration and resumed later. The data required to resume that
algorithm are all contained in the open and closed lists, or their equivalents.

4.7 Other Ideas in Pathfinding 275

Pathfinding algorithms are often written so that they can perform over the course of several
frames. The data are retained between frames to allow the algorithm to continue processing later.
Because the character may move in this time, a pathfinding algorithm such as D* or LPA* can be
useful to avoid having to start over.

Chapter 9 on execution management covers interruptible algorithms in more detail, along
with the infrastructure code required to use them.

4.7.6 Pooling Planners

Pathfinding was first used extensively in real-time strategy games. A large number of characters
need to be able to navigate autonomously around the game environment. Consequently, there
may be many pathfinding requests on the go at the same time.

We could simply complete a pathfinding task for one character before moving onto the next.
With many characters and with pathfinding split over several frames, the queue for pathfinding
time can mount.

Alternatively, we could use a separate pathfinding instance for each character in the game.
Unfortunately, the data associated with a pathfinding algorithm can be sizeable, especially if the
algorithm is experiencing a high degree of fill or if we use an algorithm such as node array A*.
Even if the data for all characters fit into memory, they will almost certainly not fit in the cache,
and performance will slow accordingly.

RTS games use a pool of pathfinders and a pathfinding queue. When a character needs to plan
a route, it places its request on a central pathfinding queue. A fixed set of pathfinders then services
these requests in order (usually first-in, first-out order).

The same approach has been used to provide pathfinding for NPC characters in massively
multi-player games. A server-based pathfinding pool processes requests from characters through-
out the game, on an as needed basis.

When we worked on such a system for an MMORPG with lots of AI characters, we found that
a variation on the LPA* algorithm was the best algorithm to use. Because each pathfinder was
regularly asked to plan different routes, information from previous runs could be useful in cutting
down execution time. For any pathfinding request, the chances are good that another character
has had to pathfind a similar route in the past. This is especially true when hierarchical pathfinding
is being performed, since the high-level components of the plan are common to thousands or
even millions of requests.

After a while, an algorithm that reuses data will be more efficient, despite having to do extra
work to store the data. Any form of data reuse is advantageous, including storing partial plans or
keeping information about short through-routes in the data for each node (as with LPA*).

Despite the large amount of additional data in each pathfinder, in our tests the memory
consumption was often reduced using this method. Faster pathfinding means fewer pathfinders
can service the same volume of requests, which in turn means less memory used overall.

This approach is particularly significant in MMORPGs, where the same game level is active
for days or weeks at a time (only changing when new buildings or new content alter the pathfind-
ing graph). In an RTS it is less significant, but worth trying if the pathfinding code is causing
performance bottlenecks.

276 Chapter 4 Pathfinding

4.8 Continuous Time Pathfinding

So far we’ve worked with discrete pathfinding. The only choices available to the pathfinding
system occur at specific locations and times. The pathfinding algorithm doesn’t get to choose
where to change direction. It can only move directly between nodes in the graph. The locations
of nodes are the responsibility of whatever or whoever creates the graph.

As we’ve seen, this is powerful enough to cope with the pathfinding tasks required in most
games. Some of the inflexibility of fixed graphs can also be mitigated by path smoothing or by
using steering behaviors to follow the path (there is a section on movement and pathfinding with
more details in Chapter 3).

There still remains a handful of scenarios in which regular pathfinding cannot be applied
directly: situations where the pathfinding task is changing rapidly, but predictably. We can view
it as a graph that is changing from moment to moment. Algorithms such as D* can cope with
graphs that change dynamically, but they are only efficient when the graph changes infrequently.

4.8.1 The Problem

The main situation in which we’ve come across the need for more flexible planning is vehicle
pathfinding.

Imagine we have an AI-controlled police vehicle moving along a busy city road, as shown in
Figure 4.45. The car needs to travel as quickly as possible when pursuing a criminal or trying to
reach a designated roadblock. For the sake of our example, we will assume there is not enough
room to drive between two lanes of traffic; we have to stay in one lane.

Each lane of traffic has vehicles traveling along. We will not be concerned with how these
vehicles are controlled at the moment, as long as they are moving fairly predictably (i.e., rarely
changing lanes).

The pathfinding task for the police car is to decide when to change lanes. A path will consist
of a period of time in a series of adjacent lanes. We could split this task down by placing a node
every few yards along the road. At each node, the connections join to the next node in the same
lane or to nodes in the adjacent lane.

Figure 4.45 Police car moving along a four-lane road

4.8 Continuous Time Pathfinding 277

If the other cars on the road are moving relatively quickly (such as the oncoming traffic),
then a reasonable node spacing will inevitably mean that the police car misses opportunities to
travel faster. Because the nodes are positioned in an arbitrary way, the player will see the police
car sometimes make death-defying swerves through traffic (when the nodes line up just right),
while at other times miss obvious opportunities to make progress (when the nodes don’t corre-
spond to the gaps in traffic).

Shrinking the spacing of the nodes down will help. But, for a fast-moving vehicle, a very fine
graph would be required, most of which would be impossible to navigate because of vehicles in
the way.

Even with a static graph, we couldn’t use an algorithm such as A* to perform the pathfinding.
A* assumes that the cost of traveling between two nodes is irrespective of the path to get to the
first node. This isn’t true of our situation. If the vehicle takes 10 seconds to reach a node, then
there may be a gap in traffic, and the cost of the corresponding connection will be small. If the
vehicle reaches the same node in 12 seconds, however, the gap may be closed, and the connection
is no longer available (i.e., it has infinite cost). The A* family of algorithms cannot work directly
with this kind of graph.

We need a pathfinding algorithm that can cope with a continuous problem.

4.8.2 The Algorithm

The police car may change lanes at any point along the road; it isn’t limited to specific locations.
We can view the problem as being in two parts. First, we need to decide where and when it might
be sensible to change lanes. Second, we can work out a route between these points.

The algorithm is also in two parts. We create a dynamic graph that contains information about
position and timing for lane changes, and then we use a regular pathfinding algorithm (i.e., A*)
to arrive at a final route.

Previously, we mentioned that the A* family of algorithms is not capable of solving this
problem. To redeem their use, we first need to reinterpret the pathfinding graph so that it no
longer represents positions.

Nodes as States

So far we have assumed that each node in the pathfinding graph represents a position in the game
level or, at most, a position and an orientation. Connections similarly represent which locations
can be reached from a node.

As we stressed before, the pathfinding system doesn’t understand what its graph represents. It
is simply trying to find the best route in terms of the graph. We can make use of this.

Rather than having nodes as locations, we interpret nodes in the graph to be states of the road.
A node has two elements: a position (made up of a lane and a distance along the road section)
and a time. A connection exists between two nodes if the end node can be reached from the start
node and if the time it takes to reach the node is correct.

Figure 4.46 illustrates this. In the second lane there are two nodes at the same location, C
and D. Each node has a different time. If the car traveling from A stayed in the same lane, then it

278 Chapter 4 Pathfinding

A, time=0

B, time=4

C, time=5

D, time=7

Figure 4.46 Different nodes with different times and the same position

would reach the end of the section in 5 seconds and so would be at node C. If it traveled via lane 1,
at node B, then it would reach the end in 7 seconds and would be at node D. Nodes C and D are
shown in the figure slightly apart, so you can see the connections. Because we are only concerned
with the lane number and the distance, in reality they represent the exact same location.

Using a graph of this kind means that we’ve removed the path-dependent cost length. C and
D are different nodes. If the traffic is different there after 5 seconds rather than 7 seconds, then
the connections out from C and D will have different costs. This is fine, because they are different
nodes. The pathfinding algorithm no longer has to worry about which route it came from. It can
trust that the cost of a connection from a node will always be the same.

Incorporating time into the pathfinding graph allows us to rescue A* as our pathfinding
algorithm for this problem.

The Size of the Graph

Unfortunately, we’ve only moved the problem along, not really solved it. Now we have not only
an infinite number of places where we can change lanes but also (because of acceleration and
braking) an infinite number of nodes for every single place along the road. We now truly have a
huge pathfinding graph, far too large to use efficiently.

We get around this problem by dynamically generating only the subsection of the graph that is
actually relevant to the task. Figure 4.47 shows a simple case of the car dodging sideways through
a gap in the oncoming traffic.

There are any number of ways to accomplish this. We can drive at full speed into the center
lane as soon as possible and immediately out to the far side. We could brake, wait until the gap
comes closer, and then pull into the gap. We could brake and wait for all the cars to go by. The
options are endless.

We constrain the problem by using a heuristic. We make two assumptions: (1) if the car is to
change lanes, it will do so as soon as possible; and (2) it will move in its current lane to its next
lane change as quickly as possible.

The first assumption is sound. There are no situations in which changing lanes earlier rather
than later will give the car less flexibility. The opposite is not true. Changing lanes at the last
possible moment will often mean that opportunities are missed.

The second assumption helps make sure the car is moving at top speed as much as possible.
Unlike the first assumption, this may not be the best strategy. Figure 4.48 shows an extreme
example.

4.8 Continuous Time Pathfinding 279

Goal

Figure 4.47 Navigating a gap through oncoming traffic

Goal

Lane 1

Lane 2

Lane 3

Lane 4

Figure 4.48 When top speed isn’t a good idea

Lane 4 is empty, but lanes 2 and 3 are both very busy. If the car streaks ahead to the front
gap in lane 2, then it will not be able to cross into lane 3 and from there into lane 4. If it
breaks, however, and waits until the second gap in lane 2 is aligned with the gap in lane 3, then
it can streak through both gaps and onto the empty highway. In this case it pays to go slower
initially.

In practice, such obvious pathological examples are rare. Drivers in a rush to get somewhere
are quite likely to go as fast as they possibly can. Although it is not optimal, using this assumption
produces AI drivers that behave plausibly: they don’t look like they are obviously missing simple
opportunities.

How the Graph Is Created

The graph is created as is required by the pathfinding algorithm. Initially, the graph has only a
single node in it: the current location of the AI police car, with the current time.

When the pathfinder asks for outgoing connections from the current node, the graph examines
the cars on the road and returns four sets of connections.

First, it returns a connection to one node for each adjacent lane that is vacant at this point.
We’ll call these nodes the lane change nodes. Their connection cost is the time required to change
lanes at the current speed, and the destination nodes will have a position and a time value reflecting
the lane change.

280 Chapter 4 Pathfinding

Lane 1

Lane 2

Figure 4.49 The placement of nodes within the same lane

Second, the graph adds a connection to a node immediately behind the next car in the current
lane, assuming that it travels as fast as possible and breaks at the very last minute to match the
car’s speed (i.e., it doesn’t keep traveling at top speed and slam into the back of the car). The arrive
and velocity match behaviors from Chapter 3 can calculate this kind of maneuver.

We’ll call this node the boundary node. If the AI cannot possibly avoid the collision (i.e., it
can’t brake fast enough), then the boundary node is omitted; we don’t let the pathfinder even
consider the possibility of crashing.

Next, the graph returns connections to nodes along the current lane immediately after the
AI passes each car in each adjacent lane, up until it reaches the next car in the current lane. For
calculating these nodes we assume that the car travels in the same way as we calculated for the
boundary node; i.e., as fast as possible, making sure it doesn’t crash into the car in front. We’ll
call these nodes safe opportunity nodes, because they represent the opportunity for the AI to
change lanes, while making sure to avoid a collision with the car in front. Figure 4.49 shows this
situation.

Because it is difficult to show time passing on a 2D graphic, we’ve indicated the position of
each car in 1-second intervals as a black spot. Notice that the nodes in the current lane aren’t
placed immediately after the current position of each car, but immediately after the position of
each car when the AI would reach it.

Finally, the graph returns a set of unsafe opportunity nodes. These are exactly the same as the
safe opportunity nodes, but are calculated assuming that the car always travels at top speed and
doesn’t avoid slamming into the back of a car in front. These are useful because the pathfinder
may choose to change lanes. There is no point in slowing down to avoid hitting a car in front if
you intend to swerve around it into a different lane.

Notice that all four groups of connections are returned in the same set. They are all the
connections outgoing from the current position of the police car; there is no distinction in the
pathfinding algorithm. The connections and the nodes that they point to are created specially on
this request.

The connections include a cost value. This is usually just a measure of time because we’re
trying to move as quickly as possible. It would also be possible to include additional factors in
the cost. A police driver might factor in how close each maneuver comes to colliding with an
innocent motorist. Particularly close swerves would then only be used if they saved a lot of time.

The nodes pointed to by each connection include both position information and time
information.

As we’ve seen, we couldn’t hope to pre-create all nodes and connections, so they are built from
scratch when the outgoing connections are requested from the graph.

4.8 Continuous Time Pathfinding 281

On successive iterations of the pathfinding algorithm, the graph will be called again with a
new start node. Since this node includes both a position and a time, we can predict where the cars
on the road will be and repeat the process of generating connections.

Which Pathfinder

Two routes through the graph may end up at an identical node (i.e., one with the same position
and timing information). In this case the connections leaving the node should be identical in
every respect. In practice, this happens very rarely; the pathfinding graph tends to resemble a tree
rather than a connected network.

Because it is rare to revisit a node that has already been visited, there is little point in storing
a large number of nodes for future reference. Combined with the large size of the resulting graphs,
a memory-saving variant of A* is the best choice. IDA* is unsuitable because retrieving the out-
going connections from a node is a very time-consuming process. IDA* replans through the same
set of nodes at each iteration, incurring a significant performance hit. This could be mitigated by
caching the connections from each node, but that goes against the memory-saving ethos of IDA*.

In the experimentation we’ve done, SMA* seems to be an excellent choice for pathfinding in
this kind of continuous, dynamic task.

The remainder of this section is concerned with the dynamic graph algorithm only. The
particular choice of pathfinder responsible for the planning is independent of the way the graph
is implemented.

4.8.3 Implementation Notes

It is convenient to store driving actions in the connection data structure. When the final path is
returned from the pathfinder, the driving AI will need to execute each maneuver. Each connection
may have come from one of the four different categories, each of which involves a particular
sequence of steering, acceleration, or breaking. There is no point in having to calculate this
sequence again when it was calculated in the pathfinding graph. By storing it we can feed the
action directly into the code that moves the car.

4.8.4 Performance

The algorithm is O(1) in memory, requiring only temporary storage. It is O(n) in time, where
n is the number of vehicles in adjacent lanes, closer than the nearest vehicle in the current lane.
The performance of the algorithm may be hampered by acquiring the data on adjacent cars.
Depending on the data structure that stores the traffic pattern, this can be itself an O(log2 m)
algorithm, where m is the number of cars in the lane (if it does a binary search for nearby cars,
for example). By caching the results of the search each time, the practical performance can be
brought back to O(n).

This algorithm is called at the lowest part of the pathfinding loop and therefore is highly speed
critical.

282 Chapter 4 Pathfinding

4.8.5 Weaknesses

Continuous pathfinding is a fairly complex algorithm to implement, and it can be extremely
difficult to debug the placement of dynamic nodes. We personally suffered building our first
continuous planning system, and we watched our colleagues have the same difficulties. Hopefully,
the code on the website will act as a springboard for your own implementation.

Even when working properly, the algorithm is not fast, even in comparison with other
pathfinders. It should probably be used for only small sections of planning. In the police driving
game on which we’ve based this section, we used continuous planning to plan a route for only
the next 100 yards or so. The remainder of the route was planned only on an intersection-by-
intersection basis. The pathfinding system that drove the car was hierarchical, with the continuous
planner being the lowest level of the hierarchy.

4.9 Movement Planning

In the section on world representations, we looked briefly at situations where the orientation as
well as the position of a character was used in planning. This helps to generate sensible paths for
characters that cannot easily turn on the spot. In many cases pathfinding is used at a high level
and doesn’t need to take account of these kinds of constraints; they will be handled by the steering
behaviors. Increasingly, however, characters are highly constrained, and the steering behaviors
discussed in the previous chapter cannot produce sensible results.

The first genre of game to show this inadequacy was urban driving. Vehicles such as cars
or lorries need maneuver room and can often have lots of constraints specific to their phys-
ical capabilities (a car, for example, may need to decelerate before it can turn to avoid skid-
ding).

Even non-driving game genres, in particular first- and third-person action games, are now
being set in highly constrained environments where steering alone cannot succeed. Movement
planning is a technique for using the algorithms in this chapter to produce sensible character
steering.

4.9.1 Animations

Most characters in a game have a range of animations that are used when the character is moving.
A character may have a walk animation, a run animation, and a sprint animation, for example.
Likewise, there are animations for turning—for example, turning while walking, turning on the
spot, and turning while crouched.

Each of these animations can be used over a range of different movement scenarios. A walk
animation, for example, needs to have the feet sticking to the ground and not sliding. So the
character must move at a particular rate in order for the animation to look right. The speed of
animation can be increased to accommodate slightly faster motion, but there are limits. Eventually,
the character will look unbelievable.

4.9 Movement Planning 283

Rotation

Stand still Velocity

Run

Walk

Creep

Shuffle turn

Turn on the spot

Figure 4.50 Velocity diagram for allowed animations

It is possible to visualize animations as being applicable to a range of different movement
speeds, both linear movement and angular movement. Figure 4.50 shows which animations can
be used for different linear and angular velocities of a character.

Notice that not all the space of possible velocities has an associated animation. These are
velocities that the character should not use for more than a moment.

In addition, it may not make sense to stop an animation before it has been completed. Most
animation sets define transitions between walking and running and standing and crouching,
for example. But a walk cycle can’t turn into a run cycle until it reaches the right point for the
transition to occur. This means that each movement has a natural length in the game world.
Again, we can show this visually on a diagram. In this case, however, it is position and orientation
shown, rather than velocity and rotation.

Notice in Figure 4.51 that the range over which the animations are believable is much smaller
than for velocities.

There are some efforts being applied to breaking out of these constraints. Procedural anima-
tion is being applied to generating sensible animations for any intermediate movement required.
It remains an open problem, however, and in the majority of cases the results are not optimal, and
developers are sticking to a modest portfolio of possible animations.

4.9.2 Movement Planning

In a highly constrained environment, the particular animations chosen may impact highly on
whether the character can maneuver correctly. A character that needs to move exactly 2 meters
forward before doing a 30◦ right turn may not be able to use an animation that sends it 1.5 meters
forward and rotates it by 45◦.

To achieve a particular large-scale maneuver, the particular sequence of animations may be
significant. In this case movement planning is required: planning a sequence of allowed maneuvers
that lead to an overall state.

284 Chapter 4 Pathfinding

Rotation

Stand still Position

RunWalkCreep

Shuffle turn

Turn on the spot

Figure 4.51 Position diagram for allowed animations

Movement planning isn’t used in current-generation games, so we’re going to be brief dis-
cussing it. Several developers have experimented with it, however, and we expect to see it used in
regular production in the not too distant future.

The Planning Graph

Just like pathfinding, movement planning uses a graph representation. In this case each node of
the graph represents both the position and the state of the character at that point. A node may
include the character’s position vector, its velocity vector, and the set of allowable animations
that can follow. A running character, for example, may have high velocity and be capable of only
carrying out the “run,”“transition run to walk,” or “collide with object” animations.

Connections in the graph represent valid animations; they lead to nodes representing the state
of the character after the animation is complete. A run animation, for example, may lead to the
character being 2 meters farther forward and traveling at the same velocity.

With the graph defined in this way, a heuristic can be used that determines how close a
character’s state is to the goal. If the goal is to maneuver through a room full of exposed electrical
wires, then the goal may be the door on the other side, and the heuristic may be based on distance
alone. If the goal is to reach the edge of a platform traveling fast enough to jump a large gap, then
the goal may include both position and velocity components.

Planning

With the graph defined in this way, the regular A* algorithm can be used to plan a route. The
route returned consists of a set of animations that, when executed in order, will move a character
to its goal.

Care needs to be taken to define the goal in a broad way. If an exact position and orientation
are given as a goal, then there may be no sequence of animations that exactly reach it, and the

4.9 Movement Planning 285

planning algorithm will fail (after considering every possible combination of animations, at a great
cost of time). Rather, the goal needs to make sure the character is “near enough”; a range of states
is allowable.

Infinite Graphs

Recall that an animation can be used to travel a range of distances and through a range of velocities.
Each possible distance and velocity would be a different state. So from one state the character
may transition to any one of many similar states, depending on the speed it plays the following
animation. If the velocities and positions are continuous (represented by real numbers), then
there may be an infinite number of possible connections.

A* can be adapted to apply to infinite graphs. At each iteration of A*, all the successor
nodes are examined using the heuristic function and added to the open list. To avoid this taking
infinitely long, only the best successor nodes are returned for addition to the open list. This is
often done by returning a few trial successors and then rating each heuristically. The algorithm
can then try to generate a few more trials based on the best of the previous bunch, and so
on until it is confident that the best successors have been provided. Although this technique is
used in several non-game domains, it is slow and highly sensitive to the quality of the heuristic
function.

To avoid the headaches involved in adapting A* to operate on infinite graphs, it is common
to divide up the possible range into a small set of discrete values. If an animation can be played
at between 15 and 30 frames per second (fps), then there may be four different possible values
exposed to the planner: 15, 20, 25, and 30 fps.

Another alternative is to use a heuristic, as we saw in the previous section on continuous
pathfinding. This allows us to dynamically generate a small subset of the pathfinding graph based
on heuristics about what sections of the graph might be useful.

Implementation Issues

Even limiting the number of connections in this way, there are still a huge number of possible
connections in the graph, and the graph tends to be very large indeed. The optimized versions
of A* require us to know in advance the number of nodes in the graph. In movement planning
the graph is usually generated on the fly: the successor nodes are generated by applying allowable
animations to the current state. A basic, two list A* is therefore the most applicable for movement
planning.

Typically, movement planning is only used for small sequences of movement. In the same way
that the steering behavior of a character is guided by the large-scale pathfinding plan, movement
planning can be used to fill in detail for just the next part of the overall route. If the plan states
to move through a room with lots of live electrical wires, the movement planner may generate a
sequence of animations to get to the other side only. It is unlikely to be used to generate a complete
path through a level, because of the size of the graph involved and the planning time it would
require.

286 Chapter 4 Pathfinding

4.9.3 Example

As an example consider a walking bipedal character. The character has the following animations:
walk, stand to walk, walk to stand, sidestep, and turn on the spot. Each animation starts or ends
from one of two positions: mid-walk or standing still. The animation can be represented as the
state machine in Figure 4.52, with the positions as states and the transitions as animations.

The animations can apply to the range of movement distances as shown on the graph in
Figure 4.53.

The character is moving through the lava-filled room shown in Figure 4.54. There are many
dangerous areas where the character should not walk. The character needs to work out a valid
sequence of movements from its initial position to the opposite doorway. The goal is shown as a
range of positions with no orientation. We don’t care what speed the character is traveling, which
way it is facing, or what its animation state is when it reaches the goal.

Running an A*-style algorithm, we get the route generated in Figure 4.55. It can be seen that
this avoids the dangers correctly using a combination of walking, turning, and sidestepping.

Walk

Mid-walk Standing
Walk to stand

Stand to walk

Sidestep

Turn on the spot

Figure 4.52 Example of an animation state machine

Rotation

Stand still
Position

Walk
Sidestep

Turn on the spot

Figure 4.53 Example of position ranges for animations

4.9 Movement Planning 287

Goal

Lava

StartWalkway

Figure 4.54 The dangerous room

Goal

Walk
Sidestep

Walk to stop

Walk

Walk

Walk

Walk to stop

Turn on the spot

Stop to walk

Sidestep
Stop to walk

Figure 4.55 The example path through the dangerous room

4.9.4 Footfalls

The latest research extends the movement planning idea to plan footfalls: a series of animations
that can be combined so that the feet of a character only touch the ground at the correct positions.
This is useful for characters walking up stairs, maneuvering across platforms, or avoiding stepping
on twigs.

This has been active research for animation controllers, independent of pathfinding. The most
recent third-person games lock footfalls correctly to stairs, for example. As far as we know, the
current state of the art for production games uses purely local constraints to achieve this: the
character’s footfall is examined and moved to the nearest suitable location, causing adjustments
in the rest of the animation if required. This uses inverse kinematics algorithms for the animation
that have little to do with AI.

Footfall planning, on the other hand, looks ahead, using a series of animations to place footfalls
in the correct locations to achieve a distant goal.

288 Chapter 4 Pathfinding

The graphs associated with this level of movement planning are huge, and general applications
in games seem to be some way off. It may be possible to use footfall planning as a third level of
pathfinding to generate just the next couple of animations to play. We’re not aware of anyone
doing this yet, however.

Exercises

1. We can represent a graph like the one in Figure 4.4 as a set of nodes and edges:

nodes = {A,B,C,D}
edges = {(A,B) : 4, (B,A) : 4, (A,D) : 5, (D,A) : 5, (B,D) : 6,

(D,B) : 6, (B,C) : 5, (C,B) : 5}.
The following description is of a weighted directed graph taken from some MIT lecture notes
written by Tomas Lozano-Perez and Leslie Kaelbling:

nodes = {S,A,B,C,D,G}
edges = {(S,A) : 6, (S,B) : 15, (A,C) : 6, (A,D) : 12, (B,D) : 3, (B,G) : 15,

(D,C) : 9, (D,G) : 6}.
Draw a diagram of the graph.

2. In the graph you drew in question 1 assume that S is the start node and G is the goal node.
If we use Dijkstra’s algorithm to find the minimum cost path from S to G , then the following
table shows the contents of the open list for the first 2 steps of the algorithm. Fill in the
remaining 5 lines.

open list

1 0: S

2 6: A ← S, 15: B ← S

3

4

5

6

7

3. In question 2 explain why we don’t just stop when we visit the goal node for the first time.

4. For a node A, we can specify that the value of the heuristic function at the node is 5 by writing
A : 5. Update the diagram you drew for question 1 with the following heuristic values:

nodes = {S : 0,A : 6,B : 9,C : 3,D : 3,G : 0}
5. If the A* algorithm is applied to the same graph as in question 2, the following table shows

the contents of the open list for the first 2 steps. Fill in the remaining 3 lines.

Exercises 289

open list

1 0: S

2 12: A ← S, 24 B ← S

3

4

5

6. Using the same graph as for question 5, what is the maximum value of the heuristic at D
before the heuristic no longer underestimates the actual cost?

7. A heuristic is called consistent if it has the property that for every node A and every successor
B of A, the estimated cost of reaching the goal from A is no greater than the cost of getting
from A to B plus the estimated cost of reaching the goal from B. In equation form:

h(A) � cost(A,B) + h(B).

Is the heuristic defined in question 4 consistent?

8. Explain why if the heuristic used for A* is consistent and admissible then you don’t need a
closed list.

9. How could you make any admissible heuristic into a consistent one?

10. Download the code that implements A* from the website. Then modify the code so that you
represent the priority queue using either a priority heap or a bucketed queue.Program ming

11. The grid below shows costs associated with cells on a the map. For example, suppose the cells
of cost 1 correspond to flat grassland while the cells of cost 3 correspond to more mountainous
areas.

1

1

1

1

1

1

1

1

1

1

1

1

3

33

3

3

3

11

1

1

1 1 11

1

1

1 1

3

3

3

3 3

33

33

3

3

3

11

1

1

1 1

11

1

1

1 1

3

3

3

3 3

3

33

111

1 1 1

1

1 1 1

111

1 1 1111

1 1 1

111

1

111

1 1 1

3 3

33

111

1 1 1

1

1 1 1

111

1 1 1111

1 1 1

111

1

111

1 1 1

3 33

3

3

3

1111

1 1 1 1

11

1 1 1

111

1 1 1 1

290 Chapter 4 Pathfinding

If we wanted to speed up A* would we artificially increase or decrease the costs of the moun-
tainous areas? Why? What is the downside of making the change?

12. A common trick used in games to avoid the expense of taking square roots is to perform all
distance comparisons with the distance squared. Explain why using the distance squared, in
place of the standard Euclidean distance, as a heuristic for A* would be a bad idea.

13. For a world represented as a tile graph, where m is the minimum cost to move between any
two tiles, the Manhattan distance heuristic can be defined as:

h(n) = m(|n.x − goal.x| + |n.z − goal.z |).

Explain why this might be a better heuristic to use on a tile graph than the Euclidean distance.

14. Draw the navigation mesh you would get by considering edges as nodes in Figure 4.29.

15. Games need to take into account many factors beside distance when calculating path costs.
We’ll consider many examples in Chapter 6, but try to think of some on your own in
advance.

16. Compute the minimum, maximin, and average minimum distance costs of going from group
B to group C in the following tile-based representation of a level:

A1 A2 A3

A4 A5 A6

B1 B2

B4

B6

B8 B9

B11 C1

B5

B3

B7

B10

17. Modify the code on the website that implements A* so it is interruptable. Take advantage of
the interruptability to create a path planner that spreads its CPU load across multiple frames
of a game.Program ming

18. Research and implement one of the more advanced pathfinding technqiues, such as IDA* or
SMA*, that we outlined in the chapter.

Program ming

19. The following diagram shows part of a level with 4 nodes, where S is the start, G is the goal,
A is a node in a doorway, and B is a normal node. Nodes S, A, and G are all 3 units apart
while B is 4 units from A.

Exercises 291

G

A B

S

Suppose for the door to open a character has to first stand in front of it for t seconds. Assuming
that a character moves at 1 unit per second, then for values of t = 1 and t = 7 draw a separate
“nodes as states” graph like the one in Figure 4.46. For what value of t does it become faster
to simply go around rather than wait for the door to open?

This page intentionally left blank

5
Decision Making

sk a gamer about game AI, and they think about decision making: the ability of a characterA to decide what to do. Carrying out that decision (movement, animation, and the like) is
taken for granted.

In reality, decision making is typically a small part of the effort needed to build great game
AI. Most games use very simple decision making systems: state machines and decision trees.
Rule-based systems are rarer, but important.

In recent years a lot of interest has been shown in more sophisticated decision making tools,
such as fuzzy logic and neural networks. However, developers haven’t been in a rush to embrace
these technologies. It can be hard to get them working right.

Decision making is the middle component of our AI model (Figure 5.1), but despite this
chapter’s name, we will also cover a lot of techniques used in tactical and strategic AI. All the
techniques here are applicable to both intra-character and inter-character decision making.

This chapter will look at a wide range of decision making tools, from very simple mechanisms
that can be implemented in minutes to comprehensive decision making tools that require more
sophistication but can support richer behaviors to complete programming languages embedded
in the game. At the end of the chapter we’ll look at the output of decision making and how to
act on it.

5.1 Overview of Decision Making

Although there are many different decision making techniques, we can look at them all as acting
in the same way.

The character processes a set of information that it uses to generate an action that it wants to
carry out. The input to the decision making system is the knowledge that a character possesses,

Copyright © 2009 by Elsevier Inc. All rights reserved. 293

294 Chapter 5 Decision Making

Character AI

Group AI

Execution management

Decision making

W
or

ld
 in

te
rf

ac
e

Movement

Animation Physics

Strategy

Figure 5.1 The AI model

Internal knowledge

Decision maker

Internal changes

External changesExternal knowledge

Action
request

Figure 5.2 Decision making schematic

and the output is an action request. The knowledge can be further broken down into external
and internal knowledge. External knowledge is the information that a character knows about the
game environment around it: the position of other characters, the layout of the level, whether a
switch has been thrown, the direction that a noise is coming from, and so on. Internal knowledge
is information about the character’s internal state or thought processes: its health, its ultimate
goals, what it was doing a couple of seconds ago, and so on.

Typically, the same external knowledge can drive any of the algorithms in this chapter, whereas
the algorithms themselves control what kinds of internal knowledge can be used (although they
don’t constrain what that knowledge represents, in game terms).

Actions, correspondingly, can have two components: they can request an action that will
change the external state of the character (such as throwing a switch, firing a weapon, moving into
a room) or actions that only affect the internal state (see Figure 5.2). Changes to the internal state

5.2 Decision Trees 295

are less obvious in game applications but are significant in some decision making algorithms.
They might correspond to changing the character’s opinion of the player, changing its emotional
state, or changing its ultimate goal. Again, algorithms will typically have the internal actions as
part of their makeup, while external actions can be generated in a form that is identical for each
algorithm.

The format and quantity of the knowledge depend on the requirements of the game. Knowl-
edge representation is intrinsically linked with most decision making algorithms. It is difficult
to be completely general with knowledge representation, although we will consider some widely
applicable mechanisms in Chapter 11.

Actions, on the other hand, can be treated more consistently. We’ll return to the problem of
representing and executing actions at the end of this chapter.

5.2 Decision Trees

Decision trees are fast, easily implemented, and simple to understand. They are the simplest
decision making technique that we’ll look at, although extensions to the basic algorithm can make
them quite sophisticated. They are used extensively to control characters and for other in-game
decision making, such as animation control.

They have the advantage of being very modular and easy to create. We’ve seen them used for
everything from animation to complex strategic and tactical AI.

Although it is rare in current games, decision trees can also be learned, and the learned tree is
relatively easy to understand (compared to, for example, the weights of a neural network). We’ll
come back to this topic later in Chapter 7.

5.2.1 The Problem

Given a set of knowledge, we need to generate a corresponding action from a set of possible
actions.

The mapping between input and output may be quite complex. The same action will be used
for many different sets of input, but any small change in one input value might make the difference
between an action being sensible and an action appearing stupid.

We need a method that can easily group lots of inputs together under one action, while
allowing the input values that are significant to control the output.

5.2.2 The Algorithm

A decision tree is made up of connected decision points. The tree has a starting decision, its root.
For each decision, starting from the root, one of a set of ongoing options is chosen.

296 Chapter 5 Decision Making

Is enemy visible?

Is enemy <10 m away?

Yes

Yes

Yes

Is enemy audible?

YesNo

No

No

Creep

Attack

Attack

Move

Is enemy
on flank?

Figure 5.3 A decision tree

Each choice is made based on the character’s knowledge. Because decision trees are often used
as simple and fast decision mechanisms, characters usually refer directly to the global game state
rather than have a representation of what they personally know.

The algorithm continues along the tree,making choices at each decision node until the decision
process has no more decisions to consider. At each leaf of the tree an action is attached. When the
decision algorithm arrives at an action, that action is carried out immediately.

Most decision treenodes make very simple decisions, typically with only two possible
responses. In Figure 5.3 the decisions relate to the position of an enemy.

Notice that one action can be placed at the end of multiple branches. In Figure 5.3 the character
will choose to attack unless it can’t see the enemy or is flanked. The attack action is present at two
leaves.

Figure 5.4 shows the same decision tree with a decision having been made. The path taken by
the algorithm is highlighted, showing the arrival at a single action, which may then be executed
by the character.

Decisions

Decisions in a tree are simple. They typically check a single value and don’t contain any Boolean
logic (i.e., they don’t join tests together with AND or OR).

Depending on the implementation and the data types of the values stored in the character’s
knowledge, different kinds of tests may be possible. A representative set is given in the following
table, based on a game engine we’ve worked on:

5.2 Decision Trees 297

Is enemy visible?

Is enemy <10 m away?

Yes

Yes

Yes

Is enemy audible?

YesNo

No

No

Creep

Attack

Attack

Move

Is enemy
on flank?

Figure 5.4 The decision tree with a decision made

Data Type Decisions

Boolean Value is true

Enumeration (i.e., a set of values, Matches one of a given set of values
only one of which might be
allowable)

Numeric value (either integer or Value is within a given range
floating point)

3D Vector Vector has a length within a given range (this
can be used to check the distance between
the character and an enemy, for example)

In addition to primitive types, in object-oriented game engines it is common to allow the
decision tree to access methods of instances. This allows the decision tree to delegate more
complex processing to optimized and compiled code, while still applying the simple decisions in
the previous table to the return value.

Combinations of Decisions

The decision tree is efficient because the decisions are typically very simple. Each decision makes
only one test. When Boolean combinations of tests are required, the tree structure represents this.

To AND two decisions together, they are placed in series in the tree. The first part of Figure 5.5
illustrates a tree with two decisions, both of which need to be true in order for action 1 to be
carried out. This tree has the logic “if A AND B, then carry out action 1, otherwise carry out
action 2.”

298 Chapter 5 Decision Making

Yes

Yes

If A AND B then action 1, otherwise action 2

No

No

A

B

2

2

1

Yes

Yes

If A OR B then action 1, otherwise action 2

No

No

A

B

1

2

1

Figure 5.5 Trees representing AND and OR

To OR two decisions together, we also use the decisions in series, but with the two actions
swapped over from the AND example above. The second part of Figure 5.5 illustrates this. If either
test returns true, then action 1 is carried out. Only if neither test passes is action 2 run. This tree
has the logic “if A OR B, then carry out action 1, otherwise carry out action 2.”

This ability for simple decision trees to build up any logical combination of tests is used in
other decision making systems. We’ll see it again in the Rete algorithm in Section 5.8 on rule-based
systems.

Decision Complexity

Because decisions are built into a tree, the number of decisions that need to be considered is
usually much smaller than the number of decisions in the tree. Figure 5.6 shows a decision tree
with 15 different decisions and 16 possible actions. After the algorithm is run, we see that only
four decisions are ever considered.

Decision trees are relatively simple to build and can be built in stages. A simple tree can be
implemented initially, and then as the AI is tested in the game, additional decisions can be added
to trap special cases or add new behaviors.

Branching

In the examples so far, and in most of the rest of the chapter, decisions will choose between two
options. This is called a binary decision tree. There is no reason why you can’t build your decision

5.2 Decision Trees 299

Figure 5.6 Wide decision tree with decision

tree so that decisions can have any number of options. You can also have different decisions with
different numbers of branches.

Imagine having a guard character in a military facility. The guard needs to make a decision
based on the current alert status of the base. This alert status might be one of a set of states:“green,”
“yellow,” “red,” or “black,” for example. Using the simple binary decision making tree described
above, we’d have to build the tree in Figure 5.7 to make a decision.

The same value (the alert state) may be checked three times. This won’t be as much of a
problem if we order the checks so the most likely states come first. Even so, the decision tree may
have to do the same work several times to make a decision.

We could allow our decision tree to have several branches at each decision point. With four
branches, the same decision tree now looks like Figure 5.8.

This structure is flatter, only ever requires one decision, and is obviously more efficient.
Despite the obvious advantages, it is more common to see decision trees using only binary

decisions. First, this is because the underlying code for multiple branches usually simplifies

300 Chapter 5 Decision Making

Green action

Is black? Is red? Is yellow?

No No No

Yes

Yes
YesBlack action

Red action

Yellow action

Figure 5.7 Deep binary decision tree

Green action

Which alert
state?

Black
Black action

Red action

Yellow action

Red
Yellow

Green

Figure 5.8 Flat decision tree with four branches

down to a series of binary tests (if statements in C/C++, for example). Although the deci-
sion tree is simpler with multiple branches, the implementation speed is usually not significantly
different.

Second, decision trees are typically binary because they can be more easily optimized. In
addition, some learning algorithms that work with decision trees require them to be binary.

You can do anything with a binary tree that you can do with a more complex tree, so it
has become traditional to stick with two branches per decision. Most, although not all, of the
decision tree systems we’ve worked with have used binary decisions. We think it is a matter of
implementation preference. Do you want the extra programming work and reduction in flexibility
for the sake of a marginal speed up?

5.2.3 Pseudo-Code

A decision tree takes as input a tree definition, consisting of decision tree nodes. Decision tree
nodes might be decisions or actions. In an object-oriented language, these may be sub-classes of

5.2 Decision Trees 301

the tree node class. The base class specifies a method used to perform the decision tree algorithm.
It is not defined in the base class (i.e., it is a pure virtual function):

1 class DecisionTreeNode:
2 def makeDecision() # Recursively walks through the tree

Actions simply contain details of the action to run if the tree arrives there. Their structure
depends on the action information needed by the game (see Section 5.11 later in the chapter on
the structure of actions). Their makeDecision function simply returns the action (we’ll see how
this is used in a moment):

1 class Action:
2 def makeDecision():
3 return this

Decisions have the following format:

1 class Decision (DecisionTreeNode):
2 trueNode
3 falseNode
4 testValue
5 def getBranch() # carries out the test
6 def makeDecision() # Recursively walks through the tree

where the trueNode and falseNode members are pointers to other nodes in the tree, and the
testValue member points to the piece of data in the character’s knowledge which will form the
basis of the test. The getBranch function carries out the test and returns which branch to follow.
Often, there are different forms of the decision node structure for different types of tests (i.e.,
for different data types). For example, a decision for floating point values might look like the
following:

1 class FloatDecision (Decision):
2 minValue
3 maxValue
4

5 def getBranch():
6 if maxValue >= testValue >= minValue:
7 return trueNode
8 else:
9 return falseNode

302 Chapter 5 Decision Making

A decision tree can be referred to by its root node: the first decision it makes. A decision tree
with no decisions might have an action as its root. This can be useful for prototyping a character’s
AI, by forcing a particular action to always be returned from its decision tree.

The decision tree algorithm is recursively performed by the makeDecision method. It can be
trivially expressed as:

1 class Decision:
2

3 def makeDecision():
4

5 # Make the decision and recurse based on the result
6 branch = getBranch()
7 return branch.makeDecision()

The makeDecision function is called initially on the root node of the decision tree.

Multiple Branches

We can implement a decision that supports multiple branches almost as simply. Its general form is:

1 class MultiDecision (DecisionTreeNode):
2 daughterNodes
3 testValue
4

5 # Carries out the test and returns the node to follow
6 def getBranch():
7 return daughterNodes[testValue]
8

9 # Recursively runs the algorithm, exactly as before
10 def makeDecision():
11 branch = getBranch()
12 return branch.makeDecision()

where daughterNodes is a mapping between possible values of the testValue and branches of the
tree. This can be implemented as a hash table, or for a numeric test value it might be an array of
daughter nodes that can be searched using a binary search algorithm.

5.2.4 On the Website

Program

To see the decision tree in action, run the Decision Tree program that is available on the website.
It is a command line program designed to let you see behind the scenes of a decision making
process.

5.2 Decision Trees 303

Each decision in the tree is presented to you as a true or false option, so you are making the
decision, rather than the software. The output clearly shows how each decision is considered in
turn until a final output action is available.

5.2.5 Knowledge Representation

Decision trees work directly with primitive data types. Decisions can be based on integers, float-
ing point numbers, Booleans, or any other kind of game-specific data. One of the benefits of
decision trees is that they require no translation of knowledge from the format used by the rest
of the game.

Correspondingly, decision trees are most commonly implemented so they access the state of
the game directly. If a decision tree needs to know how far the player is from an enemy, then it
will most likely access the player and enemy’s position directly.

This lack of translation can cause difficult-to-find bugs. If a decision in the tree is very
rarely used, then it may not be obvious if it is broken. During development, the structure of
the game state regularly changes, and this can break decisions that rely on a particular structure
or implementation. A decision might detect, for example, which direction a security camera is
pointing. If the underlying implementation changes from a simple angle to a full quaternion to
represent the camera rotation, then the decision will break.

To avoid this situation, some developers choose to insulate all access to the state of
the game. The techniques described in Chapter 10 on world interfacing provide this level of
protection.

5.2.6 Implementation Nodes

The function above relies on being able to tell whether a node is an action or a decision and being
able to call the test function on the decision and have it carry out the correct test logic (i.e., in
object-oriented programming terms, the test function must be polymorphic).

Both are simple to implement using object-oriented languages with runtime-type information
(i.e., we can detect which class an instance belongs to at runtime).

Most games written in C++ switch off RTTI (runtime-type information) for speed reasons.
In this case the “is instance of” test must be made using identification codes embedded into each
class or another manual method.

Similarly, many developers avoid using virtual functions (the C++ implementation of poly-
morphism). In this case, some manual mechanism is needed to detect which kind of decision is

Library

needed and to call the appropriate test code.
The implementation on the website demonstrates both these techniques. It uses neither RTTI

nor virtual functions, but relies on a numeric code embedded in each class.
The implementation also stores nodes in a single block of memory. This avoids problems with

different nodes being stored in different places, which causes memory cache problems and slower
execution.

304 Chapter 5 Decision Making

5.2.7 Performance of Decision Trees

You can see from the pseudo-code that the algorithm is very simple. It takes no memory, and its
performance is linear with the number of nodes visited.

If we assume that each decision takes a constant amount of time and that the tree is balanced
(see the next section for more details), then the performance of the algorithm is O(log2 n), where
n is the number of decision nodes in the tree.

It is very common for the decisions to take constant time. The example decisions we gave in
the table at the start of the section are all constant time processes. There are some decisions that
take more time, however. A decision that checks if any enemy is visible, for example, may involve
complex ray casting sight checks through the level geometry. If this decision is placed in a decision
tree, then the execution time of the decision tree will be swamped by the execution time of this
one decision.

5.2.8 Balancing the Tree

Decision trees are intended to run fast and are fastest when the tree is balanced. A balanced tree
has about the same number of leaves on each branch. Compare the decision trees in Figure 5.9.
The second is balanced (same number of behaviors in each branch), while the first is extremely
unbalanced. Both have 8 behaviors and 7 decisions.

Unbalanced tree

A

H

B C D E F G

A

H

B

C

D

E

F

G

Balanced tree

Figure 5.9 Balanced and unbalanced trees

5.2 Decision Trees 305

To get to behavior H, the first tree needs 8 decisions, whereas the second tree only needs 3.
In fact, if all behaviors were equally likely, then the first tree would need an average of nearly 4 1

2
decisions, whereas the second tree would always only need 3.

At its worst, with a severely unbalanced tree, the decision tree algorithm goes from being
O(log2 n) to O(n). Clearly, we’d like to make sure we stay as balanced as possible, with the same
number of leaves resulting from each decision.

Although a balanced tree is theoretically optimal, in practice the fastest tree structure is slightly
more complex.

In reality, the different results of a decision are not equally likely. Consider the example trees
in Figure 5.9 again. If we were likely to end up in behavior A the majority of the time, then the
first tree would be more efficient; it gets to A in one step. The second tree takes 3 decisions to
arrive at A.

Not all decisions are equal. A decision that is very time consuming to run (such as one that
searches for the distance to the nearest enemy) should only be taken if absolutely necessary. Having
this further down the tree, even at the expense of having an unbalanced tree, is a good idea.

Structuring the tree for maximum performance is a black art. Since decision trees are very fast
anyway, it is rarely important to squeeze out every ounce of speed. Use these general guidelines:
balance the tree, but make commonly used branches shorter than rarely used ones and put the
most expensive decisions late.

5.2.9 Beyond the Tree

So far we have kept a strict branching pattern for our tree. We can extend the tree to allow multiple
branches to merge into a new decision. Figure 5.10 shows an example of this.

The algorithm we developed earlier will support this kind of tree without modification. It is
simply a matter of assigning the same decision to more than one trueNode or falseNode in the
tree. It can then be reached in more than one way. This is just the same as assigning a single action
to more than one leaf.

Figure 5.10 Merging branches

306 Chapter 5 Decision Making

Figure 5.11 Pathological tree

You need to take care not to introduce possible loops in the tree. In Figure 5.11, the third
decision in the tree has a falseNode earlier in the tree. The decision process can loop around
forever, never finding a leaf.

Strictly, the valid decision structure is called a directed acyclic graph (DAG). In the context of
this algorithm, it still is always called a decision tree.

5.2.10 Random Decision Trees

Often, we don’t want the choice of behavior to be completely predictable. Some element of
random behavior choice adds unpredictability, interest, and variation.

It is simple to add a decision into the decision tree that has a random element. We could
generate a random number, for example, and choose a branch based on its value.

Because decision trees are intended to run frequently, reacting to the immediate state of
the world, random decisions cause problems. Imagine running the tree in Figure 5.12 for every
frame.

As long as the agent isn’t under attack, the stand still and patrol behaviors will be chosen at
random. This choice is made at every frame, so the character will appear to vacillate between
standing and moving. This is likely to appear odd and unacceptable to the player.

To introduce random choices in the decision tree, the decision making process needs to become
stable—if there is no relevant change in world state, there should be no change in decision. Note
that this isn’t the same as saying the agent should make the same decision every time for a particular
world state. Faced with the same state at very different times, it can make different decisions, but
at consecutive frames it should stay with one decision.

In the previous tree, every time the agent is not under attack it can stand still or patrol. We
don’t care which it does, but once it has chosen, it should continue doing that.

This is achieved by allowing the random decision to keep track of what it did last time. When
the decision is first considered, a choice is made at random, and that choice is stored. The next
time the decision is considered, there is no randomness, and the previous choice is automatically
taken.

5.2 Decision Trees 307

Defend

Patrol

Stand still

Yes
Under
attack?

No
H

TFlip a
coin

Figure 5.12 Random tree

If the decision tree is run again, and the same decision is not considered, it means that some
other decision went a different way—something in the world must have changed. In this case we
need to get rid of the choice we made.

Pseudo-Code

This is the pseudo-code for a random binary decision:

1 struct RandomDecision (Decision):
2 lastFrame = -1
3 lastDecision = false
4

5 def test():
6 # check if our stored decision is too old
7 if frame() > lastFrame + 1:
8 # Make a new decision and store it
9 lastDecision = randomBoolean()

10

11 # Either way we need to update the frame value
12 lastFrame = frame()
13

14 # We return the stored value
15 return lastDecision

To avoid having to go through each unused decision and remove its previous value, we store
the frame number at which a stored decision is made. If the test method is called, and the previous
stored value was stored on the previous frame, we use it. If it was stored prior to that, then we
create a new value.

308 Chapter 5 Decision Making

This code relies on two functions:

� frame() returns the number of the current frame. This should increment by one each frame.
If the decision tree isn’t called every frame, then frame should be replaced by a function that
increments each time the decision tree is called.

� randomBoolean() returns a random Boolean value, either true or false.

This algorithm for a random decision can be used with the decision tree algorithm provided
above.

Timing Out

If the agent continues to do the same thing forever, it may look strange. The decision tree in
our example above, for example, could leave the agent standing still forever, as long as we never
attack.

Random decisions that are stored can be set with time-out information, so the agent changes
behavior occasionally.

The pseudo-code for the decision now looks like the following:

1 struct RandomDecisionWithTimeOut (Decision):
2 lastFrame = -1
3 firstFrame = -1
4 lastDecision = false
5

6 timeOut = 1000 # Time out after this number of frames
7

8 def test():
9 # check if our stored decision is too old, or if

10 # we’ve timed out
11 if frame() > lastFrame + 1 or
12 frame() > firstFrame + timeOut:
13

14 # Make a new decision and store it
15 lastDecision = randomBoolean()
16

17 # Set when we made the decision
18 firstFrame = frame()
19

20 # Either way we need to update the frame value
21 lastFrame = frame()
22

23 # We return the stored value
24 return lastDecision

5.3 State Machines 309

Again, this decision structure can be used directly with the previous decision tree algorithm.
There can be any number of more sophisticated timing schemes. For example, make the stop

time random so there is extra variation, or alternate behaviors when they time out so the agent
doesn’t happen to stand still multiple times in a row. Use your imagination.

On the Website

The Random Decision Tree program available on the website is a modified version of the previous

Program

Decision Tree program. It replaces some of the decisions in the first version with random decisions
and others with a timed-out version. As before, it provides copious amounts of output, so you
can see what is going on behind the scenes.

Using Random Decision Trees

We’ve included this section on random decision trees as a simple extension to the decision tree
algorithm. It isn’t a common technique. In fact, we’ve come across it just once.

It is the kind of technique, however, that can breathe a lot more life into a simple algorithm for
very little implementation cost. One perennial problem with decision trees is their predictability;
they have a reputation for giving AI that is overly simplistic and prone to exploitation. Intro-
ducing just a simple random element in this way goes a long way toward rescuing the technique.
Therefore, we think it deserves to be used more widely.

5.3 State Machines

Often, characters in a game will act in one of a limited set of ways. They will carry on doing
the same thing until some event or influence makes them change. A Covenant warrior in Halo
[Bungie Software, 2001], for example, will stand at its post until it notices the player, then it will
switch into attack mode, taking cover and firing.

We can support this kind of behavior using decision trees, and we’ve gone some way toward
doing that using random decisions. In most cases, however, it is easier to use a technique designed
for this purpose: state machines.

State machines are the technique most often used for this kind of decision making and, along
with scripting (see Section 5.10), make up the vast majority of decision making systems used in
current games.

State machines take account of both the world around them (like decision trees) and their
internal makeup (their state).

A Basic State Machine

In a state machine each character occupies one state. Normally, actions or behaviors are associated
with each state. So, as long as the character remains in that state, it will continue carrying out the
same action.

310 Chapter 5 Decision Making

On Guard Fight

Run Away

[See small enemy]

[See big enemy][Escaped]
[Losing fight]

Figure 5.13 A simple state machine

States are connected together by transitions. Each transition leads from one state to another,
the target state, and each has a set of associated conditions. If the game determines that the
conditions of a transition are met, then the character changes state to the transition’s target state.
When a transition’s conditions are met, it is said to trigger, and when the transition is followed to
a new state, it has fired.

Figure 5.13 shows a simple state machine with three states: On Guard, Fight, and Run Away.
Notice that each state has its own set of transitions.

The state machine diagrams in this chapter are based on the Unified Modeling Language
(UML) state chart diagram format, a standard notation used throughout software engineering.
States are shown as curved corner boxes. Transitions are arrowed lines, labeled by the condition
that triggers them. Conditions are contained in square brackets.

The solid circle in Figure 5.13 has only one transition without a trigger condition. The tran-
sition points to the initial state that will be entered when the state machine is first run.

You won’t need an in-depth understanding of UML to understand this chapter. If you want
to find out more about UML, we’d recommend Pilone and Pitman [2005].

In a decision tree, the same set of decisions is always used, and any action can be reached
through the tree. In a state machine, only transitions from the current state are considered, so not
every action can be reached.

Finite State Machines

In game AI any state machine with this kind of structure is usually called a finite state machine
(FSM). This and the following sections will cover a range of increasingly powerful state machine
implementations, all of which are often referred to as FSMs.

This causes confusion with non-games programmers, for whom the term FSM is more com-
monly used for a particular type of simple state machine. An FSM in computer science normally
refers to an algorithm used for parsing text. Compilers use an FSM to tokenize the input code into
symbols that can be interpreted by the compiler.

5.3 State Machines 311

The Game FSM

The basic state machine structure is very general and admits any number of implementations. We
have seen tens of different ways to implement a game FSM, and it is rare to find any two developers
using exactly the same technique. That makes it difficult to put forward a single algorithm as being
the “state machine” algorithm.

Later in this section, we’ll look at a range of different implementation styles for the FSM, but
we work through just one main algorithm. We chose it for its flexibility and the cleanness of its
implementation.

5.3.1 The Problem

We would like a general system that supports arbitrary state machines with any kind of transition
condition. The state machine will conform to the structure given above and will occupy only one
state at a time.

5.3.2 The Algorithm

We will use a generic state interface that can be implemented to include any specific code. The state
machine keeps track of the set of possible states and records the current state it is in. Alongside
each state, a series of transitions is maintained. Each transition is again a generic interface that can
be implemented with the appropriate conditions. It simply reports to the state machine whether
it is triggered or not.

At each iteration (normally each frame), the state machine’s update function is called. This
checks to see if any transition from the current state is triggered. The first transition that is
triggered is scheduled to fire. The method then compiles a list of actions to perform from the
currently active state. If a transition has been triggered, then the transition is fired.

This separation of the triggering and firing of transitions allows the transitions to also have
their own actions. Often, transitioning from one state to another also involves carrying out some
action. In this case, a fired transition can add the action it needs to those returned by the state.

5.3.3 Pseudo-Code

The state machine holds a list of states, with an indication of which one is the current state. It
has an update function for triggering and firing transitions and a function that returns a set of
actions to carry out:

1 class StateMachine:
2

3 # Holds a list of states for the machine
4 states
5

312 Chapter 5 Decision Making

6 # Holds the initial state
7 initialState
8

9 # Holds the current state
10 currentState = initialState
11

12 # Checks and applies transitions, returning a list of
13 # actions.
14 def update():
15

16 # Assume no transition is triggered
17 triggeredTransition = None
18

19 # Check through each transition and store the first
20 # one that triggers.
21 for transition in currentState.getTransitions():
22 if transition.isTriggered():
23 triggeredTransition = transition
24 break
25

26 # Check if we have a transition to fire
27 if triggeredTransition:
28 # Find the target state
29 targetState = triggeredTransition.getTargetState()
30

31 # Add the exit action of the old state, the
32 # transition action and the entry for the new state.
33 actions = currentState.getExitAction()
34 actions += triggeredTransition.getAction()
35 actions += targetState.getEntryAction()
36

37 # Complete the transition and return the action list
38 currentState = targetState
39 return actions
40

41 # Otherwise just return the current state’s actions
42 else: return currentState.getAction()

5.3.4 Data Structures and Interfaces

The state machine relies on having states and transitions with a particular interface.

5.3 State Machines 313

The state interface has the following form:

1 class State:
2 def getAction()
3 def getEntryAction()
4 def getExitAction()
5

6 def getTransitions()

Each of the getXAction methods should return a list of actions to carry out. As we will
see below, the getEntryAction is only called when the state is entered from a transition, and
the getExitAction is only called when the state is exited. The rest of the time that the state is
active, getAction is called. The getTransitions method should return a list of transitions that are
outgoing from this state.

The transition interface has the following form:

1 class Transition:
2 def isTriggered()
3 def getTargetState()
4 def getAction()

The isTriggered method returns true if the transition can fire, the getTargetState method
reports which state to transition to, and the getAction method returns a list of actions to carry
out when the transition fires.

Transition Implementation

Only one implementation of the state class should be required: it can simply hold the three lists
of actions and the list of transitions as data members, returning them in the corresponding get
methods.

In the same way, we can store the target state and a list of actions in the transition class and
have its methods return the stored values. The isTriggered method is more difficult to generalize.
Each transition will have its own set of conditions, and much of the power in this method is
allowing the transition to implement any kind of tests it likes.

Because state machines are often defined in a data file and read into the game at runtime, it is
a common requirement to have a set of generic transitions. The state machine can then be set up
from the data file by using the appropriate transitions for each state.

In the previous section on decision trees, we saw generic testing decisions that operated on
basic data types. The same principle can be used with state machine transitions: we have generic
transitions that trigger when data they are looking at are in a given range.

Unlike decision trees, state machines don’t provide a simple way of combining these tests
together to make more complex queries. If we need to transition based on the condition that

314 Chapter 5 Decision Making

the enemy is far away AND health is low, then we need some way of combining triggers
together.

In keeping with our polymorphic design for the state machine, we can accomplish this with
the addition of another interface: the condition interface. We can use a general transition class of
the following form:

1 class Transition:
2

3 actions
4 def getAction(): return actions
5

6 targetState
7 def getTargetState(): return targetState
8

9 condition
10 def isTriggered(): return condition.test()

The isTriggered function now delegates the testing to its condition member.
Conditions have the following simple format:

1 class Condition:
2 def test()

We can then make a set of sub-classes of the Condition class for particular tests, just like we
did for decision trees:

1 class FloatCondition (Condition):
2 minValue
3 maxValue
4

5 testValue # Pointer to the game data we’re interested in
6

7 def test():
8 return minValue <= testValue <= maxValue

We can combine conditions together using Boolean sub-classes, such as AND, NOT,
and OR:

1 class AndCondition (Condition):
2 conditionA
3 conditionB
4

5.3 State Machines 315

5 def test():
6 return conditionA.test() and conditionB.test()
7

8

9 class NotCondition (Condition):
10 condition
11

12 def test():
13 return not condition.test()
14

15

16 class OrCondition (Condition):
17 conditionA
18 conditionB
19

20 def test():
21 return conditionA.test() or conditionB.test()

and so on, for any level of sophistication we need.

Weaknesses

This approach to transitions gives a lot of flexibility, but at the price of lots of method calls. In
C++ these method calls have to be polymorphic, which can slow down the call and confuse the
processor. All this adds time, which may make it unsuitable for use in every frame on lots of
characters.

Several developers we have come across use a homegrown scripting language to express con-
ditions for transitions. This still allows designers to create the state machine rules but can be
slightly more efficient. In practice, however, the speed up over this approach is quite small, unless
the scripting language includes some kind of compilation into machine code (i.e., just-in-time
compiling). For all but the simplest code, interpreting a script is at least as time consuming as
calling polymorphic functions.

5.3.5 On the Website

To get a sense of what is happening during an iteration, run the State Machine program that is

Program

available from the website. It is a command line program that allows you to manually trigger
transitions.

The software displays the current state (states have letters from A to G), and lets you select
a transition to trigger. The program clearly shows what is happening at each stage. You see the
transition triggered, then which methods are being called, and finally the transition fire. You can
also select no transition and see the state’s regular action being returned.

316 Chapter 5 Decision Making

5.3.6 Performance

The state machine algorithm only requires memory to hold a triggered transition and the current
state. It is O(1) in memory, and O(m) in time, where m is the number of transitions per
state.

The algorithm calls other functions in both the state and the transition classes, and in most
cases the execution time of these functions accounts for most of the time spent in the algorithm.

5.3.7 Implementation Notes

As we mentioned earlier, there are any number of ways to implement a state machine.
The state machine described in this section is as flexible as possible. We’ve tried to aim for an

implementation that allows you to experiment with any kind of state machine and add interesting
features. In many cases, it may be too flexible. If you’re only planning to use a small subset of its
flexibility, then it is very likely to be unnecessarily inefficient.

5.3.8 Hard-Coded FSM

A few years back, almost all state machines were hard coded. The rules for transitions and the
execution of actions were part of the game code. It has become less common as level designers get
more control over building the state machine logic, but it is still an important approach.

Pseudo-Code

In a hard-coded FSM, the state machine consists of an enumerated value, indicating which state
is currently occupied, and a function that checks if a transition should be followed. Here, we’ve
combined the two into a class definition (although hard-coded FSMs tend to be associated with
developers still working in C).

1 class MyFSM:
2

3 # Defines the names for each state
4 enum State:
5 PATROL
6 DEFEND
7 SLEEP
8

9 # Holds the current state
10 myState
11

12 def update():

5.3 State Machines 317

13

14 # Find the correct state
15 if myState == PATROL:
16

17 # Example transitions
18 if canSeePlayer(): myState = DEFEND
19 if tired(): myState = SLEEP
20

21 elif myState == DEFEND:
22

23 # Example transitions
24 if not canSeePlayer(): myState = PATROL
25

26 elif myState == SLEEP:
27

28 # Example transitions
29 if not tired(): myState = PATROL
30

31 def notifyNoiseHeard(volume):
32 if myState == SLEEP and volume > 10:
33 myState = DEFEND

Notice that this is pseudo-code for a particular state machine rather than a type of state
machine. In the update function there is a block of code for each state. In that block of code
the conditions for each transition are checked in turn, and the state is updated if required. The
transitions in this example all call functions (tired and canSeePlayer), which we are assuming
have access to the current game state.

In addition, we’ve added a state transition in a separate function, notifyNoiseHeard. We are
assuming that the game code will call this function whenever the character hears a loud noise. This
illustrates the difference between a polling (asking for information explicitly) and an event-based
(waiting to be told information) approach to state transitions. Chapter 10 on world interfacing
contains more details on this distinction.

The update function is called in each frame, as before, and the current state is used to generate
an output action. To do this, the FSM might have a method containing conditional blocks of the
following form:

1 def getAction():
2 if myState == PATROL: return PatrolAction
3 elif myState == DEFEND: return DefendAction
4 elif myState == SLEEP: return SleepAction

Often, the state machine simply carries out the actions directly, rather than returning details
of the action for another piece of code to execute.

318 Chapter 5 Decision Making

Performance

This approach requires no memory and is O(n + m), where n is the number of states, and m is
the number of transitions per state.

Although this appears to perform worse than the flexible implementation, it is usually faster
in practice for all but huge state machines (i.e., thousands of states).

Weaknesses

Although hard-coded state machines are easy to write, they are notoriously difficult to maintain.
State machines in games can often get fairly large, and this can appear as ugly and unclear code.

Most developers, however, find that the main drawback is the need for programmers to write
the AI behaviors for each character. This implies a need to recompile the game each time the
behavior changes. While it may not be a problem for a hobby game writer, it can become critical
in a large game project that takes many minutes or hours to rebuild.

More complex structures, such as hierarchical state machines (see below), are also difficult to
coordinate using hard-coded FSMs. With a more flexible implementation, debugging output can
easily be added to all state machines, making it easier to track down problems in the AI.

5.3.9 Hierarchical State Machines

On its own, one state machine is a powerful tool, but it can be difficult to express some behaviors.
One common source of difficulty is “alarm behaviors.”

Imagine a service robot that moves around a facility cleaning the floors. It has a state machine
allowing it to do this. It might search around for objects that have been dropped, pick one up
when it finds it, and carry it off to the trash compactor. This can be simply implemented using a
normal state machine (see Figure 5.14).

Unfortunately, the robot can run low on power, whereupon it has to scurry off to the nearest
electrical point and get recharged. Regardless of what it is doing at the time, it needs to stop, and
when it is fully charged again it needs to pick up where it left off. The recharging periods could
allow the player to sneak by unnoticed, for example, or allow the player to disable all electricity to
the area and thereby disable the robot.

This is an alarm mechanism: something that interrupts normal behavior to respond to some-
thing important. Representing this in a state machine leads to a doubling in the number of states.

With one level of alarm this isn’t a problem, but what would happen if we wanted the robot
to hide when fighting breaks out in the corridor. If its hiding instinct is more important than its
refueling instinct, then it will have to interrupt refueling to go hide. After the battle it will need
to pick up refueling where it left off, after which it will pick up whatever it was doing before that.
For just 2 levels of alarm, we would have 16 states.

Rather than combining all the logic into a single state machine, we can separate it into several.
Each alarm mechanism has its own state machine, along with the original behavior. They are
arranged in a hierarchy, so the next state machine down is only considered when the higher level
state machine is not responding to its alarm.

5.3 State Machines 319

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot item

]

[Trash disposed]

Figure 5.14 The basic cleaning robot state machine

Get power
(search)

Search Head for
trash

Get power
(head for

trash)

Get power
(head for

compactor)

Head for
compactor

[Recharged]

[No power]
[Recharged]

[No power]

[Recharged]

[No power]

[Trash disposed]

[Seen trash]

[G
ot

 it
em

]

Figure 5.15 An alarm mechanism in a standard state machine

Figure 5.15 shows one alarm mechanism and corresponds exactly to the diagram above.
We will nest one state machine inside another to indicate a hierarchical state machine

(Figure 5.16). The solid circle again represents the start state of the machine. When a composite
state is first entered, the circle with H* inside it indicates which sub-state should be entered.

320 Chapter 5 Decision Making

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot

 it
em

]

[Trash disposed]

H*

Clean up

Get power[Recharged]

[No power]

Figure 5.16 A hierarchical state machine for the robot

If the composite state has already been entered, then the previous sub-state is returned to. The
H* node is called the “history state” for this reason.

The details of why there’s an asterisk after the H, and some of the other vagaries of the UML
state chart diagram, are beyond the scope of this chapter. Refer back to Pilone and Pitman [2005]
for more details.

Rather than having separate states to keep track of the non-alarm state, we introduce nested
states. We still keep track of the state of the cleaning state machine, even if we are in the process
of refueling. When the refueling is over, the cleaning state machine will pick up where it left off.

In effect, we are in more than one state at once. We might be in the “Refuel” state in the
alarm mechanism, while at the same time we are also in the “Pick Up Object” state in the cleaning
machine. Because there is a strict hierarchy, there is never any confusion about which state wins
out: the highest state in the hierarchy is always in control.

To implement this, we could simply arrange the state machines in our program so that one state
machine calls another if it needs to. So if the refueling state machine is in its “Clean Up” state, it
calls the cleaning state machine and asks it for the action to take. When it is in the “Refuel” state,
it returns the refueling action directly.

While this would lead to slightly ugly code, it would implement our scenario. Most hierarchical
state machines, however, support transitions between levels of the hierarchy, and for that we’ll
need more complex algorithms.

For example, let’s expand our robot so that it can do something useful if there are no objects
to collect. It makes sense that it will use the opportunity to go and recharge, rather than standing
around waiting for its battery to go flat. The new state machine is shown in Figure 5.17.

Notice that we’ve added one more transition: from the“Search”state right out into the“Refuel”
state. This transition is triggered when there are no objects to collect. Because we transitioned

5.3 State Machines 321

[No trash found]

Head for
trash

Search

Head for
compactor

[Seen trash]

[G
ot

 it
em

]

[Trash disposed]

H*

Clean up

Get power[Recharged]

[No power]

Figure 5.17 A hierarchical state machine with a cross-hierarchy transition

directly out of this state, the inner state machine no longer has any state. When the robot has
refueled and the alarm system transitions back to cleaning, the robot will not have a record of
where to pick up from, so it must start the state machine again from its initial node (“Search”).

The Problem

We’d like an implementation of a state machine system that supports hierarchical state machines.
We’d also like transitions that pass between different layers of the machine.

The Algorithm

In a hierarchical state machine, each state can be a complete state machine in its own right.
We therefore rely on recursive algorithms to process the whole hierarchy. As with most recursive
algorithms, this can be pretty tricky to follow. The simplest implementation covered here is doubly
tricky because it recurses up and down the hierarchy at different points. We’d encourage you to
use the informal discussion and examples in this section alongside the pseudo-code in the next
section and play with the Hierarchical State Machine program that is available on the website to

Program

get a feel for how it is all working.
The first part of the system returns the current state. The result is a list of states, from highest

to lowest in the hierarchy. The state machine asks its current state to return its hierarchy. If the

322 Chapter 5 Decision Making

State BState A

State C

State L

State M

H*

Figure 5.18 Current state in a hierarchy

state is a terminal state, it returns itself; otherwise, it returns itself and adds to it the hierarchy of
state from its own current state.

In Figure 5.18 the current state is [State L, State A].
The second part of the hierarchical state machine is its update. In the original state machine

we assumed that each state machine started off in its initial state. Because the state machine always
transitioned from one state to another, there was never any need to check if there was no state.
State machines in a hierarchy can be in no state; they may have a cross-hierarchy transition. The
first stage of the update, then, is to check if the state machine has a state. If not, it should enter its
initial state.

Next, we check if the current state has a transition it wants to execute. Transitions at higher
levels in the hierarchy always take priority, and the transitions of sub-states will not be considered
if the super-state has one that triggers.

A triggered transition may be one of three types: it might be a transition to another state at
the current level of the hierarchy, it might be a transition to a state higher up in the hierarchy, or
it might be a transition to a state lower in the hierarchy. Clearly, the transition needs to provide
more data than just a target state. We allow it to return a relative level; how many steps up or down
the hierarchy the target state is.

We could simply search the hierarchy for the target state and not require an explicit level. While
this would be more flexible (we wouldn’t have to worry about the level values being wrong), it
would be considerably more time consuming. A hybrid, but fully automatic, extension could
search the hierarchy once offline and store all appropriate level values.

So the triggered transition has a level of zero (state is at the same level), a level greater than
zero (state is higher in the hierarchy), or a level less than zero (state is lower in the hierarchy). It
acts differently depending on which category the level falls into.

5.3 State Machines 323

If the level is zero, then the transition is a normal state machine transition and can be
performed at the current level, using the same algorithm used in the finite state machine.

If the level is greater than zero, then the current state needs to be exited and nothing else needs
to be done at this level. The exit action is returned, along with an indication to whomever called
the update function that the transition hasn’t been completed. We will return the exit action, the
transition outstanding, and the number of levels higher to pass the transition. This level value is
decreased by one as it is returned. As we will see, the update function will be returning to the next
highest state machine in the hierarchy.

If the level is less than zero, then the current state needs to transition to the ancestor of
the target state on the current level in the hierarchy. In addition, each of the children of that
state also needs to do the same, down to the level of the final destination state. To achieve this
we use a separate function, updateDown, that recursively performs this transition from the level of
the target state back up to the current level and returns any exit and entry actions along the way.
The transition is then complete and doesn’t need to be passed on up. All the accumulated actions
can be returned.

So we’ve covered all possibilities if the current state has a transition that triggers. If it does
not have a transition that triggers, then its action depends on whether the current state is a state
machine itself. If not, and if the current state is a plain state, then we can return the actions
associated with being in that state, just as before.

If the current state is a state machine, then we need to give it the opportunity to trigger any
transitions. We can do this by calling its update function. The update function will handle any
triggers and transitions automatically. As we saw above, a lower level transition that fires may have
its target state at a higher level. The update function will return a list of actions, but it may also
return a transition that it is passing up the hierarchy and that hasn’t yet been fired.

If such a transition is received, its level is checked. If the level is zero, then the transition should
be acted on at this level. The transition is honored, just as if it were a regular transition for the
current state. If the level is still greater than zero (it should never be less than zero, because we are
passing up the hierarchy at this point), then the state machine should keep passing it up. It does
this, as before, by exiting the current state and returning the following pieces of information: the
exit action, any actions provided by the current state’s update function, the transition that is still
pending, and the transition’s level, less one.

If no transition is returned from the current state’s update function, then we can simply return
its list of actions. If we are at the top level of the hierarchy, the list alone is fine. If we are lower
down, then we are also within a state, so we need to add the action for the state we’re in to the list
we return.

Fortunately, this algorithm is at least as difficult to explain as it is to implement. To see how
and why it works, let’s work through an example.

Examples

Figure 5.19 shows a hierarchical state machine that we will use as an example.
To clarify the actions returned for each example, we will say S-entry is the set of entry actions

for state S and similarly S-active and S-exit for active and exit actions. In transitions, we use the
same format: 1-actions for the actions associated with transition 1.

324 Chapter 5 Decision Making

State B

State A State C

H*

State L

State M

State N

1

2

4

3

6

5 7

Figure 5.19 Hierarchical state machine example

These examples can appear confusing if you skim through them. If you’re having trouble with
the algorithm, we urge you to follow through step by step with both the diagram above and the
pseudo-code from the next section.

Suppose we start just in State L, and no transition triggers. We will transition into State [L, A],
because L’s initial state is A. The update function will return L-active and A-entry, because we are
staying in L and just entering A.

Now suppose transition 1 is the only one that triggers. The top-level state machine will detect
no valid transitions, so it will call state machine L to see if it has any. L finds that its current state
(A) has a triggered transition. Transition 1 is a transition at the current level, so it is handled within
L and not passed anywhere. A transitions to B, and L’s update function returns A-exit, 1-actions,
B-entry. The top-level state machine accepts these actions and adds its own active action. Because
we have stayed in State L throughout, the final set of actions is A-exit, 1-actions, B-entry, L-active.
The current state is [L, B].

From this state, transition 4 triggers. The top-level state machine sees that transition 4 triggers,
and because it is a top-level transition it can be honored immediately. The transition leads to
State M, and the corresponding actions are L-exit, 4-actions, M-entry. The current state is [M].
Note that L is still keeping a record of being in State B, but because the top-level state machine is
in State M, this record isn’t used at the moment.

We’ll go from State M to State N in the normal way through transition 5. The procedure
is exactly the same as for the previous example and the non-hierarchical state machine. Now
transition 6 triggers. Because it is a level zero transition, the top-level state machine can honor it
immediately. It transitions into State L and returns the actions N-exit, 6-actions, L-entry. But now
L’s record of being in State B is important; we end up in State [L, B] again. In our implementation
we don’t return the B-entry action, because we didn’t return the B-exit action when we left State L

5.3 State Machines 325

previously. This is a personal preference on our part and isn’t fixed in stone. If you want to exit
and reenter State B, then you can modify your algorithm to return these extra actions at the
appropriate time.

Now suppose from State [L, B] transition 3 triggers. The top-level state machine finds no
triggers, so it will call state machine L to see if it has any. L finds that State B has a triggered
transition. This transition has a level of one; its target is one level higher in the hierarchy.
This means that State B is being exited, and it means that we can’t honor the transition at
this level. We return B-exit, along with the uncompleted transition, and the level minus one
(i.e., zero, indicating that the next level up needs to handle the transition). So, control returns
to the top-level update function. It sees that L returned an outstanding transition, with zero
level, so it honors it, transitioning in the normal way to State N. It combines the actions that
L returned (namely, B-exit) with the normal transition actions to give a final set of actions:
B-exit, L-exit, 3-actions, N-entry. Note that, unlike in our third example, L is no longer keeping
track of the fact that it is in State B, because we transitioned out of that state. If we fire transi-
tion 6 to return to State L, then State L’s initial state (A) would be entered, just like in the first
example.

Our final example covers transitions with level less than zero. Suppose we moved from State N
to State M via transition 7. Now we make transition 2 trigger. The top-level state machine looks
at its current state (M) and finds transition 2 triggered. It has a level of minus one, because it
is descending one level in the hierarchy. Because it has a level of minus one, the state machine
calls the updateDown function to perform the recursive transition. The updateDown function starts
at the state machine (L) that contains the final target state (C), asking it to perform the tran-
sition at its level. State machine L, in turn, asks the top-level state machine to perform the
transition at its level. The top-level state machine changes from State M to State L, returning
M-exit, L-entry as the appropriate actions. Control returns to state machine L’s updateDown func-
tion. State machine L checks if it is currently in any state (it isn’t, since we left State B in the
last example). It adds its action (C-entry) to those returned by the top-level machine. Con-
trol then returns to the top-level state machine’s update function: the descending transition has
been honored; it adds the transition’s actions to the result and returns M-exit, C-entry, L-entry,
2-actions.

If state machine L had still been in State B, then when L’s updateDown function was called
it would transition out of B and into C. It would add B-exit and C-entry to the actions that it
received from the top-level state machine.

Pseudo-Code

The hierarchical state machine implementation is made up of five classes and forms one of
the longest algorithms in this book. The State and Transition classes are similar to those in
the regular finite state machine. The HierarchicalStateMachine class runs state transitions, and
SubMachineState combines the functionality of the state machine and a state. It is used for state
machines that aren’t at the top level of the hierarchy. All classes but Transition inherit from
a HSMBase class, which simplifies the algorithm by allowing functions to treat anything in the
hierarchy in the same way.

326 Chapter 5 Decision Making

The HSMBase has the following form:

1 class HSMBase:
2 # The structure returned by update
3 struct UpdateResult:
4 actions
5 transition
6 level
7

8 def getAction(): return []
9

10 def update():
11 UpdateResult result
12 result.actions = getAction()
13 result.transition = None
14 result.level = 0
15 return result
16

17 def getStates() # unimplemented function

The HierarchicalStateMachine class has the following implementation:

1 class HierarchicalStateMachine (HSMBase):
2

3 # List of states at this level of the hierarchy
4 states
5

6 # The initial state for when the machine has no
7 # current state.
8 initialState
9

10 # The current state of the machine.
11 currentState = initialState
12

13 # Gets the current state stack
14 def getStates():
15 if currentState: return currentState.getStates()
16 else: return []
17

18 # Recursively updates the machine.
19 def update():
20

21 # If we’re in no state, use the initial state

5.3 State Machines 327

22 if not currentState:
23 currentState = initialState
24 return currentState.getEntryAction()
25

26 # Try to find a transition in the current state
27 triggeredTransition = None
28 for transition in currentState.getTransitions():
29 if transition.isTriggered():
30 triggeredTransition = transition
31 break
32

33 # If we’ve found one, make a result structure for it
34 if triggeredTransition:
35 result = UpdateResult()
36 result.actions = []
37 result.transition = triggeredTransition
38 result.level = triggeredTransition.getLevel()
39

40 # Otherwise recurse down for a result
41 else:
42 result = currentState.update()
43

44 # Check if the result contains a transition
45 if result.transition:
46

47 # Act based on its level
48 if result.level == 0:
49

50 # Its on our level: honor it
51 targetState = result.transition.getTargetState()
52 result.actions += currentState.getExitAction()
53 result.actions += result.transition.getAction()
54 result.actions += targetState.getEntryAction()
55

56 # Set our current state
57 currentState = targetState
58

59 # Add our normal action (we may be a state)
60 result.actions += getAction()
61

62 # Clear the transition, so nobody else does it
63 result.transition = None
64

65 else if result.level > 0:

328 Chapter 5 Decision Making

66

67 # Its destined for a higher level
68 # Exit our current state
69 result.actions += currentState.getExitAction()
70 currentState = None
71

72 # Decrease the number of levels to go
73 result.level -= 1
74

75 else:
76

77 # It needs to be passed down
78 targetState = result.transition.getTargetState()
79 targetMachine = targetState.parent
80 result.actions += result.transition.getAction()
81 result.actions += targetMachine.updateDown(
82 targetState, -result.level
83)
84

85 # Clear the transition, so nobody else does it
86 result.transition = None
87

88 # If we didn’t get a transition
89 else:
90

91 # We can simply do our normal action
92 result.action += getAction()
93

94 # Return the accumulated result
95 return result
96

97 # Recurses up the parent hierarchy, transitioning into
98 # each state in turn for the given number of levels
99 def updateDown(state, level):

100

101 # If we’re not at top level, continue recursing
102 if level > 0:
103 # Pass ourself as the transition state to our parent
104 actions = parent.updateDown(this, level-1)
105

106 # Otherwise we have no actions to add to
107 else: actions = []
108

109 # If we have a current state, exit it

5.3 State Machines 329

110 if currentState:
111 actions += currentState.getExitAction()
112

113 # Move to the new state, and return all the actions
114 currentState = state
115 actions += state.getEntryAction()
116 return actions

The State class is substantially the same as before, but adds an implementation for getStates:

1 class State (HSMBase):
2

3 def getStates():
4 # If we’re just a state, then the stack is just us
5 return [this]
6

7 # As before...
8 def getAction()
9 def getEntryAction()

10 def getExitAction()
11 def getTransitions()

Similarly, the Transition class is the same but adds a method to retrieve the level of the
transition:

1 class Transition:
2

3 # Returns the difference in levels of the hierarchy from
4 # the source to the target of the transition.
5 def getLevel()
6

7 # As before...
8 def isTriggered()
9 def getTargetState()

10 def getAction()

Finally, the SubMachineState class merges the functionality of a state and a state machine:

1 class SubMachineState (State, HierarchicalStateMachine):
2

3 # Route get action to the state

330 Chapter 5 Decision Making

4 def getAction(): return State::getAction()
5

6 # Route update to the state machine
7 def update(): return HierarchicalStateMachine::update()
8

9 # We get states by adding ourself to our active children
10 def getStates():
11 if currentState:
12 return [this] + currentState.getStates()
13 else:
14 return [this]

Implementation Notes

We’ve used multiple inheritance to implement SubMachineState. For languages (or programmers)
that don’t support multiple inheritance, there are two options. The SubMachineState could encap-
sulate HierarchicalStateMachine, or the HierarchicalStateMachine can be converted so that it
is a sub-class of State. The downside with the latter approach is that the top-level state machine
will always return its active action from the update function, and getStates will always have it as
the head of the list.

We’ve elected to use a polymorphic structure for the state machine again. It is possible to
implement the same algorithm without any polymorphic method calls. Given that it is complex

Library

enough already, however, we’ll leave that as an exercise. Our experience deploying a hierarchical
state machine involved an implementation using polymorphic method calls (provided on the
website). In-game profiling on both PC and PS2 showed that the method call overhead was not a
bottleneck in the algorithm. In a system with hundreds or thousands of states, it may well be, as
cache efficiency issues come into play.

Some implementations of hierarchical state machines are significantly simpler than this by
making it a requirement that transitions can only occur between states at the same level. With
this requirement, all the recursion code can be eliminated. If you don’t need cross-hierarchy
transitions, then the simpler version will be easier to implement. It is unlikely to be any faster,
however. Because the recursion isn’t used when the transition is at the same level, the code above
will run about as fast if all the transitions have a zero level.

Performance

The algorithm is O(n) in memory, where n is the number of layers in the hierarchy. It requires
temporary storage for actions when it recurses down and up the hierarchy.

Similarly, it is O(nt) in time, where t is the number of transitions per state. To find the correct
transition to fire, it potentially needs to search each transition at each level of the hierarchy and
O(nt) process. The recursion, both for a transition level <0 and for a level >0 is O(n), so it does
not affect the O(nt) for the whole algorithm.

5.3 State Machines 331

On the Website

Following hierarchical state machines, especially when they involve transitions across hierarchies,
can be confusing at first. We’ve tried to be as apologetic as possible for the complexity of the
algorithm, even though we’ve made it as simple as we can. Nonetheless, it is a powerful technique
to have in your arsenal and worth the effort to master.

The Hierarchical State Machine program that is available on the webiste lets you step through

Program

a state machine, triggering any transition at each step. It works in the same way as the State
Machine program, giving you plenty of feedback on transitions. We hope it will help give a clearer
picture, alongside the content of this chapter.

5.3.10 Combining Decision Trees and State Machines

The implementation of transitions bears more than a passing resemblance to the implementation
of decision trees. This is no coincidence, but we can take it even further.

Decision trees are an efficient way of matching a series of conditions, and this has application
in state machines for matching transitions.

We can combine the two approaches by replacing transitions from a state with a decision tree.
The leaves of the tree, rather than being actions as before, are transitions to new states.

A simple state machine might look like Figure 5.20.
The diamond symbol is also part of the UML state chart diagram format, representing a

decision. In UML there is no differentiation between decisions and transitions, and the decisions
themselves are usually not labeled.

Alert

Raise alarm

Defend

Can see
the player?

[Yes]

[Yes]

[No]

Player
nearby?

Figure 5.20 State machine with decision tree transitions

332 Chapter 5 Decision Making

Alert

Raise alarm

Defend

[Player in sight AND player is far away]

[Player in sight AND player is close by]

Figure 5.21 State machine without decision tree transitions

In this book we’ve labeled the decisions with the test that they perform, which is clearer for
our needs.

When in the “Alert” state, a sentry has only one possible transition: via the decision tree. It
quickly ascertains whether the sentry can see the player. If the sentry is not able to see the player,
then the transition ends and no new state is reached. If the sentry is able to see the player, then
the decision tree makes a choice based on the distance of the player. Depending on the result of
this choice, two different states may be reached: “Raise Alarm” or “Defend.” The latter can only be
reached if a further test (distance to the player) passes.

To implement the same state machine without the decision nodes, the state machine in
Figure 5.21 would be required. Note that now we have two very complex conditions and both
have to evaluate the same information (distance to the player and distance to the alarm point). If
the condition involved a time-consuming algorithm (such as the line of sight test in our example),
then the decision tree implementation would be significantly faster.

Pseudo-Code

We can incorporate a decision tree into the state machine framework we’ve developed so far.
The decision tree, as before, consists of DecisionTreeNodes. These may be decisions (using

the same Decision class as before) or TargetStates (which replace the Action class in the basic
decision tree). TargetStates hold the state to transition to and can contain actions. As before, if a
branch of the decision tree should lead to no result, then we can have some null value at the leaf
of the tree.

1 class TargetState (DecisionTreeNode):
2 getAction()
3 getTargetState()

The decision making algorithm needs to change. Rather than testing for Actions to return, it
now tests for TargetState instances:

5.3 State Machines 333

1 def makeDecision(node):
2

3 # Check if we need to make a decision
4 if not node or node is_instance_of TargetState:
5

6 # We’ve got the target (or a null target); return it
7 return node
8

9 else:
10 # Make the decision and recurse based on the result
11 if node.test():
12 return makeDecision(node.trueNode)
13 else
14 return makeDecision(node.falseNode)

We can then build an implementation of the Transition interface that supports these decision
trees. It has the following algorithm:

1 class DecisionTreeTransition (Transition):
2

3 # Holds the target state at the end of the decision
4 # tree, when a decision has been made
5 targetState = None
6

7 # Holds the root decision in the tree
8 decisionTreeRoot
9

10 def getAction():
11 if targetState: return targetState.getAction()
12 else: return None
13

14 def getTargetState():
15 if targetState: return targetState.getTargetState()
16 else: return None
17

18 def isTriggered():
19

20 # Get the result of the decision tree and store it
21 targetState = makeDecision(decisionTreeRoot)
22

23 # Return true if the target state points to a
24 # destination, otherwise assume that we don’t trigger
25 return targetState != None

334 Chapter 5 Decision Making

5.4 Behavior Trees

Behavior trees have become a popular tool for creating AI characters. Halo 2 [Bungie Software,
2004] was one of the first high-profile games for which the use of behavior trees was described in
detail and since then many more games have followed suit.

They are a synthesis of a number of techniques that have been around in AI for a while:
Hierarchical State Machines, Scheduling, Planning, and Action Execution. Their strength comes
from their ability to interleave these concerns in a way that is easy to understand and easy
for non-programmers to create. Despite their growing ubiquity, however, there are things that
are difficult to do well in behavior trees, and they aren’t always a good solution for decision
making.

Behavior trees have a lot in common with Hierarchical State Machines but, instead of a state,
the main building block of a behavior tree is a task. A task can be something as simple as looking
up the value of a variable in the game state, or executing an animation.

Tasks are composed into sub-trees to represent more complex actions. In turn, these complex
actions can again be composed into higher level behaviors. It is this composability that gives behav-
ior trees their power. Because all tasks have a common interface and are largely self-contained,
they can be easily built up into hierarchies (i.e., behavior trees) without having to worry about
the details of how each sub-task in the hierarchy is implemented.

Types of Task

Tasks in a behavior tree all have the same basic structure. They are given some CPU time to do
their thing, and when they are ready they return with a status code indicating either success or
failure (a Boolean value would suffice at this stage). Some developers use a larger set of return
values, including an error status, when something unexpected went wrong, or a need more time
status for integration with a scheduling system.

While tasks of all kinds can contain arbitrarily complex code, the most flexibility is provided if
each task can be broken into the smallest parts that can usefully be composed. This is especially so
because, while powerful just as a programming idiom, behavior trees really shine when coupled
with a graphical user interface (GUI) to edit the trees. That way, designers, technical artists and
level designers can potentially author complex AI behavior.

At this stage, our simple behavior trees will consist of three kinds of tasks: Conditions, Actions,
and Composites.

Conditions test some property of the game. There can be tests for proximity (is the character
within X units of an enemy?), tests for line of sight, tests on the state of the character (am I
healthy?, do I have ammo?), and so on. Each of these kinds of tests needs to be implemented as
a separate task, usually with some parameterization so they can be easily reused. Each Condition
returns the success status code if the Condition is met and returns failure otherwise.

Actions alter the state of the game. There can be Actions for animation, for character move-
ment, to change the internal state of the character (resting raises health, for example), to play audio
samples, to engage the player in dialog, and to engage specialized AI code (such as pathfinding).
Just like Conditions, each Action will need to have its own implementation, and there may be a

5.4 Behavior Trees 335

large number of them in your engine. Most of the time Actions will succeed (if there’s a chance
they might not, it is better to use Conditions to check for that before the character starts trying to
act). It is possible to write Actions that fail if they can’t complete, however.

If Conditions and Actions seem familiar from our previous discussion on decision trees
and state machines, they should. They occupy a similar role in each technique (and we’ll see
more techniques with the same features later in this chapter). The key difference in behavior
trees, however, is the use of a single common interface for all tasks. This means that arbitrary
Conditions, Actions, and groups can be combined together without any of them needing to know
what else is in the behavior tree.

Both Conditions and Actions sit at the leaf nodes of the tree. Most of the branches are made
up of Composite nodes. As the name suggests, these keep track of a collection of child tasks
(Conditions, Actions, or other Composites), and their behavior is based on the behavior of their
children. Unlike Actions and Conditions, there are normally only a handful of Composite tasks
because with only a handful of different grouping behaviors we can build very sophisticated
behaviors.

For our simple behavior tree we’ll consider two types of Composite tasks: Selector and
Sequence. Both of these run each of their child behaviors in turn. When a child behavior is
complete and returns its status code the Composite decides whether to continue through its
children or whether to stop there and then and return a value.

A Selector will return immediately with a success status code when one of its children runs
successfully. As long as its children are failing, it will keep on trying. If it runs out of children
completely, it will return a failure status code.

A Sequence will return immediately with a failure status code when one of its children fails.
As long as its children are succeeding, it will keep going. If it runs out of children, it will return in
success.

Selectors are used to choose the first of a set of possible actions that is successful. A Selector
might represent a character wanting to reach safety. There may be multiple ways to do that (take
cover, leave a dangerous area, find backup). The Selector will first try to take cover; if that fails,
it will leave the area. If that succeeds, it will stop—there’s no point also finding backup, as we’ve
solved the character’s goal of reaching safety. If we exhaust all options without success, then the
Selector itself has failed.

A Selector task is depicted graphically in Figure 5.22. First the Selector tries a task representing
attacking the player; if it succeeds, it is done. If the attack task fails, the Selector node will go on
to try a taunting animation instead. As a final fall back, if all else fails, the character can just stare
menacingly.

Sequences represent a series of tasks that need to be undertaken. Each of our reaching-safety
actions in the previous example may consist of a Sequence. To find cover we’ll need to choose a
cover point, move to it, and, when we’re in range, play a roll animation to arrive behind it. If any
of the steps in the sequence fails, then the whole sequence has failed: if we can’t reach our desired
cover point, then we haven’t reached safety. Only if all the tasks in the Sequence are successful can
we consider the Sequence as a whole to be successful.

Figure 5.23 shows a simple example of using a Sequence node. In this behavior tree the first
child task is a condition that checks if there is a visible enemy. If the first child task fails, then the
Sequence task will also immediately fail. If the first child task succeeds then we know there is a

336 Chapter 5 Decision Making

Attack Taunt Stare

Figure 5.22 Example of a selector node in a behavior tree

Enemy
visible?

Turn
away

Run
away

Figure 5.23 Example of a sequence node in a behavior tree

visible enemy, and the Sequence task goes on to execute the next child task, which is to turn away,
followed by the running task. The Sequence task will then terminate successfully.

A Simple Example

We can use the tasks in the previous example to build a simple but powerful behavior tree. The
behavior tree in this example represents an enemy character trying to enter the room in which
the player is standing.

We’ll build the tree in stages, to emphasize how the tree can be built up and extended. This
process of refining the behavior tree is part of its attraction, as simple behaviors can be roughed
in and then refined in response to play testing and additional development resources.

Our first stage, Figure 5.24, shows a behavior tree made up of a single task. It is a move action,
to be carried out using whatever steering system our engine provides.

To run this task we give it CPU time, and it moves into the room. This was state-of-the-art
AI for entering rooms before Half-Life, of course, but wouldn’t go down well in a shooter now!
The simple example does make a point, however. When you’re developing your AI using behavior
trees, just a single naive behavior is all you need to get something working.

In our case, the enemy is too stupid: the player can simply close the door and confound the
incoming enemy.

5.4 Behavior Trees 337

Move
(into room)

Figure 5.24 The simplest behavior tree

?

Door
open?

Open
door

Move
(into room)

Move
(into room)

Move
(to door)

Figure 5.25 A behavior tree with composite nodes

So, we’ll need to make the tree a little more complex. In Figure 5.25, the behavior tree is made
up of a Selector, which has two different things it can try, each of which is a Sequence. In the first
case, it checks to see if the door is open, using a Condition task; then it moves into the room. In
the second case, it moves to the door, plays an animation, opens the door, and then moves into
the room.

Let’s think about how this behavior tree is run. Imagine the door is open. When it is given
CPU time, the Selector tries its first child. That child is made up of the Sequence task for moving
through the open door. The Condition checks if the door is open. It is, so it returns success. So,
the Sequence task moves on to its next child—moving through the door. This, like most actions,
always succeeds, so the whole of the Sequence has been successful. Back at the top level, the
Selector has received a success status code from the first child it tried, so it doesn’t both trying its
other child: it immediately returns in success.

What happens when the door is closed? As before the Selector tries its first child. That Sequence
tries the Condition. This time, however, the Condition task fails. The Sequence doesn’t bother
continuing; one failure is enough, so it returns in failure. At the top level, the Selector isn’t fazed
by a failure; it just moves onto its next child. So, the character moves to the door, opens it, then
enters.

This example shows an important feature of behavior trees: a Condition task in a Sequence acts
like an IF-statement in a programming language. If the Condition is not met, then the Sequence
will not proceed beyond that point. If the Sequence is in turn placed within a Selector, then we

338 Chapter 5 Decision Making

get the effect of IF-ELSE-statements: the second child is only tried if the Condition wasn’t met for
the first child. In pseudo-code the behavior of this tree is:

1 if is_locked(door):
2 move_to(door)
3 open(door)
4 move_to(room)
5 else:
6 move_to(room)

The pseudo-code and diagram show that we’re using the final move action in both cases.
There’s nothing wrong with this. Later on in the section we’ll look at how to reuse existing sub-
trees efficiently. For now it is worth saying that we could refactor our behavior tree to be more
like the simpler pseudo-code:

1 if is_locked(door):
2 move_to(door)
3 open(door)
4 move_to(room)

The result is shown in Figure 5.26. Notice that it is deeper than before; we’ve had to add
another layer to the tree. While some people do like to think about behavior trees in terms
of source code, it doesn’t necessarily give you any insight in how to create simple or efficient
trees.

In our final example in this section we’ll deal with the possibility that the player has locked
the door. In this case, it won’t be enough for the character to just assume that the door can be
opened. Instead, it will need to try the door first. Figure 5.27 shows a behavior tree for dealing
with this situation. Notice that the Condition used to check if the door is locked doesn’t appear
at the same point where we check if the door is closed. Most people can’t tell if a door is locked
just by looking at it, so we want the enemy to go up to the door, try it, and then change behavior
if it is locked. In the example, we have the character shoulder charging the door.

We won’t walk through the execution of this behavior tree in detail. Feel free to step through
it yourself and make sure you understand how it would work if the door is open, if it is closed,
and if it is locked.

At this stage we can start to see another common feature of behavior trees. Often they are
made up of alternating layers of Sequences and Selectors. As long as the only Composite tasks we
have are Sequence and Selector, it will always be possible to write the tree in this way.1 Even with

1. The reason for this may not immediately be obvious. If you think about a tree in which a Selector has another Selector
as a child—its behavior will be exactly the same as if the child’s children were inserted in the parent Selector. If one of
the grandchildren returns in success, then its parent immediately returns in success, and so does the grandparent. The
same is true for Sequence tasks inside other Sequence tasks. This means there is no functional reason for having two levels
with the same kind of Composite task. There may, however, be non-functional reasons for using another grouping such
as grouping related tasks together to more clearly understand what the overall tree is trying to achieve.

5.4 Behavior Trees 339

?

Door
open?

Move
(to door)

Open
door

Figure 5.26 A more complicated refactored tree

?

?Door
open?

Door
open?

Door
locked?

Open
door

Barge
door

Move
(into room)

Move
(into room)

Move
(to door)

Figure 5.27 A behavior tree for a minimally acceptable enemy

340 Chapter 5 Decision Making

the other kinds of Composite tasks we’ll see later in the section, Sequence and Selector are still the
most common, so this alternating structure is quite common.

We’re probably just about at the point where our enemy’s room-entering behavior would
be acceptable in a current generation game. There’s plenty more we can do here. We could add
additional checks to see if there are windows to smash through. We could add behaviors to allow
the character to use grenades to blow the door, we could have it pick up objects to barge the door,
and we could have it pretend to leave and lie in wait for the player to emerge.

Whatever we end up doing, the process of extending the behavior tree is exactly as we’ve
shown it here, leaving the character AI playable at each intermediate stage.

Behavior Trees and Reactive Planning

Behavior trees implement a very simple form of planning, sometimes called reactive planning.
Selectors allow the character to try things, and fall back to other behaviors if they fail. This isn’t a
very sophisticated form of planning: the only way characters can think ahead is if you manually
add the correct conditions to their behavior tree. Nevertheless, even this rudimentary planning
can give a good boost to the believability of your characters.

The behavior tree represents all possible Actions that your character can take. The route from
the top level to each leaf represents one course of action,2 and the behavior tree algorithm searches
among those courses of action in a left-to-right manner. In other words, it performs a depth-first
search.

There is nothing about behavior trees or depth-first reactive planning that is unique, of
course; we could do the same thing using other techniques, but typically they are much harder.
The behavior of trying doors and barging through them if they are locked, for example, can be
implemented using a finite state machine. But most people would find it quite unintuitive to
create. You’d have to encode the fall-back behavior explicitly in the rules for state transitions. It
would be fairly easy to write a script for this particular effect, but we’ll soon see behavior trees
that are difficult to turn into scripts without writing lots of infrastructure code to support the way
behavior trees naturally work.

5.4.1 Implementing Behavior Trees

Behavior trees are made up of independent tasks, each with its own algorithm and implementation.
All of them conform to a basic interface which allows them to call one another without knowing
how they are implemented. In this section, we’ll look at a simple implementation based on the
tasks we’ve introduced above.

5.4.2 Pseudo-Code

Behavior trees are easy to understand at the code level. We’ll begin by looking at a possible base
class for a task that all nodes in the tree can inherit from. The base class specifies a method used

2. Strictly this only applies to each leaf in a Selector and the last leaves in each Sequence.

5.4 Behavior Trees 341

to run the task. The method should return a status code showing whether it succeeded or failed.
In this implementation we will use the simplest approach and use the Boolean values True and
False. The implementation of that method is normally not defined in the base class (i.e., it is a
pure virtual function):

1 class Task:
2 # Holds a list of the children (if any) of this task
3 children
4

5 # Always terminates with either success (True) or
6 # failure (False)
7 def run()

Here is an example of a simple task that asserts there is an enemy nearby:

1 class EnemyNear (Task):
2 def run():
3 if distanceToEnemy < 10:
4 return True
5

6 # Task failure, there is no enemy nearby
7 return False

Another example of a simple task could be to play an animation:

1 class PlayAnimation (Task):
2 animation_id
3 speed
4

5 def Attack(animation_id, loop=False, speed=1.0):
6 this.animation = animation
7 this.speed = speed
8

9 def run():
10 if animationEngine.ready():
11 animationEngine.play(animation, speed)
12 return True
13

14 # Task failure, the animation could not be played.
15 # The parent node will worry about the consequences
16 return False

342 Chapter 5 Decision Making

This task is parameterized to play one particular animation, and it checks to see if the
animation engine is available before it does so.

One reason the animation engine might not be ready is if it was already busy playing a different
animation. In a real game we’d want more control than this over the animation (we could still
play a head-movement animation while the character was running, for example). We’ll look at a
more comprehensive way to implement resource-checking later in this section.

The Selector task can be implemented simply:

1 class Selector (Task):
2 def run():
3 for c in children:
4 if c.run():
5 return True
6

7 return False

The Sequence node is implemented similarly:

1 class Sequence (Task):
2 def run():
3 for c in children:
4 if not c.run():
5 return False
6

7 return True

Performance

The performance of a behavior tree depends on the tasks within it. A tree made up of just Selector
and Sequence nodes and leaf tasks (Conditions and Actions) that are O(1) in performance and
memory will be O(n) in memory and O(log n) in speed, where n is the number of nodes in
the tree.

Implementation Notes

In the pseudo-code we’ve used Boolean values to represent the success and failure return values
for tasks. In practice, it is a good idea to use a more flexible return type than Boolean values (an
enum in C-based languages is ideal), because you may find yourself needing more than two return
values, and it can be a serious drag to work through tens of task class implementations changing
the return values.

5.4 Behavior Trees 343

Non-Deterministic Composite Tasks

Before we leave Selectors and Sequences for a while, it is worth looking at some simple variations
of them that can make your AI more interesting and varied. The implementations above run
each of their children in a strict order. The order is defined in advance by the person defining the
tree. This is necessary in many cases: in our simple example above we absolutely have to check
if the door is open before trying to move through it. Swapping that order would look very odd.
Similarly for Selectors, there’s no point trying to barge through the door if it is already open, we
need to try the easy and obvious solutions first.

In some cases, however, this can lead to predictable AIs who always try the same things in
the same order. In many Sequences there are some Actions that don’t need to be in a particular
order. If our room-entering enemy decided to smoke the player out, they might need to get
matches and gasoline, but it wouldn’t matter in which order as long as both matches and gasoline
were in place before they tried to start the fire. If the player saw this behavior several times, it
would be nice if the different characters acting this way didn’t always get the components in the
same order.

For Selectors, the situation can be even more obvious. Let’s say that our enemy guard has five
ways to gain entry. They can walk through the open door, open a closed door, barge through a
locked door, smoke the player out, or smash through the window. We would want the first two
of these to always be attempted in order, but if we put the remaining three in a regular Selector
then the player would know what type of forced entry is coming first. If the forced entry actions
normally worked (e.g., the door couldn’t be reinforced, the fire couldn’t be extinguished, the
window couldn’t be barricaded), then the player would never see anything but the first strategy
in the list—wasting the AI effort of the tree builder.

These kinds of constraints are called “partial-order” constraints in the AI literature. Some
parts may be strictly ordered, and others can be processed in any order. To support this in our
behavior tree we use variations of Selectors and Sequences that can run their children in a random
order.

The simplest would be a Selector that repeatedly tries a single child:

1 class RandomSelector (Task):
2 children
3 def run():
4 while True:
5 child = random.choice(children)
6 result = child.run()
7 if result:
8 return True

This gives us randomness but has two problems: it may try the same child more than once,
even several times in a row, and it will never give up, even if all its children repeatedly fail. For
these reasons, this simple implementation isn’t widely useful, but it can still be used, especially in
combination with the parallel task we’ll meet later in this section.

344 Chapter 5 Decision Making

A better approach would be to walk through all the children in some random order. We can
do this for either Selectors or Sequences. Using a suitable random shuffling procedure, we can
implement this as:

1 class NonDeterministicSelector (Task):
2

3 children
4

5 def run():
6 shuffled = random.shuffle(children)
7 for child in shuffled:
8 if child.run(): break
9 return result

and

1 class NonDeterministicSequence (Task):
2

3 children
4

5 def run():
6 shuffled = random.shuffle(children)
7 for child in shuffled:
8 if not child.run(): break
9 return result

In each case, just add a shuffling step before running the children. This keeps the randomness
but guarantees that all the children will be run and that the node will terminate when all the
children have been exhausted.

Many standard libraries do have a random shuffle routine for their vector or list data types. If
yours doesn’t it is fairly easy to implement Durstenfeld’s shuffle algorithm:

1 def shuffle(original):
2 list = original.copy()
3 n = list.length
4 while n > 1:
5 k = random.integer_less_than(n)
6 n--;
7 list[n], list[k] = list[k], list[n]btPartia
8 return list

5.4 Behavior Trees 345

?

Entering... Open door...

Barge door...

Douse door Ignite door

Get gasolineGet matches

?

Figure 5.28 Example behavior tree with partial ordering

An implementation of this is included on the website.

Program

So we have fully ordered Composites, and we have non-deterministic Composites. To make
a partially ordered AI strategy we put them together into a behavior tree. Figure 5.28 shows the
tree for the previous example: an enemy AI trying to enter a room. Non-deterministic nodes are
shown with a wave in their symbol and are shaded gray.

Although the figure only shows the low-level details for the strategy to smoke the player out,
each strategy will have a similar form, being made up of fixed-order Composite tasks. This is very
common; non-deterministic tasks usually sit within a framework of fixed-order tasks, both above
and below.

5.4.3 Decorators

So far we’ve met three families of tasks in a behavior tree: Conditions, Actions, and Composites.
There is a fourth that is significant: Decorators.

The name “decorator” is taken from object-oriented software engineering. The decorator
pattern refers to a class that wraps another class, modifying its behavior. If the decorator has the
same interface as the class it wraps, then the rest of the software doesn’t need to know if it is
dealing with the original class or the decorator.

346 Chapter 5 Decision Making

In the context of a behavior tree, a Decorator is a type of task that has one single child task
and modifies its behavior in some way. You could think of it like a Composite task with a single
child. Unlike the handful of Composite tasks we’ll meet, however, there are many different types
of useful Decorators.

One simple and very common category of Decorators makes a decision whether to allow their
child behavior to run or not (they are sometimes called “filters”). If they allow the child behavior
to run, then whatever status code it returns is used as the result of the filter. If they don’t allow the
child behavior to run, then they normally return in failure, so a Selector can choose an alternative
action.

There are several standard filters that are useful. For example, we can limit the number of
times a task can be run:

1 class Limit (Decorator)
2 runLimit
3 runSoFar = 0
4

5 def run():
6 if runSoFar >= runLimit:
7 return False
8

9 runSoFar++
10 return child.run()

which could be used to make sure that a character doesn’t keep trying to barge through a door
that the player has reinforced.

We can use a Decorator to keep running a task until it fails:

1 class UntilFail (Decorator):
2 def run():
3 while True:
4 result = child.run()
5

6 if not result: break
7

8 return True

We can combine this Decorator with other tasks to build up a behavior tree like the one in
Figure 5.29. The code to create this behavior tree will be a sequence of calls to the task constructors
that will look something like:

1 ex = Selector(Sequence(Visible,
2 UntilFail(Sequence(Conscious,
3 Hit,

5.4 Behavior Trees 347

4 Pause,
5 Hit)),
6 Restrain),
7 Selector(Sequence(Audible,
8 Creep),
9 Move))

The basic behavior of this tree is similar to before. The Selector node at the root, labeled (a)
in the figure, will initially try its first child task. This first child is a Sequence node, labeled (b).
If there is no visible enemy, then the Sequence node (b) will immediately fail and the Selector
node (a) at the root will try its second child.

The second child of the root node is another Selector node, labeled (c). Its first child (d) will
succeed if there is an audible enemy, in which case the character will creep. Sequence node (d)
will then terminate successfully, causing Selector node (c) to also terminate successfully. This, in
turn, will cause the root node (a) to terminate successfully.

So far, we haven’t reached the Decorator, so the behavior is exactly what we’ve seen before.
In the case where there is a visible enemy, Sequence node (b) will continue to run its children,

arriving at the decorator. The Decorator will execute Sequence node (e) until it fails. Node (e) can

?

(b)

(e)

(c)

(a)

(d)

?

Until
fail

Visible? Restrain

Audible? Creep

Conscious? Hit HitPause

Move

Figure 5.29 Example behavior tree

348 Chapter 5 Decision Making

only fail when the character is no longer conscious, so the character will continually hit the enemy
until it loses consciousness, after which the Selector node will terminate successfully. Sequence
node (b) will then finally execute the task to tie up the unconscious enemy. Node (b) will now
terminate successfully, followed by the immediate successful termination of the root node (a).

Notice that the Sequence node (e) includes a fixed repetition of hit, pause, hit. So, if the
enemy happens to lose consciousness after the first hit in the sequence, then the character will still
hit the subdued enemy one last time. This may give the impression of a character with a brutal
personality. It is precisely this level of fine-grained control over potentially important details that
is another key reason for the appeal of behavior trees.

In addition to filters that modify when and how often to call tasks, other Decorators can
usefully modify the status code returned by a task:

1 class Inverter (Decorator):
2 def run()
3 return not child.run()

We’ve given just a few simple Decorators here. There are many more we could implement
and we’ll see some more below. Each of the Decorators above have inherited from a base class
“Decorator”. The base class is simply designed to manage its child task. In terms of our simple
implementation this would be

1 class Decorator (Task):
2 # Stores the child this task is decorating.
3 child

Despite the simplicity it is a good implementation decision to keep this code in a common
base class. When you come to build a practical behavior tree implementation you’ll need to decide
when child tasks can be set and by whom. Having the child – task management code in one place
is useful. The same advice goes for Composite tasks—it is wise to have a common base class below
both Selector and Sequence.

Guarding Resources with Decorators

Before we leave Decorators there is one important Decorator type that isn’t as trivial to implement
as the example above. We’ve already seen why we need it when we implemented the PlayAnimation
task above.

Often, parts of a behavior tree need to have access to some limited resource. In the example
this was the skeleton of the character. The animation engine can only play one animation on each
part of the skeleton at any time. If the character’s hands are moving through the reload animation,
they can’t be asked to wave. There are other code resources that can be scarce. We might have a
limited number of pathfinding instances available. Once they are all spoken for, other characters
can’t use them and should choose behaviors that avoid cluing the player into the limitation.

5.4 Behavior Trees 349

Animation
engine available?

Play
animation

Figure 5.30 Guarding a resource using a Condition and Selector

There are other cases where resources are limited in purely game terms. There’s nothing to stop
us playing two audio samples at the same time, but it would be odd if they were both supposed
to be exclamations from the same character. Similarly, if one character is using a wall-mounted
health station, no other character should be able to use it. The same goes for cover points in a
shooter, although we might be able to fit a maximum of two or three characters in some cover
points and only one in others.

In each of these cases, we need to make sure that a resource is available before we run some
action. We could do this in three ways:

1. By hard-coding the test in the behavior, as we did with PlayAnimation

2. By creating a Condition task to perform the test and using a Sequence

3. By using a Decorator to guard the resource

The first approach we’ve seen. The second would be to build a behavior tree that looks
something like Figure 5.30. Here, the Sequence first tries the Condition. If that fails, then the
whole Sequence fails. If it succeeds, then the animation action is called.

This is a completely acceptable approach, but it relies on the designer of the behavior tree
creating the correct structure each time. When there are lots of resources to check, this can be
overly laborious.

The third option, building a Decorator, is somewhat less error prone and more elegant.
The version of the Decorator we’re going to create will use a mechanism called a semaphore.

Semaphores are associated with parallel or multithreaded programming (and it is no coincidence
that we’re interested in them, as we’ll see in the next section). They were originally invented by
Edsger Dijkstra, of the Dijkstra algorithm fame.

Semaphores are a mechanism for ensuring that a limited resource is not over subscribed.
Unlike our PlayAnimation example, semaphores can cope with resources that aren’t limited to one
single user at a time. We might have a pool of ten pathfinders, for example, meaning at most ten
characters can be pathfinding at a time. Semaphores work by keeping a tally of the number of
resources there are available and the number of current users. Before using the resource, a piece
of code must ask the semaphore if it can “acquire” it. When the code is done it should notify the
semaphore that it can be “released.”

350 Chapter 5 Decision Making

To be properly thread safe, semaphores need some infrastructure, usually depending on low-
level operating system primitives for locking. Most programming languages have good libraries for
semaphores, so you’re unlikely to need to implement one yourself. We’ll assume that semaphores
are provided for us and have the following interface:

1 class Semaphore:
2 # Creates a semaphore for a resource
3 # with the given maximum number of users.
4 def Semaphore(maximum_users)
5

6 # Returns true if the acquisition is
7 # successful, and false otherwise.
8 def acquire()
9

10 # Has no return value.
11 def release()

With a semaphore implementation we can create our Decorator as follows:

1 class SemaphoreGuard (Decorator):
2

3 # Holds the semaphore that we’re using to
4 # guard a resource.
5 semaphore
6

7 def SemaphoreGuard(semaphore):
8 this.semaphore = semaphore
9

10 def run():
11 if semaphore.acquire()
12 result = child.run()
13 semaphore.release()
14 return result
15 else:
16 return False

The Decorator returns its failure status code when it cannot acquire the semaphore. This
allows a select task higher up the tree to find a different action that doesn’t involve the contested
resource.

Notice that the guard doesn’t need to have any knowledge of the actual resource it is guarding.
It just needs the semaphore. This means with this one single class, and the ability to create
semaphores, we can guard any kind of resource, whether it is an animation engine, a health-
station, or a pathfinding pool.

5.4 Behavior Trees 351

In this implementation we expect the semaphore to be used in more than one guard Decorator
at more than one point in the tree (or in the trees for several characters if it represents some shared
resource like a cover point).

To make it easy to create and access semaphores in several Decorators, it is common to see a
factory that can create them by name:

1 semaphore_hashtable = {}
2 def getSemaphore(name, maximum_users):
3 if not semaphore_hashtable.has(name):
4 semaphore_hashtable[name] =
5 Semaphore(maximum_users)
6 return semaphore_hashtable.get(name)

It is easy then for designers and level creators to create new semaphore guards by simply speci-
fying a unique name for them. Another approach would be to pass in a name to the SemaphoreGuard
constructor, and have it look up or create the semaphore from that name.

This Decorator gives us a powerful way of making sure that a resource isn’t over-subscribed.
But, so far this situation isn’t very likely to arise. We’ve assumed that our tasks run until they
return a result, so only one task gets to be running at a time. This is a major limitation, and one
that would cripple our implementation. To lift it we’ll need to talk about concurrency, parallel
programming, and timing.

5.4.4 Concurrency and Timing

So far in this chapter we’ve managed to avoid the issue of running multiple behaviors at the same
time. Decision trees are intended to run quickly—giving a result that can be acted upon. State
machines are long-running processes, but their state is explicit, so it is easy to run them for a short
time each frame (processing any transitions that are needed).

Behavior trees are different. We may have Actions in our behavior tree that take time to
complete. Moving to a door, playing a door opening animation, and barging through the locked
door all take time. When our game comes back to the AI on subsequent frames, how will it know
what to do? We certainly don’t want to start from the top of the tree again, as we might have left
off midway through an elaborate sequence.

The short answer is that behavior trees as we have seen them so far are just about useless. They
simply don’t work unless we can assume some sort of concurrency: the ability of multiple bits of
code to be running at the same time.

One approach to implementing this concurrency is to imagine each behavior tree is running
in its own thread. That way an Action can take seconds to carry out: the thread just sleeps while
it is happening and wakes again to return True back to whatever task was above it in the tree.

A more difficult approach is to merge behavior trees with the kind of cooperative multitasking
and scheduling algorithms we will look at in Chapter 9. In practice, it can be highly wasteful to
run lots of threads at the same time, and even on multi-core machines we might need to use a

352 Chapter 5 Decision Making

cooperative multitasking approach, with one thread running on each core and any number of
lightweight or software threads running on each.

Although this is the most common practical implementation, we won’t go into detail here.
The specifics depend greatly on the platform you are targeting, and even the simplest approaches
contain considerably more code for managing the details of thread management than the behavior

Program

tree algorithm.
The website contains an implementation of behavior trees using cooperative multitasking in

ActionScript 3 for the Adobe Flash platform. Flash doesn’t support native threads, so there is no
alternative but to write behavior trees in this way.

To avoid this complexity we’ll act as if the problem didn’t exist; we’ll act as if we have a
multithreaded implementation with as many threads as we need.

Waiting

In a previous example we met a Pause task that allowed a character to wait a moment between
Actions to strike the player. This is a very common and useful task. We can implement it by simply
putting the current thread to sleep for a while:

1 class Wait (Task):
2 duration
3

4 def run():
5 sleep(duration)
6 return result

There are more complex things we can do with waiting, of course. We can use it to time out
a long-running task and return a value prematurely. We could create a version of our Limit task
that prevents an Action being run again within a certain time frame or one that waits a random
amount of time before returning to give variation in our character’s behavior.

This is just the start of the tasks we could create using timing information. None of these
ideas is particularly challenging to implement, but we will not provide pseudo-code here. Some
are given in the source code on the website.

The Parallel Task

In our new concurrent world, we can make use of a third Composite task. It is called “Parallel,”
and along with Selector and Sequence it forms the backbone of almost all behavior trees.

The Parallel task acts in a similar way to the Sequence task. It has a set of child tasks, and it
runs them until one of them fails. At that point, the Parallel task as a whole fails. If all of the child
tasks complete successfully, the Parallel task returns with success. In this way, it is identical to the
Sequence task and its non-deterministic variations.

5.4 Behavior Trees 353

The difference is the way it runs those tasks. Rather than running them one at a time, it runs
them all simultaneously. We can think of it as creating a bunch of new threads, one per child, and
setting the child tasks off together.

When one of the child tasks ends in failure, Parallel will terminate all of the other child threads
that are still running. Just unilaterally terminating the threads could cause problems, leaving the
game inconsistent or failing to free resources (such as acquired semaphores). The termination
procedure is usually implemented as a request rather than a direct termination of the thread. In
order for this to work, all the tasks in the behavior tree also need to be able to receive a termination
request and clean up after themselves accordingly.

In systems we’ve developed, tasks have an additional method for this:

1 class Task:
2 def run()
3 def terminate()

and the code on the website uses the same pattern. In a fully concurrent system, this terminate
method will normally set a flag, and the run method is responsible for periodically checking if
this flag is set and shutting down if it is. The code below simplifies this process, placing the actual
termination code in the terminate method.3

With a suitable thread handling API, our Parallel task might look like:

1 class Parallel (Task):
2 children
3

4 # Holds all the children currently running.
5 runningChildren
6

7 # Holds the final result for our run method.
8 result
9

10 def run():
11 result = undefined
12

13 # Start all our children running
14 for child in children:
15 thread = new Thread()
16 thread.start(runChild, child)
17

18 # Wait until we have a result to return

3. This isn’t the best approach in practice because the termination code will rely on the current state of the run method and
should therefore be run in the same thread. The terminate method, on the other hand, will be called from our Parallel
thread, so should do as little as possible to change the state of its child tasks. Setting a Boolean flag is the bare minimum,
so that is the best approach.

354 Chapter 5 Decision Making

19 while result == undefined:
20 sleep()
21 return result
22

23 def runChild(child):
24 runningChildren.add(child)
25 returned = child.run()
26 runningChildren.remove(child)
27

28 if returned == False:
29 terminate()
30 result = False
31

32 else if runningChildren.length == 0:
33 result = True
34

35 def terminate():
36 for child in runningChildren:
37 child.terminate()

In the run method, we create one new thread for each child. We’re assuming the thread’s start
method takes a first argument that is a function to run and additional arguments that are fed to
that function. The threading libraries in a number of languages work that way. In languages such
as Java where functions can’t be passed to other functions, you’ll need to create another class (an
inner class, probably) that implements the correct interface.

After creating the threads the run method then keeps sleeping, waking only to see if the result
variable has been set. Many threading systems provide more efficient ways to wait on a variable
change using condition variables or by allowing one thread to manually wake another (our child
threads could manually wake the parent thread when they change the value of the result). Check
your system documentation for more details.

The runChild method is called from our newly created thread and is responsible for calling
the child task’s run method to get it to do its thing. Before starting the child, it registers itself with
the list of running children. If the Parallel task gets terminated, it can terminate the correct set of
still-running threads. Finally runChild checks to see if the whole Parallel task should return False,
or if not whether this child is the last to finish and the Parallel should return True. If neither of
these conditions holds, then the result variable will be left unchanged, and the while loop in the
Parallel’s run method will keep sleeping.

Policies for Parallel

We’ll see Parallel in use in a moment. First, it is worth saying that here we’ve assumed one particular
policy for Parallel. A policy, in this case, is how the Parallel task decides when and what to return.
In our policy we return failure as soon as one child fails, and we return success when all children
succeed. As mentioned above, this is the same policy as the Sequence task. Although this is the
most common policy, it isn’t the only one.

5.4 Behavior Trees 355

We could also configure Parallel to have the policy of the Selector task so it returns success
when its first child succeeds and failure only when all have failed. We could also use hybrid policies,
where it returns success or failure after some specific number or proportion of its children have
succeeded or failed.

It is much easier to brainstorm possible task variations than it is to find a set of useful tasks
that designers and level designers intuitively understand and that can give rise to entertaining
behaviors. Having too many tasks or too heavily parameterized tasks is not good for productivity.
We’ve tried in this book to stick to the most common and most useful variations, but you will
come across others in studios, books, and conferences.

Using Parallel

The Parallel task is most obviously used for sets of Actions that can occur at the same time. We
might, for example, use Parallel to have our character roll into cover at the same time as shouting
an insult and changing primary weapon. These three Actions don’t conflict (they wouldn’t use the
same semaphore, for example), and so we could carry them out simultaneously. This is a quite
low-level use of parallel—it sits low down in the tree controlling a small sub-tree.

At a higher level, we can use Parallel to control the behavior of a group of characters, such as a
fire team in a military shooter. While each member of the group gets its own behavior tree for its
individual Actions (shooting, taking cover, reloading, animating, and playing audio, for example),
these group Actions are contained in Parallel blocks within a higher level Selector that chooses the
group’s behavior. If one of the team members can’t possibly carry out their role in the strategy,
then the Parallel will return in failure and the Selector will have to choose another option. This is
shown abstractly in Figure 5.31. The sub-trees for each character would be complex in their own
right, so we haven’t shown them in detail here.

Both groups of uses discussed above use Parallel to combine Action tasks. It is also possible to
use Parallel to combine Condition tasks. This is particularly useful if you have certain Condition
tests that take time and resources to complete. By starting a group of Condition tests together,

Retreat...

Soldier 1:
Has ammo?

Soldier 2:
Has ammo?

Soldier 3:
Has ammo?

Soldier 3:
Exit route?

Soldier 2:
In cover?

Soldier 2:
Sniper attack...

Soldier 3:
Guard exit...

Soldier 1:
attack...

Take cover...

?

Figure 5.31 Using Parallel to implement group behavior

356 Chapter 5 Decision Making

failures in any of them will immediately terminate the others, reducing the resources needed to
complete the full package of tests.

We can do something similar with Sequences, of course, putting the quick Condition tests first
to act as early outs before committing resources to more complex tests (this is a good approach for
complex geometry tests such as sight testing). Often, though, we might have a series of complex
tests with no clear way to determine ahead of time which is most likely to fail. In that case, placing
the Conditions in a Parallel task allows any of them to fail first and interrupt the others.

The Parallel Task for Condition Checking

One final common use of the Parallel task is continually check whether certain Conditions are
met while carrying out an Action. For example, we might want an ally AI character to manipulate
a computer bank to open a door for the player to progress. The character is happy to continue its
manipulation as long as the play guards the entrance from enemies. We could use a Parallel task
to attempt an implementation as shown in Figures 5.32 and 5.33.

In both figures the Condition checks if the player is in the correct location. In Figure 5.32,
we use Sequence, as before, to make sure the AI only carries out their Actions if the player is in
position. The problem with this implementation is that the player can move immediately when
the character begins work. In Figure 5.33, the Condition is constantly being checked. If it ever
fails (because the player moves), then the character will stop what it is doing. We could embed
this tree in a Selector that has the character encouraging the player to return to his post.

To make sure the Condition is repeatedly checked we have used the UntilFail Decorator to
continually perform the checking, returning only if the Decorator fails. Based on our implemen-
tation of Parallel above, there is still a problem in Figure 5.33 which we don’t have the tools to
solve yet. We’ll return to it shortly. As an exercise, can you follow the execution sequence of the
tree and see what the problem is?

Using Parallel blocks to make sure that Conditions hold is an important use-case in behavior
trees. With it we can get much of the power of a state machine, and in particular the state machine’s
ability to switch tasks when important events occur and new opportunities arise. Rather than
events triggering transitions between states, we can use sub-trees as states and have them running
in parallel with a set of conditions. In the case of a state machine, when the condition is met, the

Player in position? Use computers

Figure 5.32 Using Sequence to enforce a Condition

5.4 Behavior Trees 357

Player in position?

Until fail Use computers

Figure 5.33 Using Parallel to keep track of Conditions

transition is triggered. With a behavior tree the behavior runs as long as the Condition is met.
A state-machine-like behavior is shown using a state machine in Figure 5.34.

This is a simplified tree for the janitor robot we met earlier in the chapter. Here it has two sets of
behaviors: it can be in tidy-up mode, as long there is trash to tidy, or it can be in recharging mode.
Notice that each “state” is represented by a sub-tree headed by a Parallel node. The Condition for
each tree is the opposite of what you’d expect for a state machine: they list the Conditions needed
to stay in the state, which is the logical complement of all the conditions for all the state machine
transitions.

The top Repeat and Select nodes keep the robot continually doing something. We’re assuming
the repeat Decorator will never return, either in success or failure. So the robot keeps trying either
of its behaviors, switching between them as the criteria are met.

At this level the Conditions aren’t too complex, but for more states the Conditions needed to
hold the character in a state would rapidly get unwieldy. This is particularly the case if your agents
need a couple of levels of alarm behaviors—behaviors that interrupt others to take immediate,
reactive action to some important event in the game. It becomes counter-intuitive to code these
in terms of Parallel tasks and Conditions, because we tend to think of the event causing a change
of action, rather than the lack of the event allowing the lack of a change of action.

So,while it is technically possible to build behavior trees that show state-machine-like behavior,
we can sometimes only do so by creating unintuitive trees. We’ll return to this issue when we look
at the limitations of behavior trees at the end of this section.

Intra-Task Behavior

The example in Figure 5.33 showed a difficulty that often arises with using Parallel alongside
behavior trees. As it stands, the tree shown would never return as long as the player didn’t
move out of position. The character would perform its actions, then stand around waiting for

358 Chapter 5 Decision Making

?

Until fail Until fail

Inverter

Tidy trash... Recharge...

Trash visible?

Trash visible?

Figure 5.34 A behavior tree version of a state machine

the UntilFail Decorator to finish, which, of course, it won’t do as long as the player stays put.
We could add an Action to the end of the Sequence where the character tells the player to head for
the door, or we could add a task that returns False. Both of these would certainly terminate the
Parallel task, but it would terminate in failure, and any nodes above it in the tree wouldn’t know
if it had failed after completion or not.

To solve this issue we need behaviors to be able to affect one another directly. We need to have
the Sequence end with an Action that disables the UntilFail behavior and has it return True.
Then, the whole Action can complete.

We can do this using two new tasks. The first is a Decorator. It simply lets its child node run
normally. If the child returns a result, it passes that result on up the tree. But, if the child is still
working, it can be asked to terminate itself, whereupon it returns a predetermined result. We will
need to use concurrency again to implement this.4 We could define this as:

4. Some programming languages provide “continuations”—the ability to jump back to arbitrary pieces of code and to return
from one function from inside another. If they sound difficult to manage, it’s because they are. Unfortunately, a lot of
the thread-based machinations in this section are basically trying to do the job that continuations could do natively. In a
language with continuations, the Interrupter class would be much simpler.

5.4 Behavior Trees 359

1 class Interrupter (Decorator):
2 # Is our child running?
3 isRunning
4

5 # Holds the final result for our run method.
6 result
7

8 def run():
9 result = undefined

10

11 # Start all child
12 thread = new Thread()
13 thread.start(runChild, child)
14

15 # Wait until we have a result to return
16 while result == undefined:
17 sleep()
18 return result
19

20 def runChild(child):
21 isRunning = True
22 result = child.run()
23 isRunning = False
24

25 def terminate():
26 if isRunning: child.terminate()
27

28 def setResult(desiredResult):
29 result = desiredResult

If this task looks familiar, that’s because it shares the same logic as Parallel. It is the equivalent
of Parallel for a single child, with the addition of a single method that can be called to set the
result from an external source, which is our second task. When it is called, it simply sets a result
in an external Interrupter, then returns with success.

1 class PerformInterruption (Task):
2 # The interrupter we’ll be interrupting
3 interrupter
4

5 # The result we want to insert.
6 desiredResult
7

360 Chapter 5 Decision Making

8 def run():
9 interrupter.setResult(desiredResult)

10 return True

Together, these two tasks give us the ability to communicate between any two points in the
tree. Effectively they break the strict hierarchy and allow tasks to interact horizontally.

With these two tasks, we can rebuild the tree for our computer-using AI character to look like
Figure 5.35.

In practice there are a number of other ways in which pairs of behaviors can collaborate, but
they will often have this same pattern: a Decorator and an Action. We could have a Decorator
that can stop its child from being run, to be enabled and disabled by another Action task. We
could have a Decorator that limits the number of times a task can be repeated but that can be
reset by another task. We could have a Decorator that holds onto the return value of its child and
only returns to its parent when another task tells it to. There are almost unlimited options, and
behavior tree systems can easily bloat until they have very large numbers of available tasks, only a
handful of which designers actually use.

Eventually this simple kind of inter-behavior communication will not be enough. Certain
behavior trees are only possible when tasks have the ability to have richer conversations with one
another.

Interrupter Use computers Perform interruption

Until fail

Player in position?

Figure 5.35 Using Parallel and Interrupter to keep track of Conditions

5.4 Behavior Trees 361

5.4.5 Adding Data to Behavior Trees

To move beyond the very simplest inter-behavior communication we need to allow tasks in our
behavior tree to share data with one another. If you try to implement an AI using the behavior
tree implementations we’ve seen so far you’ll quickly encounter the problem of a lack of data.
In our example of an enemy trying to enter a room, there was no indication of which room the
character was trying to enter. We could just build big behavior trees with separate branches for
each area of our level, but this would obviously be wasteful.

In a real behavior tree implementation, tasks need to know what to work on. You can think
of a task as a sub-routine or function in a programming language. We might have a sub-tree that
represents smoking the player out of a room, for example. If this were a sub-routine it would take
an argument to control which room to smoke:

1 def smoke_out(room):
2 matches = fetch_matches()
3 gas = fetch_gasoline()
4 douse_door(room.door, gas)
5 ignite(room.door, matches)

In our behavior tree we need some similar mechanism to allow one sub-tree to be used in
many related scenarios. Of course, the power of sub-routines is not just that they take parameters,
but also that we can reuse them again and again in multiple contexts (we could use the “ignite”
action to set fire to anything and use it from within lots of strategies). We’ll return to the issue of
reusing behavior trees as sub-routines later. For now, we’ll concentrate on how they get their data.

Although we want data to pass between behavior trees, we don’t want to break their elegant
and consistent API. We certainly don’t want to pass data into tasks as parameters to their run
method. This would mean that each task needs to know what arguments its child tasks take and
how to find these data.

We could parameterize the tasks at the point where they are created, since at least some part of
the program will always need to know what nodes are being created, but in most implementations
this won’t work, either. Behavior nodes get assembled into a tree typically when the level loads
(again, we’ll finesse this structure soon). We aren’t normally building the tree dynamically as it
runs. Even implementations that do allow some dynamic tree building still rely on most of the
tree being specified before the behavior begins.

The most sensible approach is to decouple the data that behaviors need from the tasks them-
selves. We will do this by using an external data store for all the data that the behavior tree needs.
We’ll call this data store a blackboard. Later in this chapter, in the section on blackboard architec-
tures, we’ll see a representation of such a data structure and some broader implications for its use.
For now it is simply important to know that the blackboard can store any kind of data and that
interested tasks can query it for the data they need.

Using this external blackboard, we can write tasks that are still independent of one another
but can communicate when needed.

362 Chapter 5 Decision Making

Enemy visible?
Select enemy

(write to blackboard)
Engage enemy

(read from blackboard)
?

Always succeed

High ground available? Move to high ground

Figure 5.36 A behavior tree communicating via blackboard

In a squad-based game, for example, we might have a collaborative AI that can autonomously
engage the enemy. We could write one task to select an enemy (based on proximity or a tactical
analysis, for example) and another task or sub-tree to engage that enemy. The task that selects
the enemy writes down the selection it has made onto the blackboard. The task or tasks that
engage the enemy query the blackboard for a current enemy. The behavior tree might look like
Figure 5.36. The enemy detector could write:

1 target: enemy-10f9

to the blackboard. The Move and Shoot At tasks would ask the blackboard for its current “target”
values and use these to parameterize their behavior. The tasks should be written so that, if the
blackboard had no target, then the task fails, and the behavior tree can look for something
else to do.

In pseudo-code this might look like:

1 class MoveTo (Task):
2 # The blackboard we’re using
3 blackboard
4

5 def run():
6 target = blackboard.get(’target’)
7 if target:
8 character = blackboard.get(’character’)
9 steering.arrive(character, target)

5.4 Behavior Trees 363

10 return True
11 else:
12 return False

where the enemy detector might look like:

1 class SelectTarget (Task):
2

3 blackboard
4

5 def run():
6 character = blackboard.get(’character’)
7 candidates = enemies_visible_to(character)
8 if candidates.length > 0:
9 target = biggest_threat(candidates, character)

10 blackboard.set(’target’, target)
11 return True
12 else:
13 return False

In both these cases we’ve assumed that the task can find which character it is controlling by
looking that information up in the blackboard. In most games we’ll want some behavior trees to
be used by many characters, so each will require its own blackboard.

Some implementations associate blackboards with specific sub-trees rather than having just
one for the whole tree. This allows sub-trees to have their own private data-storage area. It is
shared between nodes in that sub-tree, but not between sub-trees. This can be implemented using
a particular Decorator whose job is to create a fresh blackboard before it runs its child:

1 class BlackboardManager (Decorator):
2 blackboard = null
3

4 def run():
5 blackboard = new Blackboard()
6 result = child.run()
7 delete blackboard
8 return result

Using this approach gives us a hierarchy of blackboards. When a task comes to look up some
data, we want to start looking in the nearest blackboard, then in the blackboard above that, and
so on until we find a result or reach the last blackboard in the chain:

1 class Blackboard:
2 # The blackboard to fall back to
3 parent

364 Chapter 5 Decision Making

4

5 data
6

7 def get(name):
8 if name in data:
9 return data[name]

10 else if parent:
11 return parent.get(name)
12 else return null

Having blackboards fall back in this way allows blackboards to work in the same way that a
programming language does. In programming languages this kind of structure would be called a
“scope chain.”5

The final element missing from our implementation is a mechanism for behavior trees to find
their nearest blackboard. The easiest way to achieve this is to pass the blackboard down the tree
as an argument to the run method. But didn’t we say that we didn’t want to change the interface?
Well, yes, but what we wanted to avoid was having different interfaces for different tasks, so tasks
would have to know what parameters to pass. By making all tasks accept a blackboard as their
only parameter, we retain the anonymity of our tasks.

The task API now looks like this:

1 class Task:
2 def run(blackbaord)
3 def terminate()

and our BlackboardManager task can then simply introduce a new blackboard to its child, making
the blackboard fall back to the one it was given:

1 class BlackboardManager (Decorator):
2 def run(blackboard):
3 new_bb = new Blackboard()
4 new_bb.parent = blackboard
5 result = child.run()
6 free new_bb
7 return result

5. It is worth noting that the scope chain we’re building here is called a dynamic scope chain. In programming languages,
dynamic scopes were the original way that scope chains were implemented, but it rapidly became obvious that they caused
serious problems and were very difficult to write maintainable code for. Modern languages have all now moved over to
static scope chains. For behavior trees, however, dynamic scope isn’t a big issue and is probably more intuitive. We’re not
aware of any developers who have thought in such formal terms about data sharing, however, so we’re not aware of anyone
who has practical experience of both approaches.

5.4 Behavior Trees 365

Another approach to implementing hierarchies of blackboards is to allow tasks to query
the task above them in the tree. This query moves up the tree recursively until it reaches
a BlackboardManager task that can provide the blackboard. This approach keeps the original
no-argument API for our task’s run method, but adds a lot of extra code complexity.

Some developers use completely different approaches. Some in-house technology we know
already have mechanisms in their scheduling system for passing around data along with bits of
code to run. These systems can be repurposed to provide the blackboard data for a behavior tree,
giving them automatic access to the data-debugging tools built into the game engine. It would be
a duplication of effort to implement either scheme above in this case.

Whichever scheme you implement, blackboard data allow you to have communication
between parts of your tree of any complexity. In the section on concurrency, above, we had
pairs of tasks where one task calls methods on another. This simple approach to communication
is fine in the absence of a richer data-exchange mechanism but should probably not be used if
you are going to give your behavior tree tasks access to a full blackboard.

In that case, it is better to have them communicate by writing and reading from the blackboard
rather than calling methods. Having all your tasks communicate in this way allows you to easily
write new tasks to use existing data in novel ways, making it quicker to grow the functionality of
your implementation.

5.4.6 Reusing Trees

In the final part of this section we’ll look in more detail at how behavior trees get to be constructed
in the first place, how we can reuse them for multiple characters, and how we can use sub-trees
multiple times in different contexts. These are three separate but important elements to consider.
They have related solutions, but we’ll consider each in turn.

Instantiating Trees

Chances are, if you’ve taken a course on object-oriented programming, you were taught the
dichotomy between instances of things and classes of things. We might have a class of soda
machines, but the particular soda machine in the office lobby is an instance of that class. Classes
are abstract concepts; instances are the concrete reality. This works for many situations, but not
all. In particular, in game development, we regularly see situations where there are three, not two,
levels of abstraction. So far in this chapter we’ve been ignoring this distinction, but if we want to
reliably instantiate and reuse behavior trees we have to face it now.

At the first level we have the classes we’ve been defining in pseudo-code. They represent
abstract ideas about how to achieve some task. We might have a task for playing an animation, for
example, or a condition that checks whether a character is within range of an attack.

At the second level we have instances of these classes arranged in a behavior tree. The examples
we’ve seen so far consist of instances of each task class at a particular part of the tree. So, in the
behavior tree example of Figure 5.29, we have two Hit tasks. These are two instances of the Hit

366 Chapter 5 Decision Making

class. Each instance has some parameterization: the PlayAnimation task gets told what animation
to play, the EnemyNear condition gets given a radius, and so on.

But now we’re meeting the third level. A behavior tree is a way of defining a set of behaviors,
but those behaviors can belong to any number of characters in the game at the same or different
times. The behavior tree needs to be instantiated for a particular character at a particular time.

This three layers of abstraction don’t map easily onto most regular class-based languages, and
you’ll need to do some work to make this seamless. There are a few approaches:

1. Use a language that supports more than two layers of abstraction.

2. Use a cloning operation to instantiate trees for characters.

3. Create a new intermediate format for the middle layer of abstraction.

4. Use behavior tree tasks that don’t keep local state and use separate state objects.

The first approach is probably not practical. There is another way of doing object ori-
entation (OO) that doesn’t use classes. It is called prototype-based object orientation, and it
allows you to have any number of different layers of abstraction. Despite being strictly more
powerful than class-based OO, it was discovered much later, and unfortunately has had a
hard time breaking into developers’ mindsets. The only widespread language to support it is
JavaScript.6

The second approach is the easiest to understand and implement. The idea is that, at the second
layer of abstraction, we build a behavior tree from the individual task classes we’ve defined. We
then use that behavior tree as an “archetype”; we keep it in a safe place and never use it to run any
behaviors on. Any time we need an instance of that behavior tree we take a copy of the archetype
and use the copy. That way we are getting all of the configuration of the tree, but we’re getting our
own copy. One method of achieving this is to have each task have a clone method that makes a copy
of itself. We can then ask the top task in the tree for a clone of itself and have it recursively build
us a copy. This presents a very simple API but can cause problems with fragmented memory.
The code on the website uses this approach, as does the pseudo-code examples below. We’ve

Program

chosen this for simplicity only, not to suggest it is the right way to do this. In some languages,
“deep-copy” operations are provided by the built-in libraries that can do this for us. Even if we
don’t have a deep copy, writing one can potentially give better memory coherence to the trees it
creates.

Approach three is useful when the specification for the behavior tree is held in some data
format. This is common—the AI author uses some editing tool that outputs some data structure
saying what nodes should be in the behavior tree and what properties they should have. If we have
this specification for a tree we don’t need to keep a whole tree around as an archetype; we can just

6. The story of prototype-based OO in JavaScript isn’t a pretty one. Programmers taught to think in class-based OO can
find it hard to adjust, and the web is littered with people making pronouncements about how JavaScript’s object-oriented
model is “broken.” This has been so damaging to JavaScript’s reputation that the most recent versions of the JavaScript
specification have retrofitted the class-based model. ActionScript 3, which is an implementation of that recent specification,
leans heavily this way, and Adobe’s libraries for Flash and Flex effectively lock you into Java-style class-based programming,
wasting one of the most powerful and flexible aspects of the language.

5.4 Behavior Trees 367

store the specification, and build an instance of it each time it is needed. Here, the only classes in
our system are the original task classes, and the only instances are the final behavior trees. We’ve
effectively added a new kind of intermediate layer of abstraction in the form of our custom data
structure, which can be instantiated when needed.

Approach four is somewhat more complicated to implement but has been reported by some
developers. The idea is that we write all our tasks so they never hold any state related to a specific
use of that task for a specific character. They can hold any data at the middle level of abstraction:
things that are the same for all characters at all times, but specific to that behavior tree. So, a
Composite node can hold the list of children it is managing, for example (as long as we don’t
allow children to be dynamically added or removed at runtime). But, our Parallel node can’t
keep track of the children that are currently running. The current list of active children will vary
from time to time and from character to character. These data do need to be stored somewhere,
however, otherwise the behavior tree couldn’t function. So this approach uses a separate data
structure, similar to our blackboard, and requires all character-specific data to be stored there.
This approach treats our second layer of abstraction as the instances and adds a new kind of data
structure to represent the third layer of abstraction. It is the most efficient, but it also requires a
lot of bookkeeping work.

This three-layer problem isn’t unique to behavior trees, of course. It arises any time we have
some base classes of objects that are then configured, and the configurations are then instantiated.
Allowing the configuration of game entities by non-programmers is so ubiquitous in large-scale
game development (usually it is called“data-driven”development) that this problem keeps coming
up, so much so that it is possible that whatever game engine you’re working with already has some
tools built in to cope with this situation, and the choice of approach we’ve outlined above becomes
moot—you go with whatever the engine provides. If you are the first person on your project to
hit the problem, it is worth really taking time to consider the options and build a system that will
work for everyone else, too.

Reusing Whole Trees

With a suitable mechanism to instantiate behavior trees, we can build a system where many
characters can use the same behavior.

During development, the AI authors create the behavior trees they want for the game and
assign each one a unique name. A factory function can then be asked for a behavior tree matching
a name at any time.

We might have a definition for our generic enemy character:

1 Enemy Character (goon):
2 model = ‘‘enemy34.model’’
3 texture = ‘‘enemy34-urban.tex’’
4 weapon = pistol-4
5 behavior = goon-behavior

368 Chapter 5 Decision Making

When we create a new goon, the game requests a fresh goon behavior tree. Using the cloning
approach to instantiating behavior trees, we might have code that looks like:

1 def createBehaviorTree(type):
2 archetype = behavior_tree_library[type]
3 return archetype.clone()

Clearly not onerous code! In this example, we’re assuming the behavior tree library will be
filled with the archetypes for all the behavior trees that we might need. This would normally be
done during the loading of the level, making sure that only the trees that might be needed in that
level are loaded and instantiated into archetypes.

Reusing Sub-trees

With our behavior library in place, we can use it for more than simply creating whole trees for
characters. We can also use it to store named sub-trees that we intend to use in multiple contexts.
Take the example shown in Figure 5.37.

This shows two separate behavior trees. Notice that each of them has a sub-tree that is designed
to engage an enemy. If we had tens of behavior trees for tens of different kinds of character, it
would be incredibly wasteful to have to specify and duplicate these sub-trees. It would be great
to reuse them. By reusing them we’d also be able to come along later and fix bugs or add more
sophisticated functionality and know that every character in the game instantly benefits from the
update.

?

Build defences...

Enemy visible? Select enemy Engage enemy

Until fail

?

Go to last
known position

Enemy visible? Select enemy Engage enemy

Figure 5.37 Common sub-trees across characters

5.4 Behavior Trees 369

We can certainly store partial sub-trees in our behavior tree library. Because every tree has a
single root task, and because every task looks just the same, our library doesn’t care whether it is
storing sub-trees or whole trees. The added complication for sub-trees is how to get them out of
the library and embedded in the full tree.

The simplest solution is to do this lookup when you create a new instance of your behavior
tree. To do this you add a new “reference” task in your behavior tree that tells the game to go and
find a named sub-tree in the library. This task is never run—it exists just to tell the instantiation
mechanism to insert another sub-tree at this point.

For example, this class is trivial to implement using recursive cloning:

1 class SubtreeReference (Task):
2

3 # What named subtree are we referring to.
4 reference_name
5

6 def run():
7 throw Error("This task isn’t meant to be run!")
8

9 def clone():
10 return createBehaviorTree(reference_name)

In this approach our archetype behavior tree contains these reference nodes, but as soon as
we instantiate our full tree it replaces itself with a copy of the sub-tree, built by the library.

Notice that the sub-tree is instantiated when the behavior tree is created, ready for a character’s
use. In memory-constrained platforms, or for games with thousands of AI characters, it may be
worth holding off on creating the sub-tree until it is needed, saving memory in cases where parts
of a large behavior tree are rarely used. This may be particularly the case where the behavior tree
has a lot of branches for special cases: how to use a particular rare weapon, for example, or what to
do if the player mounts some particularly clever ambush attempt. These highly specific sub-trees
don’t need to be created for every character, wasting memory; instead, they can be created on
demand if the rare situation arises.

We can implement this using a Decorator. The Decorator starts without a child but creates
that child when it is first needed:

1 class SubtreeLookupDecorator (Decorator):
2

3 subtree_name
4

5 def SubtreeLookupDecorator(subtree_name):
6 this.subtree_name = subtree_name
7 this.child = null
8

9 def run():

370 Chapter 5 Decision Making

10 if child == null:
11 child = createBehaviorTree(subtree_name)
12 return child.run()

Obviously we could extend this further to delete the child and free the memory after it has
been used, if we really want to keep the behavior tree as small as possible.

With the techniques we’ve now met, we have the tools to build a comprehensive behavior tree
system with whole trees and specific components that can be reused by lots of characters in the
game. There is a lot more we can do with behavior trees, in addition to tens of interesting tasks
we could write and lots of interesting behaviors we could build. Behavior trees are certainly an
exciting technology, but they don’t solve all of our problems.

5.4.7 Limitations of Behavior Trees

Over the last five years, behavior trees have come from nowhere to become something of the flavor
of the month in game AI. There are some commentators who see them as a solution to almost
every problem you can imagine in game AI. It is worth being a little cautious. These fads do come
and go. Understanding what behavior trees are bad at is as important as understanding where
they excel.

We’ve already seen a key limitation of behavior trees. They are reasonably clunky when rep-
resenting the kind of state-based behavior that we met in the previous section. If your character
transitions between types of behavior based on the success or failure of actions, however (so
they get mad when they can’t do something, for example), then behavior trees work fine. But it
is much harder if you have a character who needs to respond to external events—interrupting
a patrol route to suddenly go into hiding or to raise an alarm, for example—or a character
than needs to switch strategies when its ammo is looking low. Notice that we’re not claim-
ing those behaviors can’t be implemented in behavior trees, just that it would be cumbersome
to do so.

Because behavior trees make it more difficult to think and design in terms of states, AI based
solely on behavior trees tends to avoid these kinds of behavior. If you look at a behavior tree created
by an artist or level designer, they tend to avoid noticeable changes of character disposition or
alarm behavior. This is a shame, since those cues are simple and powerful and help raise the level
of the AI.

We can build a hybrid system, of course, where characters have multiple behavior trees and
use a state machine to determine which behavior tree they are currently running. Using the
approach of having behavior tree libraries that we saw above, this provides the best of both
worlds. Unfortunately, it also adds considerable extra burden to the AI authors and toolchain
developers, since they now need to support two kinds of authoring: state machines and behavior
trees.

An alternative approach would be to create tasks in the behavior tree that behave like state
machines—detecting important events and terminating the current sub-tree to begin another.
This merely moves the authoring difficulty, however, as we still need to build a system for AI
authors to parameterize these relatively complex tasks.

5.5 Fuzzy Logic 371

Behavior trees on their own have been a big win for game AI, and developers will still be
exploring their potential for a few years. As long as they are pushing forward the state of the art,
we suspect that there will not be a strong consensus on how best to avoid these limitations, with
developers experimenting with their own approaches.

5.5 Fuzzy Logic

So far the decisions we’ve made have been very cut and dried. Conditions and decisions have been
true or false, and we haven’t questioned the dividing line. Fuzzy logic is a set of mathematical
techniques designed to cope with gray areas.

Imagine we’re writing AI for a character moving through a dangerous environment. In a
finite state machine approach, we could choose two states: “Cautious” and “Confident.” When the
character is cautious, it sneaks slowly along, keeping an eye out for trouble. When the character is
confident, it walks normally. As the character moves through the level, it will switch between the
two states. This may appear odd. We might think of the character getting gradually braver, but
this isn’t shown until suddenly it stops creeping and walks along as if nothing had ever happened.

Fuzzy logic allows us to blur the line between cautious and confident, giving us a whole
spectrum of confidence levels. With fuzzy logic we can still make decisions like “walk slowly when
cautious,” but both “slowly” and “cautious” can include a range of degrees.

5.5.1 A Warning

Fuzzy logic is relatively popular in the games industry and is used in several games. For that
reason, we have decided to include a section on it in this book. However, you should be aware
that fuzzy logic has, for valid reasons, been largely discredited within the mainstream academic
AI community.

You can read more details in Russell and Norvig [2002] but the executive summary is that it is
always better to use probability to represent any kind of uncertainity. The slightly longer version is
that it has been proven (a long time ago, as it turns out) that if you play any kind of betting game
then any player who is not basing their decisions on probability theory can expect to eventually
lose his money. The reason is that flaws in any other theory of uncertainty, besides probability
theory, can potentially be exploited by an opponent.

Part of the reason why fuzzy logic ever became popular was the perception that using prob-
abilistic methods can be slow. With the advent of Bayes nets and other graphical modeling
techniques, this is no longer such an issue. While we won’t explicitly cover Bayes nets in this book,
we will look at various other related approaches such as Markov systems.

5.5.2 Introduction to Fuzzy Logic

This section will give a quick overview of the fuzzy logic needed to understand the techniques in
this chapter. Fuzzy logic itself is a huge subject, with many subtle features, and we don’t have the

372 Chapter 5 Decision Making

space to cover all the interesting and useful bits of the theory. If you want a broad grounding, we’d
recommend Buckley and Eslami [2002], a widely used text on the subject.

Fuzzy Sets

In traditional logic we use the notion of a “predicate,” a quality or description of something.
A character might be hungry, for example. In this case,“hungry” is a predicate, and every character
either does or doesn’t have it. Similarly, a character might be hurt. There is no sense of how hurt;
each character either does or doesn’t have the predicate. We can view these predicates as sets.
Everything to which the predicate applies is in the set, and everything else is outside.

These sets are called classical sets, and traditional logic can be completely formulated in terms
of them.

Fuzzy logic extends the notion of a predicate by giving it a value. So a character can be hurt
with a value of 0.5, for example, or hungry with a value of 0.9. A character with a hurt value of
0.7 will be more hurt than one with a value of 0.3. So, rather than belonging to a set or being
excluded from it, everything can partially belong to the set, and some things can belong to more
than others.

In the terminology of fuzzy logic, these sets are called fuzzy sets, and the numeric value is
called the degree of membership. So, a character with a hungry value of 0.9 is said to belong to the
hungry set with a 0.9 degree of membership.

For each set, a degree of membership of 1 is given to something completely in the fuzzy set.
It is equivalent to membership of the classical set. Similarly, the value of 0 indicates something
completely outside the fuzzy set. When we look at the rules of logic, below, you’ll find that all the
rules of traditional logic still work when set memberships are either 0 or 1.

In theory, we could use any range of numeric values to represent the degree of membership.
We are going to use consistent values from 0 to 1 for degree of membership in this book, in
common with almost all fuzzy logic texts. It is quite common, however, to implement fuzzy logic
using integers (on a 0 to 255 scale, for example) because integer arithmetic is faster and more
accurate than using floating point values.

Whatever value we use doesn’t mean anything outside fuzzy logic. A common mistake is to
interpret the value as a probability or a percentage. Occasionally, it helps to view it that way, but
the results of applying fuzzy logic techniques will rarely be the same as if you applied probability
techniques, and that can be confusing.

Membership of Multiple Sets

Anything can be a member of multiple sets at the same time. A character may be both hungry
and hurt, for example. This is the same for both classical and fuzzy sets.

Often, in traditional logic we have a group of predicates that are mutually exclusive. A char-
acter cannot be both hurt and healthy, for example. In fuzzy logic this is no longer the case.
A character can be hurt and healthy, it can be tall and short, and it can be confident and curious.
The character will simply have different degrees of membership for each set (e.g., it may be 0.5
hurt and 0.5 healthy).

5.5 Fuzzy Logic 373

The fuzzy equivalent of mutual exclusion is the requirement that membership degrees sum
to 1. So, if the sets of hurt and healthy characters are mutually exclusive, it would be invalid to
have a character who is hurt 0.4 and healthy 0.7. Similarly, if we had three mutually exclusive
sets—confident, curious, and terrified—a character who is confident 0.2 and curious 0.4 will be
terrified 0.4.

It is rare for implementations of fuzzy decision making to enforce this. Most implementations
allow any sets of membership values, relying on the fuzzification method (see the next section) to
give a set of membership values that approximately sum to 1. In practice, values that are slightly
off make very little difference to the results.

Fuzzification

Fuzzy logic only works with degrees of membership of fuzzy sets. Since this isn’t the format that
most games keep their data in, some conversion is needed. Turning regular data into degrees of
membership is called fuzzification; turning it back is, not surprisingly, defuzzification.

Numeric Fuzzification

The most common fuzzification technique is turning a numeric value into the membership of
one or more fuzzy sets. Characters in the game might have a number of hit points, for example,
which we’d like to turn into the membership of the “healthy” and “hurt” fuzzy sets.

This is accomplished by a membership function. For each fuzzy set, a function maps the input
value (hit points, in our case) to a degree of membership. Figure 5.38 shows two membership
functions, one for the “healthy” set and one for the “hurt” set.

0% 100%
0

1 Hurt Healthy

Character B

Character A

Health value

Figure 5.38 Membership functions

374 Chapter 5 Decision Making

From this set of functions, we can read off the membership values. Two characters are marked:
character A is healthy 0.8 and hurt 0.2, while character B is healthy 0.3 and hurt 0.7. Note that in
this case we’ve made sure the values output by the membership functions always sum to 1.

There is no limit to the number of different membership functions that can rely on the same
input value, and their values don’t need to add up to 1, although in most cases it is convenient if
they do.

Fuzzification of Other Data Types

In a game context we often also need to fuzzify Boolean values and enumerations. The most
common approach is to store pre-determined membership values for each relevant set.

A character might have a Boolean value to indicate if it is carrying a powerful artifact. The
membership function has a stored value for both true and false, and the appropriate value is
chosen. If the fuzzy set corresponds directly to the Boolean value (if the fuzzy set is “possession
of powerful artifact,” for example), then the membership values will be 0 and 1.

The same structure holds for enumerated values, where there are more than two options: each
possible value has a pre-determined stored membership value. In a kung fu game, for example,
characters might possess one of a set of sashes indicating their prowess. To determine the degree
of membership in the “fearsome fighter” fuzzy set, the membership function in Figure 5.39 could
be used.

Defuzzification

After applying whatever fuzzy logic we need, we are left with a set of membership values for fuzzy
sets. To turn it back into useful data, we need to use a defuzzification technique.

The fuzzification technique we looked at in the last section is fairly obvious and almost
ubiquitous. Unfortunately, there isn’t a correspondingly obvious defuzzification method. There

0

1

White Gold Green Blue Red Brown Black

Kung Fu Sash

Figure 5.39 Membership function for enumerated value

5.5 Fuzzy Logic 375

are several possible defuzzification techniques, and there is no clear consensus on which is the
best to use. All have a similar basic structure, but differ in efficiency and stability of results.

Defuzzification involves turning a set of membership values into a single output value. The
output value is almost always a number. It relies on having a set of membership functions for
the output value. We are trying to reverse the fuzzification method: to find an output value that
would lead to the membership values we know we have.

It is rare for this to be directly possible. In Figure 5.40, we have membership values of 0.2, 0.4,
and 0.7 for the fuzzy sets “creep,”“walk,” and “run.”

The membership functions show that there is no possible value for movement speed which
would give us those membership values, if we fed it into the fuzzification system. We would like
to get as near as possible, however, and each method approaches the problem in a different way.

It is worth noting that there is confusion in the terms used to describe defuzzification methods.
You’ll often find different algorithms described under the same name. The lack of any real meaning
in the degree of membership values means that different but similar methods often produce
equally useful results, encouraging confusion and a diversity of approaches.

Using the Highest Membership

We can simply choose the fuzzy set that has the greatest degree of membership and choose an
output value based on that. In our example above, the “run” membership value is 0.7, so we could
choose a speed that is representative of running.

There are four common points chosen: the minimum value at which the function returns 1
(i.e., the smallest value that would give a value of 1 for membership of the set), the maximum
value (calculated the same way), the average of the two, and the bisector of the function. The
bisector of the function is calculated by integrating the area under the curve of the membership
function and choosing the point which bisects this area. Figure 5.41 shows this, along with other
methods, for a single membership function.

Although the integration process may be time consuming, it can be carried out once, possibly
offline. The resulting value is then always used as the representative point for that set.

0

1

Movement speed

Creep Walk Run

0.7 for run

0.4 for walk

0.2 for creep

Figure 5.40 Impossible defuzzification

376 Chapter 5 Decision Making

Minimum of the maximum Maximum of the maximum

Bisector
Average of the maximum

Figure 5.41 Minimum, average bisector, and maximum of the maximum

Figure 5.41 shows all four values for the example.
This is a very fast technique and simple to implement. Unfortunately, it provides only a coarse

defuzzification. A character with membership values of 0 creep, 0 walk, 1 run will have exactly the
same output speed as a character with 0.33 creep, 0.33 walk, 0.34 run.

Blending Based on Membership

A simple way around this limitation is to blend each characteristic point based on its corresponding
degree of membership. So, a character with 0 creep, 0 walk, 1 run will use the characteristic speed
for the run set (calculated in any of the ways we saw above: minimum, maximum, bisector, or
average). A character with 0.33 creep, 0.33 walk, 0.34 run will have a speed given by (0.33 *
characteristic creep speed) + (0.33 * characteristic walk speed) + (0.34 * characteristic run
speed).

The only proviso is to make sure that the multiplication factors are normalized. It is possible
to have a character with 0.6 creep, 0.6 walk, 0.7 run. Simply multiplying the membership values
by the characteristic points will likely give an output speed faster than running.

When the minimum values are blended, the resulting defuzzification is often called a Smallest
of Maximum method, or Left of Maximum (LM). Similarly, a blend of the maximums may be
called Largest of Maximum (also occasionally LM!), or Right of Maximum. The blend of the
average values can be known as Mean of Maximum (MoM).

Unfortunately, some references are based on having only one membership function involved
in defuzzification. In these references you will find the same method names used to repre-
sent the unblended forms. Nomenclature among defuzzification methods is often a matter of
guesswork.

In practice, it doesn’t matter what they are called, as long as you can find one that works
for you.

5.5 Fuzzy Logic 377

Center of Gravity

This technique is also known as centroid of area. This method takes into account all the member-
ship values, rather than just the largest.

First, each membership function is cropped at the membership value for its corresponding
set. So, if a character has a run membership of 0.4, the membership function is cropped above 0.4.
This is shown in Figure 5.42 for one and for the whole set of functions.

The center of mass of the cropped regions is then found by integrating each in turn. This
point is used as the output value. The center of mass point is labeled in the figure.

Using this method takes time. Unlike the bisector of area method, we can’t do the integration
offline because we don’t know in advance what level each function will be cropped at. The
resulting integration (often numeric, unless the membership function has a known integral) can
take time.

It is worth noting that this center of gravity method, while often used, differs from the identi-
cally named method in the Institute of Electrical and Electronics Engineers (IEEE) specification
for fuzzy control. The IEEE version doesn’t crop each function before calculating its center of
gravity. The resulting point is therefore constant for each membership function and so would
come under a blended points approach in our categorization.

Choosing a Defuzzification Approach

Although the center of gravity approach is favored in many fuzzy logic applications, it is fairly
complex to implement and can make it harder to add new membership functions. The results
provided by the blended points approach is often just as good and is much quicker to calculate.

It also supports an implementation speed up that removes the need to use membership
functions. Rather than calculating the representative points of each function, you can simply
specify values directly. These values can then be blended in the normal way. In our example we

Center of
gravity

Figure 5.42 Membership function cropped, and all membership functions cropped

378 Chapter 5 Decision Making

can specify that a creep speed is 0.2 meters per second, while a walk is 1 meter per second, and
a run is 3 meters per second. The defuzzification is then simply a weighted sum of these values,
based on normalized degrees of membership.

Defuzzification to a Boolean Value

To arrive at a Boolean output, we use a single fuzzy set and a cut-off value. If the degree of
membership for the set is less than the cut-off value, the output is considered to be false; otherwise,
it is considered to be true.

If several fuzzy sets need to contribute to the decision, then they are usually combined using
a fuzzy rule (see below) into a single set, which can then be defuzzified to the output Boolean.

Defuzzification to an Enumerated Value

The method for defuzzifying an enumerated value depends on whether the different enumerations
form a series or if they are independent categories. Our previous example of kung fu belts forms
a series: the belts are in order, and they fall in increasing order of prowess. By contrast, a set of
enumerated values might represent different actions to carry out: a character may be deciding
whether to eat, sleep, or watch a movie. These cannot easily be placed in any order.

Enumerations that can be ordered are often defuzzified as a numerical value. Each of the
enumerated values corresponds to a non-overlapping range of numbers. The defuzzification is
carried out exactly as for any other numerical output, and then an additional step places the output
into its appropriate range, turning it into one of the enumerated options. Figure 5.43 shows this
in action for the kung fu example: the defuzzification results in a “prowess” value, which is then
converted into the appropriate belt color.

Enumerations that cannot be ordered are usually defuzzified by making sure a fuzzy set
corresponds to each possible option. There may be a fuzzy set for “eat,” another for “sleep,” and
another for “watch movie.” The set that has the highest membership value is chosen, and its
corresponding enumerated value is output.

Combining Facts

Now that we’ve covered fuzzy sets and their membership, and how to get data in and out of fuzzy
logic, we can look at the logic itself. Fuzzy logic is similar to traditional logic; logical operators
(such as AND, OR, and NOT) are used to combine the truth of simple facts to understand the
truth of complex facts. If we know the two separate facts “it is raining” and “it is cold,” then we
know the statement “it is raining and cold” is also true.

Unlike traditional logic, now each simple fact is not true or false, but is a numerical value—the
degree of membership of its corresponding fuzzy set. It might be partially raining (membership
of 0.5) and slightly cold (membership of 0.2). We need to be able to work out the truth value for
compound statements such as “it is raining and cold.”

In traditional logic we use a truth table, which tells us what the truth of a compound statement
is based on the different possible truth values of its constituents. So AND is represented as:

5.5 Fuzzy Logic 379

Figure 5.43 Enumerated defuzzification in a range

A B A AND B

false false false

false true false

true false false

true true true

In fuzzy logic each operator has a numerical rule that lets us calculate the degree of truth
based on the degrees of truth of each of its inputs. The fuzzy rule for AND is

m(A AND B) = min(mA,mB),

where mA is the degree of membership of set A (i.e., the truth value of A). As promised, the truth
table for traditional logic corresponds to this rule, when 0 is used for false and 1 is used for true:

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

380 Chapter 5 Decision Making

The corresponding rule for OR is

m(A OR B) = max(mA,mB)

and for NOT it is

m(NOT A) = 1 − mA.

Notice that just like traditional logic, the NOT operator only relates to a single fact, whereas
AND and OR relate to two facts.

The same correspondences present in traditional logic are used in fuzzy logic. So,

A OR B = NOT(NOT A AND NOT B).

Using these correspondences, we get the following table of fuzzy logic operators:

Expression Equivalent Fuzzy Equation

NOT A 1 − mA

A AND B min(mA,mB)

A OR B max(mA,mB)

A XOR B NOT(B) AND A min(mA,1 − mB)

NOT(A) AND B min(1 − mA,mB)

A NOR B NOT(A OR B) 1 − max(mA,mB)

A NAND B NOT(A AND B) 1 − min(mA,mB)

These definitions are, by far, the most common. Some researchers have proposed the use of
alternative definitions for AND and OR and therefore also for the other operators. It is reasonably
safe to use these definitions; alternative formulations are almost always made explicit when they
are used.

Fuzzy Rules

The final element of fuzzy logic we’ll need is the concept of a fuzzy rule. Fuzzy rules relate the
known membership of certain fuzzy sets to generate new membership values for other fuzzy sets.
We might say, for example, “If we are close to the corner and we are traveling fast, then we should
brake.”

This rule relates two input sets: “close to the corner” and “traveling fast.” It determines the
degree of membership of the third set, “should brake.” Using the definition for AND given above,
we can see that:

m(Should Brake) = min(m(Close to the Corner),m(Traveling Quickly)).

If we knew that we were “close to the corner” with a membership of 0.6 and “traveling fast”
with a membership of 0.9, then we would know that our membership of “should brake” is 0.6.

5.5 Fuzzy Logic 381

5.5.3 Fuzzy Logic Decision Making

There are several things we can do with fuzzy logic in order to make decisions. We can use it
in any system where we’d normally have traditional logic AND, NOT, and OR. It can be used
to determine if transitions in a state machine should fire. It can be used also in the rules of the
rule-based system discussed later in the chapter.

In this section, we’ll look at a different decision making structure that uses only rules involving
the fuzzy logic AND operator.

The algorithm doesn’t have a name. Developers often simply refer to it as “fuzzy logic.” It is
taken from a sub-field of fuzzy logic called fuzzy control and is typically used to build industrial
controllers that take action based on a set of inputs.

Some pundits call it a fuzzy state machine, a name given more often to a different algorithm
that we’ll look at in the next section. Inevitably, we could say that the nomenclature for these
algorithms is somewhat fuzzy.

The Problem

In many problems a set of different actions can be carried out, but it isn’t always clear which
one is best. Often, the extremes are very easy to call, but there are gray areas in the middle. It is
particularly difficult to design a solution when the set of actions is not on/off but can be applied
with some degree.

Take the example mentioned above of driving a car. The actions available to the car include
steering and speed control (acceleration and braking), both of which can be done to a range of
degrees. It is possible to brake sharply to a halt or simply tap the brake to shed some speed.

If the car is traveling headlong at high speed into a tight corner, then it is pretty clear we’d like
to brake. If the car is out of a corner at the start of a long straightaway, then we’d like to floor the
accelerator. These extremes are clear, but exactly when to brake and how hard to hit the pedal are
gray areas that differentiate the great drivers from the mediocre.

The decision making techniques we’ve used so far will not help us very much in these circum-
stances. We could build a decision tree or finite state machine, for example, to help us brake at the
right time, but it would be an either/or process.

A fuzzy logic decision maker should help to represent these gray areas. We can use fuzzy rules
written to cope with the extreme situations. These rules should generate sensible (although not
necessarily optimal) conclusions about which action is best in any situation.

The Algorithm

The decision maker has any number of crisp inputs. These may be numerical, enumerated, or
Boolean values.

Each input is mapped into fuzzy states using membership functions as described earlier.
Some implementations require that an input be separated into two or more fuzzy states so

that the sum of their degrees of membership is 1. In other words, the set of states represents all

382 Chapter 5 Decision Making

In cover Exposed

Angle of exposure

Hit points left

Hurt Healthy

Ammo

Empty

OverloadedHas ammo

Figure 5.44 Exclusive mapping to states for fuzzy decision making

possible states for that input. We will see how this property allows us optimizations later in the
section. Figure 5.44 shows an example of this with three input values: the first and second have
two corresponding states, and the third has three states.

So the set of crisp inputs is mapped into lots of states, which can be arranged in mutually
inclusive groups.

In addition to these input states, we have a set of output states. These output states are normal
fuzzy states, representing the different possible actions that the character can take.

Linking the input and output states is a set of fuzzy rules. Typically, rules have the structure:

input 1 state AND . . . AND input n state THEN output state

For example, using the three inputs in Figure 5.44, we might have rules such as:

chasing AND corner-entry AND going-fast THEN brake

leading AND mid-corner AND going-slow THEN accelerate

Rules are structured so that each clause in a rule is a state from a different crisp input. Clauses
are always combined with a fuzzy AND. In our example, there are always three clauses because we
had three crisp inputs, and each clause represents one of the states from each input.

It is a common requirement to have a complete set of rules: one for each combination of states
from each input. For our example, this would produce 18 rules (2 × 3 × 3).

5.5 Fuzzy Logic 383

To generate the output, we go through each rule and calculate the degree of membership for
the output state. This is simply a matter of taking the minimum degree of membership for the
input states in that rule (since they are combined using AND). The final degree of membership
for each output state will be the maximum output from any of the applicable rules.

For example, in an oversimplified version of the previous example, we have two inputs (corner
position and speed), each with two possible states. The rule block looks like the following:

corner-entry AND going-fast THEN brake

corner-exit AND going-fast THEN accelerate

corner-entry AND going-slow THEN accelerate

corner-exit AND going-slow THEN accelerate

We might have the following degrees of membership:

Corner-entry: 0.1

Corner-exit: 0.9

Going-fast: 0.4

Going-slow: 0.6

Then the results from each rule are

Brake = min(0.1,0.4) = 0.1

Accelerate = min(0.9,0.4) = 0.4

Accelerate = min(0.1,0.6) = 0.1

Accelerate = min(0.9,0.6) = 0.6

So, the final value for brake is 0.1, and the final value for accelerate is the maximum of the
degrees given by each rule, namely, 0.6.

The pseudo-code below includes a shortcut that means we don’t need to calculate all the values
for all the rules. When considering the second acceleration rule, for example, we know that the
accelerate output will be at least 0.4 (the result from the first accelerate rule). As soon as we see
the 0.1 value, we know that this rule will have an output of no more than 0.1 (since it takes the
minimum). With a value of 0.4 already, the current rule cannot possibly be the maximum value
for acceleration, so we may as well stop processing this rule.

After generating the correct degrees of membership for the output states, we can perform
defuzzification to determine what to do (in our example, we might output a numeric value to
indicate how hard to accelerate or break—in this case, a reasonable acceleration).

Rule Structure

It is worth being clear about the rule structure we’ve used above. This is a structure that makes it
efficient to calculate the degree of membership of the output state. Rules can be stored simply as

384 Chapter 5 Decision Making

a list of states, and they are always treated the same way because they are the same size (one clause
per input variable), and their clauses are always combined using AND.

We’ve come across several misleading papers, articles, and talks that have presented this struc-
ture as if it were somehow fundamental to fuzzy logic itself. There is nothing wrong with using
any rule structure involving any kind of fuzzy operation (AND, OR, NOT, etc.) and any number
of clauses. For very complex decision making with lots of inputs, parsing general fuzzy logic rules
can be faster.

With the restriction that the set of fuzzy states for one input represents all possible states, and
with the added restriction that all possible rule combinations are present (we’ll call these block
format rules), the system has a neat mathematical property. Any general rules using any number
of clauses combined with any fuzzy operators can be expressed as a set of block format rules.

If you are having trouble seeing this, observe that with a complete set of ANDed rules we can
specify any truth table we like (try it). Any set of consistent rules will have its own truth table, and
we can directly model this using the block format rules.

In theory, any set of (non-contradictory) rules can be transformed into our format. Although
there are transformations for this purpose, they are only of practical use for converting an existing
set of rules. For developing a game, it is better to start by encoding rules in the format they are
needed.

Pseudo-Code

The fuzzy decision maker can be implemented in the following way:

1 def fuzzyDecisionMaker(inputs, membershipFns, rules):
2

3 # Will hold the degrees of membership for each input
4 # state and output state, respectively
5 inputDom = []
6 outputDom = [0,0,...,0]
7

8 # Convert the inputs into state values
9 for i in 0..len(inputs):

10 # Get the input value
11 input = inputs[i]
12

13 # Get the membership functions for this input
14 membershipFnList = membershipFns[i]
15

16 # Go through each membership function
17 for membershipFn in membershipFnList:
18

19 # Convert the input into a degree of membership

5.5 Fuzzy Logic 385

20 inputDom[membershipFn.stateId] =
21 membershipFn.dom(input)
22

23 # Go through each rule
24 for rule in rules:
25

26 # Get the current output d.o.m. for the conclusion state
27 best = outputDom[rule.conclusionStateId]
28

29 # Hold the minimum of the inputDoms seen so far
30 min = 1
31

32 # Go through each state in the input of the rule
33 for state in rule.inputStateIds:
34

35 # Get the d.o.m. for this input state
36 dom = inputDom[state]
37

38 # If we’re smaller than the best conclusion so
39 # far, we may as well exit now, because even if
40 # we are the smallest in this rule, the
41 # conclusion will not be the best overall
42 if dom < best:
43 break continue # i.e., go to next rule
44

45 # Check if we’re the lowest input d.o.m. so far
46 if dom < min: min = dom
47

48 # min now holds the smallest d.o.m. of the inputs,
49 # and because we didn’t break above, we know it is
50 # larger than the current best, so write the current
51 # best.
52 outputDom[rule.conclusionStateId] = min
53

54 # Return the output state degrees of membership
55 return outputDom

The function takes as input the set of input variables, a list of lists of membership functions,
and a list of rules.

The membership functions are organized in lists where each function in the list operates
on the same input variable. These lists are then combined in an overall list with one element
per input variable. The inputs and membershipFns lists therefore have the same number of
elements.

386 Chapter 5 Decision Making

Data Structures and Interfaces

We have treated the membership functions as structures with the following form:

1 struct MembershipFunction:
2 stateId
3 def dom(input)

where stateId is the unique integer identifier of the fuzzy state for which the function calculates
degree of membership. If membership functions define a zero-based continuous set of identifiers,
then the corresponding degrees of membership can be simply stored in an array.

Rules also act as structures in the code above and have the following form:

1 struct FuzzyRule:
2 inputStateIds
3 conclusionStateId

where the inputStateIds is a list of the identifiers for the states on the left-hand side of the rule,
and the conclusionStateId is an integer identifier for the output state on the right-hand side of
the rule.

The conclusion state id is also used to allow the newly generated degree of membership to be
written to an array. The id numbers for input and output states should both begin from 0 and be
continuous (i.e., there is an input 0 and an output 0, an input 1 and an output 1, and so on). They
are treated as indices into two separate arrays.

Implementation Notes

The code illustrated above can often be implemented for SIMD hardware, such as the PC’s SSE
extensions or (less beneficially) a vector unit on PS2. In this case the short circuit code illustrated
will be omitted; such heavy branching isn’t suitable for parallelizing the algorithm.

In a real implementation, it is common to retain the degrees of membership for input values
that stay the same from frame to frame, rather than sending them through the membership
functions each time.

The rule block is large, but predictable. Because every possible combination is present, it is
possible to order the rules so they do not need to store the list of input state ids. A single array
containing conclusions can be used, which is indexed by the offsets for each possible input state
combination.

Performance

The algorithm is O(n +m) in memory, where n is the number of input states, and m is the number
of output states. It simply holds the degree of membership for each.

5.5 Fuzzy Logic 387

Outside the algorithm itself, the rules need to be stored. This requires:

O

(∏
k=0...i

nk

)

memory, where ni is the number of states per input variable, and i is the number of input
variables. So,

n =
∑

k=0...1

nk .

The algorithm is

O

(
i

∏
k=0...i

nk

)

in time. There are ∏
k=0...i

nk

rules, and each one has i clauses. Each clause needs to be evaluated in the algorithm.

Weaknesses

The overwhelming weakness of this approach is its lack of scalability. It works well for a small
number of input variables and a small number of states per variable. To process a system with 10
input variables, each with 5 states, would require almost 10 million rules. This is well beyond the
ability of anyone to create.

For larger systems of this kind, we can either use a small number of general fuzzy rules, or we
can use the Combs method for creating rules, where the number of rules scales linearly with the
number of input states.

Combs Method

The Combs method relies on a simple result from classical logic: a rule of the form:

a AND b ENTAILS c

can be expressed as:

(a ENTAILS c) OR (b ENTAILS c),

388 Chapter 5 Decision Making

where ENTAILS is a Boolean operator with its own truth table:

a b a ENTAILS b

true true true

true false false

false true true

false false true

As an exercise you can create the truth tables for the previous two logical statements and check
that they are equal.

The ENTAILS operator is equivalent to “IF a THEN b.” It says that should a be true, then b
must be true. If a is not true, then it doesn’t matter if b is true or not.

At first glance it may seem odd that:

false ENTAILS true = true,

but this is quite logical. Suppose we say that:

IF I’m-in-the-bath THEN I’m-wet.

So, if I’m in the bath then you are going to be wet (ignoring the possibility that you’re in an
empty bath, of course). But you can be wet for many other reasons: getting caught in the rain,
being in the shower, and so on. So you’re-wet can be true and you’re-in-the-bath can be false, and
the rule would still be valid.

What this means is that we can write:

IF a AND b THEN c

as:

(IF a THEN c) or (IF b THEN c).

Previously, we said that the conclusions of rules are ORed together, so we can split the new
format rule into two separate rules:

IF a THEN c

IF b THEN c.

For the purpose of this discussion, we’ll call this the Combs format (although that’s not a
widely used term).

The same thing works for larger rules:

IF a1 AND . . . AND an THEN c

5.5 Fuzzy Logic 389

can be rewritten as:

IF a1 THEN c
...

IF an THEN c.

So, we’ve gone from having rules involving all possible combinations of states to a simple set
of rules with only one state in the IF-clause and one in the THEN-clause.

Because we no longer have any combinations, there will be the same number of rules as there
are input states. Our example of 10 inputs with 5 states each gives us 50 rules only, rather than
10 million.

If rules can always be decomposed into this form, then why bother with the block format
rules at all? Well, so far we’ve only looked at decomposing one rule, and we’ve hidden a problem.
Consider the pair of rules:

IF corner-entry AND going-fast THEN brake

IF corner-exit AND going-fast THEN accelerate

These get decomposed into four rules:

IF corner-entry THEN brake

IF going-fast THEN brake

IF corner-exit THEN accelerate

IF going-fast THEN accelerate

This is an inconsistent set of rules; we can’t both brake and accelerate at the same time. So
when we’re going fast, which is it to be? The answer, of course, is that it depends on where we are
in the corner.

So, while one rule can be decomposed, more than one rule cannot. Unlike for block format
rules, we cannot represent any truth table using Combs format rules. Because of this, there is no
possible transformation that converts a general set of rules into this format. It may just so happen
that a particular set of rules can be converted into the Combs format, but that is simply a happy
coincidence.

The Combs method instead starts from scratch: the fuzzy logic designers build up rules,
limiting themselves to the Combs format only. The overall sophistication of the fuzzy logic system
will inevitably be limited, but the tractability of creating the rules means they can be tweaked
more easily.

Our running example, which in block format was

corner-entry AND going-fast THEN brake

corner-exit AND going-fast THEN accelerate

corner-entry AND going-slow THEN accelerate

corner-exit AND going-slow THEN accelerate

390 Chapter 5 Decision Making

could be expressed as:

corner-entry THEN brake

corner-exit THEN accelerate

going-fast THEN brake

going-slow THEN accelerate

With inputs of:

Corner-entry: 0.1

Corner-exit: 0.9

Going-fast: 0.4

Going-slow: 0.6

the block format rules give us results of:

Brake = 0.1

Accelerate = 0.6

while Combs method gives us:

Brake = 0.4

Accelerate = 0.9

When both sets of results are defuzzified, they are both likely to lead to a modest acceleration.
The Combs method is surprisingly practical in fuzzy logic systems. If the Combs method were

used in classical logic (building conditions for state transitions, for example), it would end up
hopelessly restrictive. But, in fuzzy logic, multiple fuzzy states can be active at the same time, and
this means they can interact with one another (we can both brake and accelerate, for example, but
the overall speed change depends on the degree of membership of both states). This interaction
means that the Combs method produces rules that are still capable of producing interaction
effects between states, even though those interactions are no longer explicit in the rules.

5.5.4 Fuzzy State Machines

Although developers regularly talk about fuzzy state machines, they don’t always mean the same
thing by it. A fuzzy state machine can be any state machine with some element of fuzziness. It can
have transitions that use fuzzy logic to trigger, or it might use fuzzy states rather than conventional
states. It could even do both.

Although we’ve seen several approaches, with none of them particularly widespread, as
an example we’ll look at a simple state machine with fuzzy states, but with crisp triggers for
transitions.

5.5 Fuzzy Logic 391

The Problem

Regular state machines are suitable when the character is clearly in one state or another. As we
have seen, there are many situations in which gray areas exist. We’d like to be able to have a state
machine that can sensibly handle state transitions while allowing a character to be in multiple
states at the same time.

The Algorithm

In the conventional state machine we kept track of the current state as a single value. Now we can
be in any or even all states with some degree of membership (DOM). Each state therefore has its
own DOM value. To determine which states are currently active (i.e., have a DOM greater than
zero), we can simply look through all states. In most practical applications, only a subset of the
states will be active at one time, so it can be more efficient to keep a separate list of all active states.

At each iteration of the state machine, the transitions belonging to all active states are given
the chance to trigger. The first transition in each active state is fired. This means that multiple
transitions can happen in one iteration. This is essential for keeping the fuzziness of the machine.

Unfortunately, because we’ll implement the state machine on a serial computer, the transitions
can’t be simultaneous. It is possible to cache all firing transitions and execute them simultaneously.
In our algorithm we will use a simpler process: we will fire transitions belonging to each state in
decreasing order of DOM.

If a transition fires, it can transition to any number of new states. The transition itself also
has an associated degree of transition. The DOM of the target state is given by the DOM of the
current state ANDed with the degree of transition.

For example, state A has a DOM of 0.4, and one of its transitions, T, leads to another state,
B, with a degree of transition 0.6. Assume for now that the DOM of B is currently zero. The new
DOM of B will be:

MB = M(A AND T) = min(0.4,0.6) = 0.4,

where Mx is the DOM of the set x , as before.
If the current DOM of state B is not zero, then the new value will be ORed with the existing

value. Suppose it is 0.3 currently, we have:

M ′
B = M(B OR (A AND T)) = max(0.3,0.4) = 0.4.

At the same time, the start state of the transition is ANDed with NOT T; that is, the degree to
which we don’t leave the start state is given by one minus the degree of transition. In our example,
the degree of transition is 0.6. This is equivalent to saying 0.6 of the transition happens, so 0.4 of
the transition doesn’t happen. The DOM for state A is given by:

M ′
A = M(A AND NOT T) = min(0.4,1 − 0.6) = 0.4.

If you convert this into crisp logic, it is equivalent to the normal state machine behavior: the
start state being on AND the transition firing causes the end state to be on. Because any such

392 Chapter 5 Decision Making

transition will cause the end state to be on, there may be several possible sources (i.e., they are
ORed together). Similarly, when the transition has fired the start state is switched off, because the
transition has effectively taken its activation and passed it on.

Transitions are triggered in the same way as for finite state machines. We will hide this
functionality behind a method call, so any kind of tests can be performed, including tests involving
fuzzy logic, if required.

The only other modification we need is to change the way actions are performed. Because
actions in a fuzzy logic system are typically associated with defuzzified values, and because
defuzzification typically uses more than one state, it doesn’t make sense to have states directly
request actions. Instead, we separate all action requests out of the state machine and assume
that there is an additional, external defuzzification process used to determine the action
required.

Pseudo-Code

The algorithm is simpler than the state machines we saw earlier. It can be implemented in the
following way:

1 class FuzzyStateMachine:
2

3 # Holds a state along with its current degree
4 # of membership
5 struct StateAndDOM:
6 state
7 dom
8

9 # Holds a list of states for the machine
10 states
11

12 # Holds the initial states, along with DOM values
13 initialStates
14

15 # Holds the current states, with DOM values
16 currentStates = initialStates
17

18 # Checks and applies transitions
19 def update():
20

21 # Sorts the current states into DOM order
22 states = currentStates.sortByDecreasingDOM()
23

24 # Go through each state in turn

5.5 Fuzzy Logic 393

25 for state in states:
26

27 # Go through each transition in the state
28 for transition in currentState.getTransitions():
29

30 # Check for triggering
31 if transition.isTriggered():
32

33 # Get the transition’s degree of transition
34 dot = transition.getDot()
35

36 # We have a transition, process each target
37 for endState in transition.getTargetStates():
38

39 # Update the state
40 end = currentStates.get(endState)
41 end.dom = max(end.dom, min(state.dom, dot))
42

43 # Check if we need to add the state
44 if end.dom > 0 and not end in currentStates:
45 currentStates.append(end)
46

47 # Update the start state from the transition
48 state.dom = min(state.dom, 1 - dot)
49

50 # Check if we need to remove the start state
51 if state.dom <= 0.0: currentStates.remove(state)
52

53 # We don’t look at any more transitions for this
54 # active state
55 break

Data Structures and Interfaces

The currentStates member is a list of StateAndDom instances. In addition to its normal list-style
operations (i.e., iteration, removal of an element, testing for membership, addition of an element),
it supports two operations specific for this algorithm.

The sortByDecreasingDOM method returns a copy of the list sorted in order of decreasing
DOM values. It does not make copies of any of the StateAndDom instances in the list. We need a
copy, since we’ll be making changes to the original while we iterate through its contents. This can
cause problems or infinite loops (although no infinite loops will be caused in this algorithm), so
it is to be avoided as good programming practice.

The get method looks up a StateAndDom instance in the list from its state member.

394 Chapter 5 Decision Making

It therefore has the following form:

1 class StateAndDomList (VanillaList):
2 def get(state)
3 def sortByDecreasingDOM()

where VanillaList is whatever data structure normally handles growable arrays.
Transitions have the following form:

1 class Transition:
2 def isTriggered()
3 def getTargetStates()
4 def getDot()

The isTriggered method returns true if the transition can fire, the getTargetStates returns
a list of states to transition to, and getDot returns the degree of transition.

Implementation Notes

The isTriggered method of the Transition class can be implemented in the same way as for a
standard state machine. It can use the infrastructure we developed earlier in the chapter, including
decision trees.

It can also contain fuzzy logic to determine transitions. The degree of transition provides a
mechanism to expose this fuzzy logic to the state machine.

Suppose, for example, that the isTriggered method uses some fuzzy logic to determine that
its transition conditions are met with a DOM of 0.5. It can then expose 0.5 as the degree of
transition, and the transition will have approximately half of its normal action on the state of the
machine.

Performance

The algorithm requires temporary storage for each active state and therefore is O(n) in memory,
where n is the number of active states (i.e., those with DOM > 0).

The algorithm looks at each transition for each active state and therefore is O(nm) in time,
where m is the number of transitions per state.

As in all previous decision making tools, the performance and memory requirements can
easily be much higher if the algorithms in any of its data structures are not O(1) in both time and
memory.

Multiple Degrees of Transition

It is possible to have a different degree of transition per target state. The degree of membership
for target states is calculated in the same way as before.

5.6 Markov Systems 395

The degree of membership of the start state is more complex. We take the current value and
AND it with the NOT of the degree of transition, as before. In this case, however, there are multiple
degrees of transition. To get a single value, we take the maximum of the degrees of transition (i.e.,
we OR them together first).

For example, say we have the following states:

State A: DOM = 0.5

State B: DOM = 0.6

State C: DOM = 0.4

Then applying the transition:

From A to B (DOT = 0.2) AND C (DOT = 0.7)

will give:

State B: DOM = max
(
0.6,min(0.2,0.5)

) = 0.6

State C: DOM = max
(
0.4,min(0.7,0.5)

) = 0.5

State A: DOM = min
(
0.5,1 − max(0.2,0.7)

) = 0.3

Again, if you unpack this in terms of the crisp logic, it matches with the behavior of the finite
state machine.

With different degrees of transition to different states, we effectively have completely fuzzy
transitions: the degrees of transition represent gray areas between transitioning fully to one state
or another.

On the Website

The Fuzzy State Machine program that is available on the website illustrates this kind of state

Program

machine, with multiple degrees of transition. As in the previous state machine program, you can
select any transition to fire. In this version you can also tailor the degrees of transition to see the
effects of fuzzy transitions.

5.6 Markov Systems

The fuzzy state machine could simultaneously be in multiple states, each with an associated degree
of membership. Being proportionally in a whole set of states is useful outside fuzzy logic. Whereas
fuzzy logic does not assign any outside meaning to its degrees of membership (they need to be
defuzzified into any useful quantity), it is sometimes useful to work directly with numerical values
for states.

We might have a set of priority values, for example, controlling which of a group of characters
gets to spearhead an assault, or a single character might use numerical values to represent the

396 Chapter 5 Decision Making

safety of each sniping position in a level. Both of these applications benefit from dynamic values.
Different characters might lead in different tactical situations or as their relative health fluctuates
during battle. The safety of sniping positions may vary depending on the position of enemies and
whether protective obstacles have been destroyed.

This situation comes up regularly, and it is relatively simple to create an algorithm similar to
a state machine to manipulate the values. There is no consensus as to what this kind of algorithm
is called, however. Most often it is called a fuzzy state machine, with no distinction between
implementations that use fuzzy logic and those that do not. In this book, we’ll reserve “fuzzy state
machine” for algorithms involving fuzzy logic. The mathematics behind our implementation is a
Markov process, so we’ll refer to the algorithm as a Markov state machine. Bear in mind that this
nomenclature isn’t widespread.

Before we look at the state machine, we’ll give a brief introduction to Markov processes.

5.6.1 Markov Processes

We can represent the set of numerical states as a vector of numbers. Each position in the vector
corresponds to a single state (e.g., a single priority value or the safety of a particular location).
The vector is called the state vector.

There is no constraint on what values appear in the vector. There can be any number of
zeros, and the entire vector can sum to any value. The application may put its own constraints
on allowed values. If the values represent a distribution (what proportion of the enemy force
is in each territory of a continent, for example), then they will sum to 1. Markov processes in
mathematics are almost always concerned with the distribution of random variables. So much of
the literature assumes that the state vector sums to 1.

The values in the state vector change according to the action of a transition matrix. First-order
Markov processes (the only ones we will consider) have a single transition matrix that generates a
new state vector from the previous values. Higher order Markov processes also take into account
the state vector at earlier iterations.

Transition matrices are always square. The element at (i, j) in the matrix represents the
proportion of element i in the old state vector that is added to element j in the new vector. One
iteration of the Markov process consists of multiplying the state vector by the transition matrix,
using normal matrix multiplication rules. The result is a state vector of the same size as the
original. Each element in the new state vector has components contributed by every element in
the old vector.

Conservative Markov Processes

A conservative Markov process ensures that the sum of the values in the state vector does not
change over time. This is essential for applications where the sum of the state vector should always
be fixed (where it represents a distribution, for example, or if the values represent the number of
some object in the game). The process will be conservative if all the rows in the transition matrix
sum to 1.

5.6 Markov Systems 397

Iterated Processes

It is normally assumed that the same transition matrix applies over and over again to the state
vector. There are techniques to calculate what the final, stable values in the state vector will be (it
is an eigenvector of the matrix, as long as such a vector exists).

This iterative process forms a Markov chain.
In game applications, however, it is common for there to be any number of different transition

matrices. Different transition matrices represent different events in the game, and they update the
state vector accordingly.

Returning to our sniper example, let’s say that we have a state vector representing the safety
of four sniping positions:

V =
⎡
⎢⎣

1.0
0.5
1.0
1.5

⎤
⎥⎦,

which sums to 4.0.
Taking a shot from the first position will alert the enemy to its existence. The safety of that

position will diminish. But, while the enemy is focusing on the direction of the attack, the other
positions will be correspondingly safer. We could use the transition matrix:

M =
⎡
⎢⎣

0.1 0.3 0.3 0.3
0.0 0.8 0.0 0.0
0.0 0.0 0.8 0.0
0.0 0.0 0.0 0.8

⎤
⎥⎦

to represent this case. Applying this to the state vector, we get the new safety values:

V =
⎡
⎢⎣

0.1
0.7
1.1
1.5

⎤
⎥⎦,

which sums to 3.4.
So the total safety has gone down (from 4.0 to 3.4). The safety of sniping point 1 has been

decimated (from 1.0 to 0.1), but the safety of the other three points has marginally increased.
There would be similar matrices for shooting from each of the other sniping points.

Notice that if each matrix had the same kind of form, the overall safety would keep decreasing.
After a while, nowhere would be safe. This might be realistic (after being sniped at for a while, the
enemy is likely to make sure that nowhere is safe), but in a game we might want the safety values
to increase if no shots are fired. A matrix such as:

M =
⎡
⎢⎣

1.0 0.1 0.1 0.1
0.1 1.0 0.1 0.1
0.1 0.1 1.0 0.1
0.1 0.1 0.1 1.0

⎤
⎥⎦

would achieve this, if it is applied once for every minute that passes without gunfire.

398 Chapter 5 Decision Making

Unless you are dealing with known probability distributions, the values in the transition
matrix will be created by hand. Tuning values to give the desired effect can be difficult. It will
depend on what the values in the state vector are used for. In applications we have worked on
(related to steering behaviors and priorities in a rule-based system, both of which are described
elsewhere in the book), the behavior of the final character has been quite tolerant of a range of
values and tuning was not too difficult.

Markov Processes in Math and Science

In mathematics, a first-order Markov process is any probabilistic process where the future depends
only on the present and not on the past. It is used to model changes in probability distribution
over time.

The values in the state vector are probabilities for a set of events, and the transition matrix
determines what probability each event will have at the next trial given their probabilities at the
last trial. The states might be the probability of sun or probability of rain, indicating the weather
on one day. The initial state vector indicates the known weather on one day (e.g., [1 0] if it
was sunny), and by applying the transition we can determine the probability of the following day
being sunny. By repeatedly applying the transition we have a Markov chain, and we can determine
the probability of each type of weather for any time in the future.

In AI, Markov chains are more commonly found in prediction: predicting the future from the
present. They are the basis of a number of techniques for speech recognition, for example, where
it makes sense to predict what the user will say next to aid disambiguation of similar-sounding
words.

There are also algorithms to do learning with Markov chains (by calculating or approximating
the values of the transition matrix). In the speech recognition example, the Markov chains undergo
learning to better predict what a particular user is about to say.

5.6.2 Markov State Machine

Using Markov processes, we can create a decision making tool that uses numeric values for its
states.

The state machine will need to respond to conditions or events in the game by executing a
transition on the state vector. If no conditions or events occur for a while, then a default transition
can occur.

The Algorithm

We store a state vector as a simple list of numbers. The rest of the game code can use these values
in whatever way is required.

We store a set of transitions. Transitions consist of a set of triggering conditions and a transition
matrix. The trigger conditions are of exactly the same form as for regular state machines.

5.6 Markov Systems 399

The transitions belong to the whole state machine, not to individual states.
At each iteration, we examine the conditions of each transition and determine which of them

trigger. The first transition that triggers is then asked to fire, and it applies its transition matrix to
the state vector to give a new value.

Default Transitions

We would like a default transition to occur after a while if no other transitions trigger. We could
do this by implementing a type of transition condition that relies on time. The default transition
would then be just another transition in the list, triggering when the timer counts down. The
transition would have to keep an eye on the state machine, however, and make sure it resets the
clock every time another transition triggers. To do this, it may have to directly ask the transitions
for their trigger state, which is a duplication of effort, or the state machine would have to expose
that information through a method.

Since the state machine already knows if no transitions trigger, it is more common to bring
the default transition into the state machine as a special case. The state machine has an internal
timer and a default transition matrix. If any transition triggers, the timer is reset. If no transitions
trigger, then the timer is decremented. If the timer reaches zero, then the default transition matrix
is applied to the state vector, and the timer is reset again.

Note that this can also be done in a regular state machine if a transition should occur after a
period of inactivity. We’ve seen it more often in numeric state machines, however.

Actions

Unlike a finite state machine, we are in no particular state. Therefore, states cannot directly control
which action the character takes. In the finite state machine algorithm, the state class could return
actions to perform for as long as the state was active. Transitions also returned actions that could
be carried out when the transition was active.

In the Markov state machine, transitions still return actions, but states do not. There will be
some additional code that uses the values in the state vector in some way. In our sniper example
we can simply pick the largest safety value and schedule a shot from that position. However the
numbers are interpreted, a separate piece of code is needed to turn the value into action.

Pseudo-Code

The Markov state machine has the following form:

1 class MarkovStateMachine:
2

3 # The state vector
4 state
5

6 # The period to wait before using the default transition

400 Chapter 5 Decision Making

7 resetTime
8

9 # The default transition matrix
10 defaultTransitionMatrix
11

12 # The current countdown
13 currentTime = resetTime
14

15 # List of transitions
16 transitions
17

18 def update():
19

20 # Check each transition for a trigger
21 for transition in transitions:
22 if transition.isTriggered():
23 triggeredTransition = transition
24 break
25

26 # No transition is triggered
27 triggeredTransition = None
28

29 # Check if we have a transition to fire
30 if triggeredTransition:
31

32 # Reset the timer
33 currentTime = resetTime
34

35 # Multiply the matrix and the state vector
36 matrix = triggeredTransition.getMatrix()
37 state = matrix * state
38

39 # Return the triggered transition’s action list
40 return triggeredTransition.getAction()
41

42 else:
43 # Otherwise check the timer
44 currentTime -= 1
45

46 if currentTime <= 0:
47 # Do the default transition
48 state = state * defaultTransitionMatrix
49 # Reset the timer
50 currentTime = reset Time

5.7 Goal-Oriented Behavior 401

51

52 # Return no actions, since no transition triggered
53 return []

Data Structures and Interfaces

The transitions list in the state machine holds instances with the following interface:

1 class MarkovTransition:
2 def isTriggered()
3 def getMatrix()
4 def getAction()

On the Website

The Markov State Machine program that is available on the website demonstrates a Markov state
machine in action. At each iteration you can select one of the transitions to fire or no transition.

Program

The internal time for the state machine will run down after a period of inactivity, and the default
transition will be applied. The software is a command line demonstration that outputs copious
detail, such as what it is doing at each iteration, when a transition triggers, and the results of the
transition on the state vector.

5.7 Goal-Oriented Behavior

So far we have focused on approaches that react: a set of inputs is provided to the character, and
a behavior selects an appropriate action. There is no implementation of desires or goals. The
character merely reacts to input.

It is possible, of course, to make the character seem like it has goals or desires, even with the
simplest decision making techniques. A character whose desire is to kill an enemy will hunt one
down, will react to the appearance of an enemy by attacking, and will search for an enemy when
there is a lack of one. The same character may also have the apparent desire to stay alive, in which
case it will take account of its own protection, reacting to low health or the presence of danger.
The underlying structure may be reacting to input, but the character doesn’t need to appear that
way. In our experience, this is a fundamental misunderstanding that academic AI folk often have
about game AI: it doesn’t matter what is controlling the character, as long as it looks right.

There are techniques we can use to make the character more flexible in its goal seeking,
however, and in some game genres this is a useful approach. It is particularly visible in people
simulation games, such as The Sims [Maxis Software, Inc., 2000].

Here, only a few characters are on-screen at one time. Each has a range of emotional and
physical parameters that change over time in relation to its environment and its actions. The

402 Chapter 5 Decision Making

player can often control the character’s actions directly, although the character is always capable
of independent action.

In a game such as The Sims, there is no overall goal to the game. In other titles such as Ghost
Master [Sick Puppies Studio and International Hobo Ltd., 2003], there is a definite aim (you try
to scare the inhabitants out of a house using various ghosts and supernatural powers).

In this kind of game a wide range of different actions is available to characters. Actions might
include boiling the kettle, sitting on a sofa, or talking to another character. The action itself is
represented by a canned animation.

Characters need to demonstrate their emotional and physical state by choosing appropriate
actions. They should eat when hungry, sleep when tired, chat to friends when lonely, and hug
when in need of love. We could simply run a decision tree that selects available actions based on
the current emotional and physical parameters of the character. In a game such as The Sims, this
would lead to a very big decision tree. There are literally hundreds of parameterized actions to
choose from for every character.

A better approach would be to present the character with a suite of possible actions and have
it choose the one that best meets its immediate needs.

This is goal-oriented behavior (GOB), explicitly seeking to fulfill the character’s internal goals.
Like many algorithms in this book, the name can only be loosely applied. GOB may mean different
things to different people, and it is often used either vaguely to refer to any goal seeking decision
maker or to specific algorithms similar to those here. We’ll use it as a general term.

We’ll look at a very simple GOB framework and a utility-based GOB decision maker. We’ll
also look at goal-oriented action planning (GOAP), an extension to the basic GOB system that
can plan sequences of actions to achieve its goal.

5.7.1 Goal-Oriented Behavior

Goal-oriented behavior is a blanket term that covers any technique taking into account goals
or desires. There isn’t a single technique for GOB, and some of the other techniques in this
chapter, notably rule-based systems, can be used to create goal-seeking characters. Goal-oriented
behavior is still fairly rare in games, so it is also difficult to say what the most popular techni-
ques are.

In this section we will look at a utility-based decision making system that can choose from
a range of actions based on its current goals. It is a system based on one we’ve implemented
ourselves and that we’ve seen used in two other companies.

Goals

A character may have one or more goals, also called motives. There may be hundreds of possible
goals, and the character can have any number of them currently active. They might have goals
such as eat, regenerate health, or kill enemy. Each goal has a level of importance (often called
insistence among GOB aficionados) represented by a number. A goal with a high insistence will
tend to influence the character’s behavior more strongly.

5.7 Goal-Oriented Behavior 403

The character will try to fulfill the goal or to reduce its insistence. Some games allow goals to
be completely satisfied (such as killing an enemy). Other games have a fixed set of goals that are
always there, and they simply reduce the insistence when the goal is fulfilled (a character might
always have a goal of “get healthy,” for example, but at a low insistence when they are already
healthy). A zero value for insistence is equivalent to a completely satisfied goal.

We’ve deliberately conflated goals and motives here. For the purpose of making great game
characters, goals and motives can usually be treated as the same thing or at least blurred together
somewhat. In some AI research they are quite distinct, but their definitions vary from researcher
to researcher: motives might give rise to goals based on a character’s beliefs, for example (i.e., we
may have a goal of killing our enemy motivated by revenge for our colleagues, out of the belief
that our enemy killed them). This is an extra layer we don’t need for this algorithm, so we’ll treat
motives and goals as largely the same thing and normally refer to them as goals.

We could easily implement goals without insistence values, but it makes it more difficult to
choose which goals to focus on. We’ve chosen to use real numbers rather than Booleans, because
the resulting algorithms are no more complex. If your game has thousands of characters with
hundreds of goals, it might be worth just using on/off goals and saving storage space.

In a game like The Sims, the character’s physical and emotional parameters can be interpreted
as goal values. A character might have a hunger motive: the higher the hunger value, the more
eating becomes a pressing goal.

Actions

In addition to a set of goals, we need a suite of possible actions to choose from. These actions can
be generated centrally, but it is also common for them to be generated by objects in the world. In
The Sims world, a kettle adds a “boil kettle” action and an empty oven adds an “insert raw food”
action to the list of possibilities. In an action game an enemy might introduce an “attack me”
action, while a door might expose a “lock” action.

The actions available depend on the current state of the game. The empty oven might check if
the character is carrying raw food before positing its “insert” action. An oven containing raw food
does not allow more food to be added; it exposes a “cook food” action. Similarly, the door exposes
an “unlock” action if it is already locked or maybe an “insert key” action first before unlocking is
allowed.

As the actions are added to the list of options, they are rated against each motive the character
has. This rating shows how much impact the action would have on a particular motive. So the
“playing with the games console” action might increase happiness a lot but also decrease energy.

In a shooter the actions are more atomic. Each action gives a list of goals that can be achieved.
A “shoot” action, for example, can fulfill a kill enemy goal, as can a “spring-trap” action, and
so on.

The goal that an action promises to fulfill might be several steps away. A piece of raw food
might offer to fulfill hunger, for example. If the character picks it up, it will not become less hungry,
but now the empty oven will offer the “insert” action, again promising to feed the character. The
same thing continues through a “cook food” action, a “remove food from oven” action, and finally
an “eat” action. In some games, the single action is made up of a sequence of actions. The “shoot”

404 Chapter 5 Decision Making

action might be made up of “draw weapon,” “aim,” and “fire” actions, for example. The action
execution section at the end of this chapter has more details about this kind of combined action.

5.7.2 Simple Selection

So, we have a set of possible actions and a set of goals. The actions promise to fulfill different
goals. Continuing with the people simulation example, we might have:

Goal: Eat = 4 Goal: Sleep = 3

Action: Get-Raw-Food (Eat − 3)

Action: Get-Snack (Eat − 2)

Action: Sleep-In-Bed (Sleep − 4)

Action: Sleep-On-Sofa (Sleep − 2)

We can use a range of decision making tools to select an action and give intelligent-looking
behavior. A simple approach would be to choose the most pressing goal (the one with the largest
insistence) and find an action that either fulfills it completely or provides it with the largest
decrease in insistence. In the example above, this would be the “get raw-food” action (which in
turn might lead to cooking and eating the food). The change in goal insistence that is promised
by an action is a heuristic estimate of its utility—the use that it might be to a character. The
character naturally wants to choose the action with the highest utility, and the change in goal is
used to do so.

If more than one action can fulfill a goal, we could choose between them at random or simply
select the first one we find.

Pseudo-Code

We could implement this as:

1 def chooseAction(actions, goals):
2

3 # Find the goal to try and fulfil
4 topGoal = goals[0]
5 for goal in goals[1..]:
6 if goal.value > topGoal.value:
7 topGoal = goal
8

9 # Find the best action to take
10 bestAction = actions[0]
11 bestUtility = -actions[0].getGoalChange(topGoal)
12 for action in actions[1..]:

5.7 Goal-Oriented Behavior 405

13

14 # We invert the change because a low change value
15 # is good (we want to reduce the value for the goal)
16 # but utilities are typically scaled so high values
17 # are good.
18 utility = -action.getGoalChange(topGoal)
19

20 # We look for the lowest change (highest utility)
21 if thisUtility > bestUtility:
22 bestUtility = thisUtility
23 bestAction = action
24

25 # Return the best action, to be carried out
26 return bestAction

which is simply two max()-style blocks of code, one for the goal and one for the action.

Data Structures and Interfaces

In the code above, we’ve assumed that goals have an interface of the form:

1 struct Goal:
2 name
3 value

and actions have the form:

1 struct Action:
2 def getGoalChange(goal)

Given a goal, the getGoalChange function returns the change in insistence that carrying out
the action would provide.

Performance

The algorithm is O(n + m) in time, where n is the number of goals, and m is the num-
ber of possible actions. It is O(1) in memory, requiring only temporary storage. If goals are
identified by an associated zero-based integer (it is simple do, since the full range of goals
is normally known before the game runs), then the getGoalChange method of the action
structure can be simply implemented by looking up the change in an array, a constant time
operation.

406 Chapter 5 Decision Making

Weaknesses

This approach is simple, fast, and can give surprisingly sensible results, especially in games with
a limited number of actions available (such as shooters, third-person action or adventure games,
or RPGs).

It has two major weaknesses, however: it fails to take account of side effects that an action may
have, and it doesn’t incorporate any timing information. We’ll resolve these issues in turn.

5.7.3 Overall Utility

The previous algorithm worked in two steps. It first considered which goal to reduce, and then it
decided the best way to reduce it. Unfortunately, dealing with the most pressing goal might have
side effects on others.

Here is another people simulation example, where insistence is measured on a five-point scale:

Goal: Eat = 4 Goal: Bathroom = 3

Action: Drink-Soda (Eat − 2; Bathroom + 3)

Action: Visit-Bathroom (Bathroom − 4)

A character that is hungry and in need of the bathroom, as shown in the example, probably
doesn’t want to drink a soda. The soda may stave off the snack craving, but it will lead to the
situation where the need for the toilet is at the top of the five-point scale. Clearly, human beings
know that snacking can wait a few minutes for a bathroom break.

This unintentional interaction might end up being embarrassing, but it could equally be fatal.
A character in a shooter might have a pressing need for a health pack, but running right into
an ambush to get it isn’t a sensible strategy. Clearly, we often need to consider side effects of
actions.

We can do this by introducing a new value: the discontentment of the character. It is calculated
based on all the goal insistence values, where high insistence leaves the character more discontent.
The aim of the character is to reduce its overall discontentment level. It isn’t focusing on a single
goal any more, but on the whole set.

We could simply add together all the insistence values to give the discontentment of the
character. A better solution is to scale insistence so that higher values contribute disproportionately
high discontentment values. This accentuates highly valued goals and avoids a bunch of medium
values swamping one high goal. From our experimentation, squaring the goal value is sufficient.

For example,

Goal: Eat = 4 Goal: Bathroom = 3

Action: Drink-Soda (Eat − 2; Bathroom + 2)

� afterwards: Eat = 2, Bathroom = 5: Discontentment = 29

Action: Visit-Bathroom (Bathroom − 4)

� afterwards: Eat = 4, Bathroom = 0: Discontentment = 16

5.7 Goal-Oriented Behavior 407

To make a decision, each possible action is considered in turn. A prediction is made of the total
discontentment after the action is completed. The action that leads to the lowest discontentment
is chosen. The list above shows this choice in the same example as we saw before. Now the “visit
bathroom” action is correctly identified as the best one.

Discontentment is simply a score we are trying to minimize; we could call it anything. In
search literature (where GOB and GOAP are found in academic AI), it is known as an energy
metric. This is because search theory is related to the behavior of physical processes (particularly,
the formation of crystals and the solidification of metals), and the score driving them is equivalent
to the energy. We’ll stick with discontentment in this section, and we’ll return to energy metrics
in the context of learning algorithms in Chapter 7.

Pseudo-Code

The algorithm now looks like the following:

1 def chooseAction(actions, goals):
2

3 # Go through each action, and calculate the
4 # discontentment.
5 bestAction = actions[0]
6 bestValue = calculateDiscontentment(actions[0], goals)
7

8 for action in actions:
9 thisValue = calculateDiscontentment(action, goals)

10 if thisValue < bestValue:
11 bestValue = thisValue
12 bestAction = action
13

14 # return the best action
15 return bestAction
16

17 def calculateDiscontentment(action, goals):
18

19 # Keep a running total
20 discontentment = 0
21

22 # Loop through each goal
23 for goal in action:
24 # Calculate the new value after the action
25 newValue = goal.value + action.getGoalChange(goal)
26

27 # Get the discontentment of this value
28 discontentment += goal.getDiscontentment(value)

408 Chapter 5 Decision Making

Here we’ve split the process into two functions. The second function calculates the total
discontentment resulting from taking one particular action. It, in turn,calls the getDiscontentment
method of the Goal structure.

Having the goal calculate its discontentment contribution gives us extra flexibility, rather than
always using the square of its insistence. Some goals may be really important and have very high
discontentment values for large values (such as the stay-alive goal, for example); they can return
their insistence cubed, for example, or to a higher power. Others may be relatively unimportant
and make a tiny contribution only. In practice, this will need some tweaking in your game to get
it right.

Data Structures and Interfaces

The action structure stays the same as before, but the Goal structure adds its getDiscontentment
method, implemented as the following:

1 struct Goal:
2 value
3

4 def getDiscontentment(newValue):
5 return newValue * newValue

Performance

This algorithm remains O(1) in memory, but is now O(nm) in time, where n is the number of
goals, and m is the number of actions, as before. It has to consider the discontentment factor of
each goal for each possible action. For large numbers of actions and goals, it can be significantly
slower than the original version.

For small numbers of actions and goals, with the right optimizations, it can actually be much
quicker. This optimization speed up is because the algorithm is suitable for SIMD optimizations,
where the discontentment values for each goal are calculated in parallel. The original algorithm
doesn’t have the same potential.

5.7.4 Timing

In order to make an informed decision as to which action to take, the character needs to know
how long the action will take to carry out. It may be better for an energy-deficient character to
get a smaller boost quickly (by eating a chocolate bar, for example), rather than spending eight
hours sleeping. Actions expose the time they take to complete, enabling us to work that into the
decision making.

Actions that are the first of several steps to a goal will estimate the total time to reach the
goal. The “pick up raw food” action, for example, may report a 30-minute duration. The picking

5.7 Goal-Oriented Behavior 409

up action is almost instantaneous, but it will take several more steps (including the long cooking
time) before the food is ready.

Timing is often split into two components. Actions typically take time to complete, but in
some games it may also take significant time to get to the right location and start the action.
Because game time is often extremely compressed in some games, the length of time it takes to
begin an action becomes significant. It may take 20 minutes of game time to walk from one side
of the level to the other. This is a long journey to make to carry out a 10-minute-long action.

If it is needed, the length of journey required to begin an action cannot be directly provided
by the action itself. It must be either provided as a guess (a heuristic such as “the time is propor-
tional to the straight-line distance from the character to the object”) or calculated accurately (by
pathfinding the shortest route; see Chapter 6 for how).

There is significant overhead for pathfinding on every possible action available. For a game
level with hundreds of objects and many hundreds or thousands of possible actions, pathfinding to
calculate the timing of each one is impractical. A heuristic must be used. An alternative approach
to this problem is given by the “Smelly” GOB extension, described at the end of this section.

Utility Involving Time

To use time in our decision making we have two choices: we could incorporate the time into our
discontentment or utility calculation, or we could prefer actions that are short over those that
are long, with all other things being equal. This is relatively easy to add to the previous structure
by modifying the calculateDiscontentment function to return a lower value for shorter actions.
We’ll not go into details here.

A more interesting approach is to take into account the consequences of the extra time. In
some games, goal values change over time: a character might get increasingly hungry unless it gets
food, a character might tend to run out of ammo unless it finds an ammo pack, or a character
might gain more power for a combo attack the longer it holds its defensive position.

When goal insistences change on their own, not only does an action directly affect some goals,
but also the time it takes to complete an action may cause others to change naturally. This can be
factored into the discontentment calculation we looked at previously. If we know how goal values
will change over time (and that is a big “if” that we’ll need to come back to), then we can factor
those changes into the discontentment calculation.

Returning to our bathroom example, here is a character who is in desperate need of food:

Goal: Eat = 4 changing at + 4 per hour

Goal: Bathroom = 3 changing at + 2 per hour

Action: Eat-Snack (Eat − 2) 15 minutes

� afterwards: Eat = 2, Bathroom = 3.5: Discontentment = 16.25

Action: Eat-Main-Meal (Eat − 4) 1 hour

� afterwards: Eat = 0, Bathroom = 5: Discontentment = 25

Action: Visit-Bathroom (Bathroom − 4) 15 minutes

� afterwards: Eat = 5, Bathroom = 0: Discontentment = 25

410 Chapter 5 Decision Making

The character will clearly be looking for some food before worrying about the bathroom. It
can choose between cooking a long meal and taking a quick snack. The quick snack is now the
action of choice. The long meal will take so long that by the time it is completed, the need to go to
the bathroom will be extreme. The overall discontentment with this action is high. On the other
hand, the snack action is over quickly and allows ample time. Going directly to the bathroom isn’t
the best option, because the hunger motive is so pressing.

In a game with many shooters, where goals are either on or off (i.e., any insistence values are
only there to bias the selection; they don’t represent a constantly changing internal state for the
character), this approach will not work so well.

Pseudo-Code

Only the calculateDiscontentment function needs to be changed from our previous version of
the algorithm. It now looks like the following:

1 def calculateDiscontentment(action, goals):
2

3 # Keep a running total
4 discontentment = 0
5

6 # Loop through each goal
7 for goal in action:
8 # Calculate the new value after the action
9 newValue = goal.value + action.getGoalChange(goal)

10

11 # Calculate the change due to time alone
12 newValue += action.getDuration() * goal.getChange()
13

14 # Get the discontentment of this value
15 discontentment += goal.getDiscontentment(newValue)

It works by modifying the expected new value of the goal by both the action (as before) and
the normal rate of change of the goal, multiplied by the action’s duration.

Data Structures and Interfaces

We’ve added a method to both the Goal and the Action class. The goal class now has the following
format:

1 struct Goal:
2 value

5.7 Goal-Oriented Behavior 411

3 def getDiscontentment(newValue)
4 def getChange()

The getChange method returns the amount of change that the goal normally experiences, per
unit of time. We’ll come back to how this might be done below.

The action has the following interface:

1 struct Action:
2 def getGoalChange(goal)
3 def getDuration()

where the new getDuration method returns the time it will take to complete the action. This may
include follow-on actions, if the action is part of a sequence, and may include the time it would
take to reach a suitable location to start the action.

Performance

This algorithm has exactly the same performance characteristics as before: O(1) in memory and
O(nm) in time (with n being the number of goals and m the number of actions, as before).
If the Goal.getChange and Action.getDuration methods simply return a stored value, then the
algorithm can still be easily implemented on SIMD hardware, although it adds an extra couple of
operations over the basic form.

Calculating the Goal Change over Time

In some games the change in goals over time is fixed and set by the designers. The Sims, for
example, has a basic rate at which each motive changes. Even if the rate isn’t constant, but varies
with circumstance, the game still knows the rate, because it is constantly updating each motive
based on it. In both situations we can simply use the correct value directly in the getChange
method.

In some situations we may not have any access to the value, however. In a shooter, where the
“hurt” motive is controlled by the number of hits being taken, we don’t know in advance how the
value will change (it depends on what happens in the game). In this case, we need to approximate
the rate of change.

The simplest and most effective way to do this is to regularly take a record of the change in
each goal. Each time the GOB routine is run, we can quickly check each goal and find out how
much it has changed (this is an O(n) process, so it won’t dramatically affect the execution time of
the algorithm). The change can be stored in a recency-weighted average such as:

1 rateSinceLastTime = changeSinceLastTime / timeSinceLast
2 basicRate = 0.95 * basicRate + 0.05 * rateSinceLastTime

412 Chapter 5 Decision Making

where the 0.95 and 0.05 can be any values that sum to 1. The timeSinceLast value is the number
of units of time that has passed since the GOB routine was last run.

This gives a natural pattern to a character’s behavior. It lends a feel of context-sensitive decision
making for virtually no implementation effort, and the recency-weighted average provides a very
simple degree of learning. If the character is taking a beating, it will automatically act more
defensively (because it will be expecting any action to cost it more health), whereas if it is doing
well it will start to get bolder.

The Need for Planning

No matter what selection mechanism we use (within reason, of course), we have assumed that
actions are only available for selection when the character can execute them. We would therefore
expect characters to behave fairly sensibly and not to select actions that are currently impossible.
We have looked at a method that considers the effects that one action has on many goals and have
chosen an action to give the best overall result. The final result is often suitable for use in a game
without any more sophistication.

Unfortunately, there is another type of interaction that our approach so far doesn’t solve.
Because actions are situation dependent, it is normal for one action to enable or disable several
others. Problems like this have been deliberately designed out of most games using GOB (including
The Sims, a great example of the limitations of the AI technique guiding level design), but it is
easy to think of a simple scenario where they are significant.

Let’s imagine a fantasy role-playing game, where a magic-using character has five fresh energy
crystals in their wand. Powerful spells take multiple crystals of energy. The character is in desperate
need of healing and would also like to fend off the large ogre descending on her. The motives and
possible actions are shown below.

Goal: Heal = 4

Goal: Kill-Ogre = 3

Action: Fireball (Kill-Ogre − 2) 3 energy-slots

Action: Lesser-Healing (Heal − 2) 2 energy-slots

Action: Greater-Healing (Heal − 4) 3 energy-slots

The best combination is to cast the “lesser healing” spell, followed by the “fireball” spell, using
the five magic slots exactly. Following the algorithm so far, however, the mage will choose the spell
that gives the best result. Clearly, casting “lesser healing” leaves her in a worse health position than
“greater healing,” so she chooses the latter. Now, unfortunately, she hasn’t enough juice left in the
wand and ends up as ogre fodder. In this example, we could include the magic in the wand as
part of the motives (we are trying to minimize the number of slots used), but in a game where
there may be many hundreds of permanent effects (doors opening, traps sprung, routes guarded,
enemies alerted), we might need many thousands of additional motives.

To allow the character to properly anticipate the effects and take advantage of sequences of
actions, a level of planning must be introduced. Goal-oriented action planning extends the basic

5.7 Goal-Oriented Behavior 413

decision making process. It allows characters to plan detailed sequences of actions that provide
the overall optimum fulfillment of their goals.

5.7.5 Overall Utility GOAP

The utility-based GOB scheme considers the effects of a single action. The action gives an
indication of how it will change each of the goal values, and the decision maker uses that infor-
mation to predict what the complete set of values, and therefore the total discontentment, will be
afterward.

We can extend this to more than one action in a series. Suppose we want to determine
the best sequence of four actions. We can consider all combinations of four actions and pre-
dict the discontentment value after all are completed. The lowest discontentment value indi-
cates the sequence of actions that should be preferred, and we can immediately execute the first
of them.

This is basically the structure for GOAP: we consider multiple actions in sequence and try to
find the sequence that best meets the character’s goals in the long term. In this case, we are using
the discontentment value to indicate whether the goals are being met. This is a flexible approach
and leads to a simple but fairly inefficient algorithm. In the next section we’ll also look at a GOAP
algorithm that tries to plan actions to meet a single goal.

There are two complications that make GOAP difficult. First, there is the sheer number of
available combinations of actions. The original GOB algorithm was O(nm) in time, but for k
steps, a naive GOAP implementation would be O(nmk) in time. For reasonable numbers of
actions (remember The Sims may have hundreds of possibilities), and a reasonable number of
steps to lookahead, this will be unacceptably long. We need to use either small numbers of goals
and actions or some method to cut down some of this complexity.

Second, by combining available actions into sequences, we have not solved the problem of
actions being enabled or disabled. Not only do we need to know what the goals will be like after
an action is complete, but we also need to know what actions will then be available. We can’t look
for a sequence of four actions from the current set, because by the time we come to carry out the
fourth action it might not be available to us.

To support GOAP, we need to be able to work out the future state of the world and use that to
generate the action possibilities that will be present. When we predict the outcome of an action,
it needs to predict all the effects, not just the change in a character’s goals.

To accomplish this, we use a model of the world: a representation of the state of the world that
can be easily changed and manipulated without changing the actual game state. For our purposes
this can be an accurate model of the game world. It is also possible to model the beliefs and
knowledge of a character by deliberately limiting what is allowed in its model. A character that
doesn’t know about a troll under the bridge shouldn’t have it in its model. Without modeling the
belief, the character’s GOAP algorithm would find the existence of the troll and take account of it
in its planning. That may look odd, but normally isn’t noticeable.

To store a complete copy of the game state for each character is likely to be overkill. Unless
your game state is very simple, there will typically be many hundreds to tens of thousands
of items of data to keep track of. Instead, world models can be implemented as a list of

414 Chapter 5 Decision Making

differences: the model only stores information when it is different from the actual game data.
This way if an algorithm needs to find out some piece of data in the model, it first looks in the
difference list. If the data aren’t contained there, then it knows that it is unchanged from the game
state and retrieves it from there.

The Algorithm

We’ve described a relatively simple problem for GOAP. There are a number of different academic
approaches to GOAP, and they allow much more complicated problem domains. Features such
as constraints (things about the world that must not be changed during a sequence of actions),
partial ordering (sequences of actions, or action groups, that can be performed in any order), and
uncertainty (not knowing what the exact outcome of an action will be) all add complexity that
we don’t need in most games. The algorithm we’re going to give is about as simple as GOAP can
be, but in our experience it is fine for normal game applications.

We start with a world model (it can match the current state of the world or represent the
character’s beliefs). From this model we should be able to get a list of available actions for the
character, and we should be able to simply take a copy of the model. The planning is controlled
by a maximum depth parameter that indicates how many moves to lookahead.

The algorithm creates an array of world models, with one more element than the value of the
depth parameter. These will be used to store the intermediate states of the world as the algorithm
progresses. The first world model is set to the current world model. It keeps a record of the current
depth of its planning, initially zero. It also keeps a track of the best sequence of actions so far and
the discomfort value it leads to.

The algorithm works iteratively, processing a single world model in an iteration. If the current
depth is equal to the maximum depth, the algorithm calculates the discomfort value and checks
it against the best so far. If the new sequence is the best, it is stored.

If the current depth is less than the maximum depth, then the algorithm finds the next
unconsidered action available on the current world model. It sets the next world model in the
array to be the result of applying the action to the current world model and increases its current
depth. If there are no more actions available, then the current world model has been completed,
and the algorithm decreases the current depth by one. When the current depth eventually returns
to zero, the search is over.

This is a typical depth-first search technique, implemented without recursion. The algorithm
will examine all possible sequences of actions down to our greatest depth. As we mentioned above,
this is wasteful and may take too long to complete for even modest problems. Unfortunately, it is
the only way to guarantee that we get the best of all possible action sequences. If we are prepared to
sacrifice that guarantee for reasonably good results in most situations, we can reduce the execution
time dramatically.

To speed up the algorithm we can use a heuristic: we demand that we never consider actions
that lead to higher discomfort values. This is a reasonable assumption in most cases, although
there are many cases where it breaks down. Human beings often settle for momentary discomfort
because it will bring them greater happiness in the long run. Nobody enjoys job interviews, for
example, but it is worth it for the job afterward (or so you’d hope).

5.7 Goal-Oriented Behavior 415

On the other hand, this approach does help avoid some nasty situations occurring in the
middle of the plan. Recall the bathroom-or-soda dilemma earlier. If we don’t look at the interme-
diate discomfort values, we might have a plan that takes the soda, has an embarrassing moment,
changes clothes, and ends up with a reasonable discomfort level. Human beings wouldn’t do this;
they’d go for a plan that avoided the accident.

To implement this heuristic we need to calculate the discomfort value at every iteration and
store it. If the discomfort value is higher than that at the previous depth, then the current model
can be ignored, and we can immediately decrease the current depth and try another action.

In the prototypes we built when writing this book, this leads to around a 100-fold increase in
speed in a Sims-like environment with a maximum depth of 4 and a choice of around 50 actions
per stage. Even a maximum depth of 2 makes a big difference in the way characters choose actions
(and increasing depth brings decreasing returns in believability each time).

Pseudo-Code

We can implement depth-first GOAP in the following way:

1 def planAction(worldModel, maxDepth):
2 # Create storage for world models at each depth, and
3 # actions that correspond to them
4 models = new WorldModel[maxDepth+1]
5 actions = new Action[maxDepth]
6

7 # Set up the initial data
8 models[0] = worldModel
9 currentDepth = 0

10

11 # Keep track of the best action
12 bestAction = None
13 bestValue = infinity
14

15 # Iterate until we have completed all actions at depth
16 # zero.
17 while currentDepth >= 0:
18

19 # Calculate the discontentment value, we’ll need it
20 # in all cases
21 currentValue =
22 models[currentDepth].calculateDiscontentment()
23

24 # Check if we’re at maximum depth
25 if currentDepth >= maxDepth:
26

416 Chapter 5 Decision Making

27 # If the current value is the best, store it
28 if currentValue < bestValue:
29 bestValue = currentValue
30 bestAction = actions[0]
31

32 # We’re done at this depth, so drop back
33 currentDepth -= 1
34

35 # Jump to the next iteration
36 continue
37

38 # Otherwise, we need to try the next action
39 nextAction = models[currentDepth].nextAction()
40 if nextAction:
41

42 # We have an action to apply, copy the current model
43 models[currentDepth+1] = models[currentDepth]
44

45 # and apply the action to the copy
46 actions[currentDepth] = nextAction
47 models[currentDepth+1].applyAction(nextAction)
48

49 # and process it on the next iteration
50 currentDepth += 1
51

52 # Otherwise we have no action to try, so we’re
53 # done at this level
54 else:
55

56 # Drop back to the next highest level
57 currentDepth -= 1
58

59 # We’ve finished iterating, so return the result
60 return bestAction

The assignment between WorldModel instances in the models array:

1 models[currentDepth+1] = models[currentDepth]

assumes that this kind of assignment is performed by copy. If you are using references, then the
models will point to the same data, the applyAction method will apply the action to both, and the
algorithm will not work.

5.7 Goal-Oriented Behavior 417

Data Structures and Interfaces

The algorithm uses two data structures: Action and WorldModel. Actions can be implemented as
before. The WorldModel structure has the following format:

1 class WorldModel:
2 def calculateDiscontentment()
3 def nextAction()
4 def applyAction(action)

The calculateDiscontentmentmethod should return the total discontentment associated with
the state of the world, as given in the model. This can be implemented using the same goal value
totaling method we used before.

The applyAction method takes an action and applies it to the world model. It predicts what
effect the action would have on the world model and updates its contents appropriately.

The nextAction method iterates through each of the valid actions that can be applied, in turn.
When an action is applied to the model (i.e., the model is changed), the iterator resets and begins
to return the actions available from the new state of the world. If there are no more actions to
return, it should return a null value.

Implementation Notes

This implementation can be converted into a class, and the algorithm can be split into a setup
routine and a method to perform a single iteration. The contents of the while loop in the function
can then be called any number of times by a scheduling system (see Chapter 9 on execution
management for a suitable algorithm). Particularly for large problems, this is essential to allow
decent planning without compromising frame rates.

Notice in the algorithm that we’re only keeping track of and returning the next action to take.
To return the whole plan, we need to expand bestAction to hold a whole sequence, then it can be
assigned all the actions in the actions array, rather than just the first element.

Performance

Depth-first GOAP is O(k) in memory and O(nmk) in time, where k is the maximum depth, n is
the number of goals (used to calculate the discontentment value), and m is the mean number of
actions available.

The addition of the heuristic can dramatically reduce the actual execution time (it has no
effect on the memory use), but the order of scaling is still the same.

If most actions do not change the value of most goals, we can get to O(nm) in time by only
recalculating the discontentment contribution of goals that actually change. In practice this isn’t

418 Chapter 5 Decision Making

a major improvement, since the additional code needed to check for changes will slow down
the implementation anyway. In our experiments it provided a small speed up on some complex
problems and worse performance on simple ones.

Weaknesses

Although the technique is simple to implement, algorithmically this still feels like very brute force.
Throughout the book we’ve stressed that as game developers we’re allowed to do what works. But,
when we came to build a GOAP system ourselves, we felt that the depth-first search was a little
naive (not to mention poor for our reputations as AI experts), so we succumbed to a more
complicated approach. In hindsight, the algorithm was overkill for the application, and we should
have stuck to the simple version. In fact, for this form of GOAP, there is no better solution than
the depth-first search. Heuristics, as we’ve seen, can bring some speed ups by pruning unhelpful
options, but overall there is no better approach.

All this presumes that we want to use the overall discontentment value to guide our plan-
ning. At the start of the section we looked at an algorithm that chose a single goal to fulfill
(based on its insistence) and then chose appropriate actions to fulfill it. If we abandon discon-
tentment and return to this problem, then the A* algorithm we met in pathfinding becomes
dominant.

5.7.6 GOAP with IDA*

Our problem domain consists of a set of goals and actions. Goals have varying insistence levels
that allow us to select a single goal to pursue. Actions tell us which goals they fulfill.

In the previous section we did not have a single goal; we were trying to find the best of all
possible action sequences. Now we have a single goal, and we are interested in the best action
sequence that leads to our goal. We need to constrain our problem to look for actions that
completely fulfill a goal. In contrast to previous approaches that try to reduce as much insistence
as possible (with complete fulfillment being the special case of removing it all), we now need to
have a single distinct goal to aim at, otherwise A* can’t work its magic.

We also need to define “best” in this case. Ideally, we’d like a sequence that is as short as
possible. This could be short in terms of the number of actions or in terms of the total duration
of actions. If some resource other than time is used in each action (such as magic power, money,
or ammo), then we could factor this in also. In the same way as for pathfinding, the length of
a plan may be a combination of many factors, as long as it can be represented as a single value.
We will call the final measure the cost of the plan. We would ideally like to find the plan with the
lowest cost.

With a single goal to achieve and a cost measurement to try to minimize, we can use A* to
drive our planner. A* is used in its basic form in many GOAP applications, and modifications
of it are found in most of the rest. We’ve already covered A* in minute detail in Chapter 4, so
we’ll avoid going into too much detail on how it works here. You can go to Chapter 4 for a more
intricate, step-by-step analysis of why this algorithm works.

5.7 Goal-Oriented Behavior 419

IDA*

The number of possible actions is likely to be large; therefore, the number of sequences is huge.
Because goals may often be unachievable, we need to add a limit to the number of actions allowed
in a sequence. This is equivalent to the maximum depth in the depth-first search approach. When
using A* for pathfinding, we assume that there will be at least one valid route to the goal, so we
allow A* to search as deeply as it likes to find a solution. Eventually, the pathfinder will run out of
locations to consider and will terminate.

In GOAP the same thing probably won’t happen. There are always actions to be taken, and
the computer can’t tell if a goal is unreachable other than by trying every possible combination
of actions. If the goal is unreachable, the algorithm will never terminate but will happily use
ever-increasing amounts of memory. We add a maximum depth to curb this. Adding this depth
limit makes our algorithm an ideal candidate for using the iterative deepening version of A*.

Many of the A* variations we discussed in Chapter 4 work for GOAP. You can use the full
A* implementation, node array A*, or even simplified memory-bounded A* (SMA*). In our
experience, however, iterative deepening A* (IDA*) is often the best choice. It handles huge
numbers of actions without swamping memory and allows us to easily limit the depth of the
search. In the context of this chapter, it also has the advantage of being similar to the previous
depth-first algorithm.

The Heuristic

All A* algorithms require a heuristic function. The heuristic estimates how far away a goal is. It
allows the algorithm to preferentially consider actions close to the goal.

We will need a heuristic function that estimates how far a given world model is from having
the goal fulfilled. This can be a difficult thing to estimate, especially when long sequences of
coordinated actions are required. It may appear that no progress is being made, even though it
is. If a heuristic is completely impossible to create, then we can use a null heuristic (i.e., one that
always returns an estimate of zero). As in pathfinding, this makes A* behave in the same way as
Dijkstra’s algorithm: checking all possible sequences.

The Algorithm

IDA* starts by calling the heuristic function on the starting world model. The value is stored as
the current search cut-off.

IDA* then runs a series of depth-first searches. Each depth-first search continues until either
it finds a sequence that fulfills its goal or it exhausts all possible sequences. The search is limited
by both the maximum search depth and the cut-off value. If the total cost of a sequence of actions
is greater than the cut-off value, then the action is ignored.

If a depth-first search reaches a goal, then the algorithm returns the resulting plan. If the
search fails to get there, then the cut-off value is increased slightly and another depth-first search
is begun.

420 Chapter 5 Decision Making

The cut-off value is increased to be the smallest total plan cost greater than the cut-off that
was found in the previous search.

With no OPEN and CLOSED lists in IDA*, we aren’t keeping track of whether we find a
duplicate world state at different points in the search. GOAP applications tend to have a huge
number of such duplications; sequences of actions in different orders, for example, often have the
same result.

We want to avoid searching the same set of actions over and over in each depth-first search.
We can use a transposition table to help do this. Transposition tables are commonly used in AI
for board games, and we’ll return to them in some length in Chapter 8 on board game AI.

For IDA*, the transposition table is a simple hash. Each world model must be capable of
generating a good hash value for its contents. At each stage of the depth-first search, the algorithm
hashes the world model and checks if it is already in the transposition table. If it is, then it is left
there and the search doesn’t process it. If not, then it is added, along with the number of actions
in the sequence used to get there.

This is a little different from a normal hash table, with multiple entries per hash key. A regular
hash table can take unlimited items of data, but gradually gets slower as you load it up. In our
case, we can store just one item per hash key. If another world model comes along with the same
hash key, then we can either process it fully without storing it or boot out the world model that’s
in its spot. This way we keep the speed of the algorithm high, without bloating the memory use.
To decide whether to boot the existing entry, we use a simple rule of thumb: we replace an entry
if the current entry has a smaller number of moves associated with it.

Figure 5.45 shows why this works. World models A and B are different, but both have exactly
the same hash value. Unlabeled world models have their own unique hash values. The world model
A appears twice. If we can avoid considering the second version, we can save a lot of duplication.
The world model B is found first, however, and also appears twice. Its second appearance occurs
later on, with fewer subsequent moves to process. If it was a choice between not processing the
second A or the second B, we’d like to avoid processing A, because that would do more to reduce
our overall effort.

A A

BB

Figure 5.45 Why to replace transposition entries lower down

5.7 Goal-Oriented Behavior 421

By using this heuristic, where clashing hash values are resolved in favor of the higher level
world state, we get exactly the right behavior in our example.

Pseudo-Code

The main algorithm for IDA* looks like the following:

1 def planAction(worldModel, goal, heuristic, maxDepth):
2

3 # Initial cutoff is the heuristic from the start model
4 cutoff = heuristic.estimate(worldModel)
5

6 # Create a transposition table
7 transpositionTable = new TranspositionTable()
8

9 # Iterate the depth first search until we have a valid
10 # plan, or until we know there is none possible
11 while cutoff >= 0:
12

13 # Get the new cutoff, or best action from the search
14 cutoff, action = doDepthFirst(worldModel, goal,
15 transpositionTable, heuristic, maxDepth, cutoff)
16

17 # If we have an action, return it
18 if bestAction: return action

Most of the work is done in the doDepthFirst function, which is very similar to the depth-first
GOAP algorithm we looked at previously:

1 def doDepthFirst(worldModel, goal, heuristic,
2 transpositionTable, maxDepth, cutoff):
3

4 # Create storage for world models at each depth, and
5 # actions that correspond to them, with their cost
6 models = new WorldModel[maxDepth+1]
7 actions = new Action[maxDepth]
8 costs = new float[maxDepth]
9

10 # Set up the initial data
11 models[0] = worldModel
12 currentDepth = 0
13

422 Chapter 5 Decision Making

14 # Keep track of the smallest pruned cutoff
15 smallestCutoff = infinity
16

17 # Iterate until we have completed all actions at depth
18 # zero.
19 while currentDepth >= 0:
20

21 # Check if we have a goal
22 if goal.isFulfilled(models[currentDepth]):
23

24 # We can return from the depth first search
25 # immediately with the result
26 return cutoff, actions[0]
27

28 # Check if we’re at maximum depth
29 if currentDepth >= maxDepth:
30

31 # We’re done at this depth, so drop back
32 currentDepth -= 1
33

34 # Jump to the next iteration
35 continue
36

37 # Calculate the total cost of the plan, we’ll need it
38 # in all other cases
39 cost = heuristic.estimate(models[currentDepth]) +
40 costs[currentDepth]
41

42 # Check if we need to prune based on the cost
43 if cost > cutoff:
44

45 # Check if this is the lowest prune
46 if cutoff < smallestCutoff: smallestCutoff = cutoff
47

48 # We’re done at this depth, so drop back
49 currentDepth -= 1
50

51 # Jump to the next iteration
52 continue
53

54 # Otherwise, we need to try the next action
55 nextAction = models[currentDepth].nextAction()
56 if nextAction:
57

5.7 Goal-Oriented Behavior 423

58 # We have an action to apply, copy the current model
59 models[currentDepth+1] = models[currentDepth]
60

61 # and apply the action to the copy
62 actions[currentDepth] = nextAction
63 models[currentDepth+1].applyAction(nextAction)
64 costs[currentDepth+1] = costs[currentDepth] +
65 nextAction.getCost()
66

67 # Check if we’ve already seen this state
68 if not transitionTable.has(models[currentDepth+1]):
69

70 # Process the new state on the next iteration
71 currentDepth += 1
72

73 # Otherwise, we don’t bother processing it, since
74 # we have seen it before.
75

76 # Set the new model in the transition table
77 transitionTable.add(models[currentDepth+1],
78 currentDepth)
79

80 # Otherwise we have no action to try, so we’re
81 # done at this level
82 else:
83

84 # Drop back to the next highest level
85 currentDepth -= 1
86

87 # We’ve finished iterating, and didn’t find an action,
88 # return the smallest cutoff
89 return smallestCutoff, None

Data Structures and Interfaces

The world model is exactly the same as before. The Action class now requires a getCost, which
can be the same as the getDuration method used previously, if costs are controlled solely
by time.

We have added an isFulfilled method to the Goal class. When given a world model, it returns
true if the goal is fulfilled in the world model.

The heuristic object has one method, estimate, which returns an estimate of the cost of
reaching the goal from the given world model.

424 Chapter 5 Decision Making

We have added a TranspositionTable data structure with the following interface:

1 class TranspositionTable:
2 def has(worldModel)
3 def add(worldModel, depth)

Assuming we have a hash function that can generate a hash integer from a world model, we
can implement the transition table in the following way:

1 class TranspositionTable:
2

3 # Holds a single table entry
4 struct Entry:
5

6 # Holds the world model for the entry, all entries
7 # are initially empty
8 worldModel = None
9

10 # Holds the depth that the world model was found at.
11 # This is initially infinity, because the replacement
12 # strategy we use in the add method can then treat
13 # entries the same way whether they are empty or not.
14 depth = infinity
15

16 # A fixed size array of entries
17 entries
18

19 # The number of entries in the array
20 size
21

22 def has(worldModel):
23 # Get the hash value
24 hashValue = hash(worldModel)
25

26 # Find the entry
27 entry = entries[hashValue % size]
28

29 # Check if is the right one
30 return entry.worldModel == worldModel
31

32 def add(worldModel, depth)
33 # Get the hash value
34 hashValue = hash(worldModel)
35

5.7 Goal-Oriented Behavior 425

36 # Find the entry
37 entry = entries[hashValue % size]
38

39 # Check if it is the right world model
40 if entry.worldModel == worldModel:
41

42 # If we have a lower depth, use the new one
43 if depth < entry.depth: entry.depth = depth
44

45 # Otherwise we have a clash (or an empty slot)
46 else:
47

48 # Replace the slot if our new depth is lower
49 if depth < entry.depth:
50 entry.worldModel = worldModel
51 entry.depth = depth

The transition table typically doesn’t need to be very large. In a problem with 10 actions at a
time and a depth of 10, for example, we might only use a 1000-element transition table. As always,
experimentation and profiling are the key to getting your perfect trade-off between speed and
memory use.

Implementation Notes

The doDepthFirst function returns two items of data: the smallest cost that was cut off and the

Library

action to try. In a language such as C++, where multiple returns are inconvenient, the cut-off
value is normally passed by reference, so it can be altered in place. This is the approach taken by
the source code on the website.

Performance

IDA* is O(t) in memory, where t is the number of entries in the transition table. It is O(nd) in
time, where n is the number of possible actions at each world model and d is the maximum depth.
This appears to have the same time as an exhaustive search of all possible alternatives. In fact, the
extensive pruning of branches in the search means we will gain a great deal of speed from using
IDA*. But, in the worst case (when there is no valid plan, for example, or when the only correct
plan is the most expensive of all), we will need to do almost as much work as an exhaustive search.

5.7.7 Smelly GOB

An interesting approach for making believable GOB is related to the sensory perception simula-
tion discussed in Section 10.5.

426 Chapter 5 Decision Making

In this model, each motive that a character can have (such as “eat” or “find information”)
is represented as a kind of smell; it gradually diffuses through the game level. Objects that have
actions associated with them give out a cocktail of such “smells,” one for each of the motives that
its action affects. An oven, for example, may give out the “I can provide food” smell, while a bed
might give out the “I can give you rest” smell.

Goal-oriented behavior can be implemented by having a character follow the smell for the
motive it is most concerned with fulfilling. A character that is extremely hungry, for example,
would follow the “I can provide food” smell and find its way to the cooker.

This approach reduces the need for complex pathfinding in the game. If the character has
three possible sources of food, then conventional GOB would use a pathfinder to see how difficult
each source of food was to get to. The character would then select the source that was the most
convenient.

The smell approach diffuses out from the location of the food. It takes time to move around
corners, it cannot move through walls, and it naturally finds a route through complicated levels.
It may also include the intensity of the signal: the smell is greatest at the food source and gets
fainter the farther away you get.

To avoid pathfinding, the character can move in the direction of the greatest concentration of
smell at each frame. This will naturally be the opposite direction to the path the smell has taken
to reach the character: it follows its nose right to its goal. Similarly, because the intensity of the
smell dies out, the character will naturally move toward the source that is the easiest to get to.

This can be extended by allowing different sources to emit different intensities. Junk food,
for example, can emit a small amount of signal, and a hearty meal can emit more. This way the
character will favor less nutritious meals that are really convenient, while still making an effort to
cook a balanced meal. Without this extension the character would always seek out junk food in
the kitchen.

This “smell” approach was used in The Sims to guide characters to suitable actions. It is rela-
tively simple to implement (you can use the sense management algorithms provided in Chapter 10,
World Interfacing) and provides a good deal of realistic behavior. It has some limitations, however,
and requires modification before it can be relied upon in a game.

Compound Actions

Many actions require multiple steps. Cooking a meal, for example, requires finding some raw
food, cooking it, and then eating it. Food can also be found that does not require cooking. There
is no point in having a cooker that emits the “I can provide food” signal if the character walks
over to it and cannot cook anything because it isn’t carrying any raw food.

Significant titles in this genre have typically combined elements of two different solutions to
this problem: allowing a richer vocabulary of signals and making the emission of these signals
depend on the state of characters in the game.

Action-Based Signals

The number of “smells” in the game can be increased to allow different action nuances to be
captured. A different smell could be had for an object that provides raw food rather than cooked

5.8 Rule-Based Systems 427

food. This reduces the elegance of the solution: characters can no longer easily follow the trail
for the particular motive they are seeking. Instead of the diffusing signals representing motives,
they are now, effectively, representing individual actions. There is an “I can cook raw food” signal,
rather than an “I can feed you” signal.

This means that characters need to perform the normal GOB decision making step of working
out which action to carry out in order to best fulfill their current goals. Their choice of action
should depend not only on the actions they know are available but also on the pattern of action
signals they can detect at their current location.

On the other hand, the technique supports a huge range of possible actions and can be easily
extended as new sets of objects are created.

Character-Specific Signals

Another solution is to make sure that objects only emit signals if they are capable of being used
by the character at that specific time. A character carrying a piece of raw food, for example, may
be attracted by an oven (the oven is now giving out “I can give you food” signals). If the same
character was not carrying any raw food, then it would be the fridge sending out “I can give you
food” signals, and the oven would not emit anything.

This approach is very flexible and can dramatically reduce the amount of planning needed to
achieve complex sequences of actions.

It has a significant drawback in that the signals diffusing around the game are now dependent
on one particular character. Two characters are unlikely to be carrying exactly the same object or
capable of exactly the same set of actions. This means that there needs to be a separate sensory
simulation for each character. When a game has a handful of slow-moving characters, this is not a
problem (characters make decisions only every few hundred frames, and sensory simulation can
easily be split over many frames). For larger or faster simulations, this would not be practical.

5.8 Rule-Based Systems

Rule-based systems were at the vanguard of AI research through the 1970s and early 1980s. Many
of the most famous AI programs were built with them, and in their “expert system” incarnation,
they are the best known AI technique. They have been used off and on in games for at least 15
years, despite having a reputation for being inefficient and difficult to implement. They remain a
fairly uncommon approach, partly because similar behaviors can almost always be achieved in a
simpler way using decision trees or state machines.

They do have their strengths, however, especially when characters need to reason about the
world in ways that can’t easily be anticipated by a designer and encoded into a decision tree.

Rule-based systems have a common structure consisting of two parts: a database containing
knowledge available to the AI and a set of if–then rules.

Rules can examine the database to determine if their “if” condition is met. Rules that have
their conditions met are said to trigger. A triggered rule may be selected to fire, whereupon its
“then” component is executed (Figure 5.46).

428 Chapter 5 Decision Making

Ammo � 4

Figure 5.46 Schematic of a rule-based system

This is the same nomenclature that we used in state machine transitions. In this case, however,
the rules trigger based on the contents of the database, and their effects can be more general than
causing a state transition.

Many rule-based systems also add a third component: an arbiter that gets to decide which
triggered rule gets to fire. We’ll look at a simple rule-based system first, along with a common
optimization, and return to arbiters later in the section.

5.8.1 The Problem

We’ll build a rule-based decision making system with many of the features typical of rule-based
systems in traditional AI. Our specification is quite complex and likely to be more flexible than
is required for many games. Any simpler, however, and it is likely that state machines or decision
trees would be a simpler way to achieve the same effect.

In this section we’ll survey some of the properties shared by many rule-based system imple-
mentations. Each property will be supported in the following algorithm. We’re going to introduce
the contents of the database and rules using a very loose syntax. It is intended to illustrate
the principles only. The following sections suggest a structure for each component that can be
implemented.

Database Matching

The “if” condition of the rule is matched against the database; a successful match triggers the
rule. The condition, normally called a pattern, typically consists of facts identical to those in the
database, combined with Boolean operators such as AND, OR, and NOT.

Suppose we have a database containing information about the health of the soldiers in a fire
team, for example. At one point in time the database contains the following information:

Captain’s health is 51

Johnson’s health is 38

Sale’s health is 42

Whisker’s health is 15

5.8 Rule-Based Systems 429

Whisker, the communications specialist, needs to be relieved of her radio when her health
drops to zero. We might use a rule that triggers when it sees a pattern such as:

Whisker: health = 0

Of course, the rule should only trigger if Whisker still has the radio. So, first we need to
add the appropriate information to the database. The database now contains the following
information:

Captain’s health is 51

Johnson’s health is 38

Sale’s health is 42

Whisker’s health is 15

Radio is held by Whisker

Now our rule can use a Boolean operator. The pattern becomes:

Whisker’s health is 0 AND Radio is held by Whisker

In practice we’d want more flexibility with the patterns that we can match. In our example,
we want to relieve Whisker if she is very hurt, not just if she’s dead. So the pattern should match
a range:

Whisker’s health < 15 AND Radio is held by Whisker

So far we’re on familiar ground. It is similar to the kind of tests we made for triggering a state
transition or for making a decision in a decision tree.

To improve the flexibility of the system, it would be useful to add wild cards to the matching.
We would like to be able to say, for example,

Anyone’s health < 15

and have this match if there was anyone in the database with health less than 15. Similarly, we
could say,

Anyone’s health < 15 AND Anyone’s health > 45

to make sure there was also someone who is healthy (maybe we want the healthy person to carry
the weak one, for example).

Many rule-based systems use a more advanced type of wild-card pattern matching, called
unification, which can include wild cards. We’ll return to unification later in this section, after
introducing the main algorithm.

430 Chapter 5 Decision Making

Condition–Action Rules

A condition–action rule causes a character to carry out some action as a result of finding a match
in the database. The action will normally be run outside of the rule-based system, although rules
can be written that directly modify the state of the game.

Continuing our fire team example, we could have a rule that states:

IF Whisker’s health is 0 AND Radio is held by Whisker

THEN Sale: pick up the radio

If the pattern matches, and the rule fires, then the rule-based system tells the game that Sale
should pick up the radio.

This doesn’t directly change the information in the database. We can’t assume that Sale can
actually pick up the radio. Whisker may have fallen from a cliff with no safe way to get down. Sale’s
action can fail in many different ways, and the database should only contain knowledge about the
state of the game. (In practice, it is sometimes beneficial to let the database contain the beliefs of
the AI, in which case resulting actions are more likely to fail.)

Picking up the radio is a game action: the rule-based system acting as a decision maker chooses
to carry out the action. The game gets to decide whether the action succeeds, and updates the
database if it does.

Database Rewriting Rules

There are other situations in which the results of a rule can be incorporated directly into the
database.

In the AI for a fighter pilot, we might have a database with the following contents:

1500 kg fuel remaining

100 km from base

enemies sighted: Enemy 42, Enemy 21

currently patroling

The first three elements, fuel, distance to base, and sighted enemies, are all controlled by the
game code. They refer to properties of the state of the game and can only be changed by the AI
scheduling actions. The last two items, however, are specific to the AI and don’t have any meaning
to the rest of the game.

Suppose we want a rule that changes the goal of the pilot from “patrol zone” to “attack” if
an enemy is sighted. In this case we don’t need to ask the game code to schedule a “change goal”
action; we could use a rule that says something like:

IF number of sighted enemies > 0 and currently patroling

THEN

remove(currently patroling)

add(attack first sighted enemy)

5.8 Rule-Based Systems 431

The remove function removes a piece of data from the database, and the add function adds a
new one. If we didn’t remove the first piece of data, we would be left with a database containing
both patrol zone and attack goals. In some cases this might be the right thing to do (so the pilot
can go back to patroling when the intruder is destroyed, for example).

We would like to be able to combine both kinds of effects: those that request actions to be
carried out by the game and those that manipulate the database. We would also like to execute
arbitrary code as the result of a rule firing, for extra flexibility.

Forward and Backward Chaining

The rule-based system we’ve described so far, and the only one we’ve seen used in production
code for games, is known as “forward chaining.” It starts with a known database of information
and repeatedly applies rules that change the database contents (either directly or by changing the
state of the game through character action).

Discussions of rule-based systems in other areas of AI will mention backward chaining.
Backward chaining starts with a given piece of knowledge, the kind that might be found in the
database. This piece of data is the goal. The system then tries to work out a series of rule firings
that would lead from the current database contents to the goal. It typically does this by working
backward, looking at the THEN components of rules to see if any could generate the goal. If it
finds rules that can generate the goal, it then tries to work out how the conditions of those rules
might be met, which might involve looking at the THEN component of other rules, and so on,
until all the conditions are found in the database.

While backward chaining is a very important technique in many areas (such as theorem
proving and planning), we have not come across any production AI code using it for games. We
could visualize some contrived situations where it might be useful in a game, but for the purpose
of this book, we’ll ignore it.

Format of Data in the Database

The database contains the knowledge of a character. It must be able to contain any kind of game-
relevant data, and each item of data should be identified. If we want to store the character’s health
in the database, we need both the health value and some identifier that indicates what the value
means. The value on its own is not sufficient.

If we are interested in storing a Boolean value, then the identifier on its own is enough. If the
Boolean value is true, then the identifier is placed in the database; if it is false, then the identifier
is not included:

Fuel = 1500 kg

patrol zone

In this example, the patrol-zone goal is such an identifier. It is an identifier with no value, and
we can assume it is a Boolean with a value of true. The other example database entry had both an
identifier (e.g., “fuel”) and a value (1500). Let’s define a Datum as a single item in the database.

432 Chapter 5 Decision Making

It consists of an identifier and a value. The value might not be needed (if it is a Boolean with the
value of true), but we’ll assume it is explicit, for convenience’s sake.

A database containing only this kind of Datum object is inconvenient. In a game where a
character’s knowledge encompasses an entire fire team, we could have:

Captain’s-weapon = rifle

Johnson’s-weapon = machine-gun

Captain’s-rifle-ammo = 36

Johnson’s-machine-gun-ammo = 229

This nesting could go very deep. If we are trying to find the Captain’s ammo, we might have to
check several possible identifiers to see if any are present: Captain’s-rifle-ammo, Captain’s-RPG-
ammo, Captain’s-machine-gun-ammo, and so on.

Instead, we would like to use a hierarchical format for our data. We expand our Datum so that
it either holds a value or holds a set of Datum objects. Each of these Datum objects can likewise
contain either a value or further lists. The data are nested to any depth.

Note that a Datum object can contain multiple Datum objects, but only one value. The value
may be any type that the game understands, however, including structures containing many
different variables or even function pointers, if required. The database treats all values as opaque
types it doesn’t understand, including built-in types.

Symbolically, we will represent one Datum in the database as:

1 (identifier content)

where content is either a value or a list of Datum objects. We can represent the previous database as:

1 (Captain’s-weapon (Rifle (Ammo 36)))
2 (Johnson’s-weapon (Machine-Gun (Ammo 229)))

This database has two Datum objects. Both contain one Datum object (the weapon type).
Each weapon, in turn, contains one more Datum (ammo); in this case, the nesting stops, and the
ammo has a value only.

We could expand this hierarchy to hold all the data for one person in one identifier:

1 (
2 Captain (Weapon (Rifle (Ammo 36) (Clips 2)))
3 (Health 65)
4 (Position [21, 46, 92])
5)

Having this database structure will give us flexibility to implement more sophisticated rule-
matching algorithms, which in turn will allow us to implement more powerful AI.

5.8 Rule-Based Systems 433

Notation of Wild Cards

The notation we have used is LISP-like, and because LISP was overwhelmingly the language of
choice for AI up until the 1990s, it will be familiar if you read any papers or books on rule-based
systems. It is a simplified version for our needs. In this syntax wild cards are normally written as:

1 (?anyone (Health 0-15))

and are often called variables.

5.8.2 The Algorithm

We start with a database containing data. Some external set of functions needs to transfer data
from the current state of the game into the database. Additional data may be kept in the database
(such as the current internal state of the character using the rule-based system). These functions
are not part of this algorithm.

A set of rules is also provided. The IF-clause of the rule contains items of data to match in the
database joined by any Boolean operator (AND, OR, NOT, XOR, etc.). We will assume matching
is by absolute value for any value or by less-than, greater-than, or within-range operators for
numeric types.

We will assume that rules are condition–action rules: they always call some function. It is easy
to implement database rewriting rules in this framework by changing the values in the database
within the action. This reflects the bias that rule-based systems used in games tend to contain
more condition–action rules than database rewrites, unlike many industrial AI systems.

The rule-based system applies rules in iterations, and any number of iterations can be run
consecutively. The database can be changed between each iteration, either by the fired rule or
because other code updates its contents.

The rule-based system simply checks each of its rules to see if they trigger on the current
database. The first rule that triggers is fired, and the action associated with the rule is run.

This is the naive algorithm for matching: it simply tries every possibility to see if any works.
For all but the simplest systems, it is probably better to use a more efficient matching algorithm.
The naive algorithm is one of the stepping stones we mentioned in the introduction to the book,
probably not useful on its own but essential for understanding how the basics work before going
on to a more complete system. Later in the section we will introduce Rete, an industry standard
for faster matching.

5.8.3 Pseudo-Code

The rule-based system has an extremely simple algorithm of the following form:

1 def ruleBasedIteration(database, rules):
2

3 # Check each rule in turn

434 Chapter 5 Decision Making

4 for rule in rules:
5

6 # Create the empty set of bindings
7 bindings = []
8

9 # Check for triggering
10 if rule.ifClause.matches(database, bindings):
11

12 # Fire the rule
13 rule.action(bindings)
14

15 # And exit: we’re done for this iteration
16 return
17

18 # If we get here, we’ve had no match, we could use
19 # a fallback action, or simply do nothing
20 return

The matches function of the rule’s IF-clause checks through the database to make sure the
clause matches.

5.8.4 Data Structures and Interfaces

With an algorithm so simple, it is hardly surprising that most of the work is being done in the
data structures. In particular, the matches function is taking the main burden. Before giving the
pseudo-code for rule matching, we need to look at how the database is implemented and how
IF-clauses of rules can operate on it.

The Database

The database can simply be a list or array of data items, represented by the DataNode class.
DataGroups in the database hold additional data nodes, so overall the database becomes a tree of
information.

Each node in the tree has the following base structure:

1 struct DataNode:
2 identifier

Non-leaf nodes correspond to data groups in the data and have the following form:

1 struct DataGroup (DataNode):
2 children

5.8 Rule-Based Systems 435

Leaves in the tree contain actual values and have the following form:

1 struct Datum (DataNode):
2 value

The children of a data group can be any data node: either another data group or a Datum.
We will assume some form of polymorphism for clarity, although in reality it is often better to
implement this as a single structure combining the data members of all three structures (see
Section 5.8.5, Implementation Notes).

Rules

Rules have the following structure:

1 class Rule:
2 ifClause
3 def action(bindings)

The ifClause is used to match against the database and is described below. The action
function can perform any action required, including changing the database contents. It takes a
list of bindings which is filled with the items in the database that match any wild cards in the
IF-clause.

IF-Clauses

IF-clauses consist of a set of data items, in a format similar to those in the database, joined by
Boolean operators. They need to be able to match the database, so we use a general data structure
as the base class of elements in an IF-clause:

1 class Match:
2 def matches(database, bindings)

The bindings parameter is both input and output, so it can be passed by reference in languages
that support it. It initially should be an empty list (this is initialized in the ruleBasedIteration
driver function above). When part of the IF-clause matches a “don’t care” value (a wild card), it is
added to the bindings.

The data items in the IF-clause are similar to those in the database. We need two additional
refinements, however. First, we need to be able to specify a “don’t care” value for an identifier to
implement wild cards. This can simply be a pre-arranged identifier reserved for this purpose.

Second, we need to be able to specify a match of a range of values. Matching a single value,
using a less-than operator or using a greater-than operator, can be performed by matching a

436 Chapter 5 Decision Making

range; for a single value, the range is zero width, and for less-than or greater-than it has one of its
bounds at infinity. We can use a range as the most general match.

The Datum structure at the leaf of the tree is therefore replaced by a DatumMatch structure
with the following form:

1 struct DatumMatch(Match):
2 identifier
3 minValue
4 maxValue

Boolean operators are represented in the same way as with state machines; we use a polymor-
phic set of classes:

1 class And (Match):
2 match1
3 match2
4 def matches(database, bindings):
5 # True if we match both sub-matches
6 return match1.matches(database, bindings) and
7 match2.matches(database, bindings)
8

9 class Not (Match):
10 match
11 def matches(database, bindings):
12 # True if we don’t match our submatch. Note we pass in
13 # new bindings list, because we’re not interested in
14 # anything found: we’re making sure there are no
15 # matches.
16 return not match.matches(database, [])

and so on for other operators. Note that the same implementation caveats apply as for the
polymorphic Boolean operators we covered in Section 5.3 on state machines. The same solutions
can also be applied to optimizing the code.

Finally, we need to be able to match a data group. We need to support “don’t care” values for
the identifier, but we don’t need any additional data in the basic data group structure. We have a
data group match that looks like the following:

1 struct DataGroupMatch(Match):
2 identifier
3 children

5.8 Rule-Based Systems 437

Item Matching

This structure allows us to easily combine matches on data items together. We are now ready to
look at how matching is performed on the data items themselves.

The basic technique is to match the data item from the rule (called the test item) with any item
in the database (called the database item). Because data items are nested, we will use a recursive
procedure that acts differently for a data group and a Datum.

In either case, if the test data group or test Datum is the root of the data item (i.e., it isn’t
contained in another data group), then it can match any item in the database; we will check
through each database item in turn. If it is not the root, then it will be limited to matching only a
specific database item.

The matches function can be implemented in the base class, Match, only. It simply tries to
match each individual item in the database one at a time. It has the following algorithm:

1 struct Match:
2

3 # ... Member data as before
4

5 def matches(database, bindings):
6

7 # Go through each item in the database
8 for item in database:
9

10 # We’ve matched if we match any item
11 if matchesItem(item, bindings): return true
12

13 # We’ve failed to match all of them
14 return false

This simply tries each individual item in the database against a matchesItem method. The
matchesItem method should check a specific data node for matching. The whole match succeeds
if any item in the database matches.

Datum Matching

A test Datum will match if the database item has the same identifier and has a value within its
bounds. It has the simple form:

1 struct DatumMatch(DataNodeMatch):
2

3 # ... Member data as before
4

438 Chapter 5 Decision Making

5 def matchesItem(item, bindings):
6

7 # Is the item of the same type?
8 if not item insistence Datum: return false
9

10 # Does the identifier match?
11 if identifier.isWildcard() and
12 identifier != item.identifier: return false
13

14 # Does the value fit?
15 if minValue <= item.value <= maxValue:
16

17 # Do we need to add to the bindings list?
18 if identifier.isWildcard():
19

20 # Add the binding
21 bindings.appendBinding(identifier, item)
22

23 # Return true, since we matched
24 return true
25 else: return false

The isWildcard method should return true if the identifier is a wild card. If you used strings as
identifiers and wanted to use LISP-style wild-card names, you could check that the first character
is a question mark, for example. The implementation on the website uses a 4-byte number as

Library

an identifier and reserves the first bit to indicate if the identifier is a wild card. The isWildcard
method simply checks this bit.

The bindings list has been given an appendBinding method that adds an identifier (which is
always a wild card) and the database item it was matched to. If we are using an STL list in C++,
for example, we could have it be a list of pair templates and append a new identifier, item pair.
Alternatively, we could use a hash table indexed by identifier.

Data Group Matching

A test data group will match a database data group if its identifier matches and if all its children
match at least one child of the database data group. Not all the children of the database data group
need to be matched to something.

For example, if we are searching for a match to:

1 (?anyone (Health 0-54))

5.8 Rule-Based Systems 439

we would like it to match:

1 (Captain (Health 43) (Ammo 140))

even though ammo isn’t mentioned in the test data group.
The matchesItem function for data groups has the following form:

1 struct DataGroupMatch(DataNodeMatch):
2

3 # ... Member data as before
4

5 def matchesItem(item, bindings):
6

7 # Is the item of the same type?
8 if not item insistence DataGroup: return false
9

10 # Does the identifier match?
11 if identifier != WILDCARD and
12 identifier != item.identifier: return false
13

14 # Is every child present
15 for child in self.children:
16

17 # Use the children of the item as if it were a
18 # database and call matches recursively
19 if not child.matches(item.children):
20 return false
21

22 # We must have matched all children
23

24 # Do we need to add to the bindings list?
25 if identifier.isWildcard():
26

27 # Add the binding
28 bindings.appendBinding(identifier, item)
29

30 return true

Summary

Figure 5.47 shows all our classes and interfaces in one diagram.

440 Chapter 5 Decision Making

Figure 5.47 UML of the matching system

5.8 Rule-Based Systems 441

The figure is in standard UML class diagram form. We hope it is relatively obvious even if
you’re not a UML expert. Refer to Pilone and Pitman [2005] for more information on UML.

5.8.5 Implementation Notes

In the listing above we used a list to hold all the children of a data group. In C or C++ this isn’t the
best data structure to hold such a tree. In the code on the website we have used a first-child/next-

Library

sibling binary tree to represent data items (also called a filial-heir chain or doubly chained tree). In
this kind of binary tree every node points to two others: the first is its first child and the second is
its next sibling. This format of tree allows us to represent hierarchical structures where a node can
have any number of children. It has the advantage of not requiring a variable number of children
to be stored in each node, making it more efficient to use.

5.8.6 Rule Arbitration

Several rules may trigger on the database at the same time. Each rule is applicable, but only one
can fire. In the algorithm described above we assumed that the first triggered rule is allowed to fire
and no other rules are considered. This is a simple rule arbitration algorithm: “first applicable.” It
works fine as long as our rules are arranged in order of priority.

In general, an arbiter in a rule-based system is a chunk of code that decides which rules fire
when more than one rule triggers. There are a number of common approaches to arbitration,
each with its own characteristics.

First Applicable

This is the algorithm used so far. The rules are provided in a fixed order, and the first rule in
the list that triggers gets to fire. The ordering enforces strict priority: rules earlier in the list have
priority over later rules.

A serious problem often occurs with this arbitration strategy, however. If the rule does not
change the content of the database, and if no external changes are imposed, then the same rule
will continue to fire every time the system is run. This might be what is required (if the rule
indicates what action to take based on the content of the database, for example), but it can often
cause problems with endless repetition.

There is a simple extension used to reduce the severity of this issue. Rules that shouldn’t
endlessly repeat are suspended as soon as they fire. Their suspension is only lifted when the
contents of the database change. This involves keeping track of the suspended state of each rule
and clearing it when the database is modified.

Unfortunately, clearing the suspension whenever the database is modified can still allow the
same situation to occur. If some content in the database is constantly changing (and it usually
will, if information from the game world is being written into it each frame), but the items of
data causing the problem rule to trigger are stable, then the rule will continue to fire. Some

442 Chapter 5 Decision Making

implementations keep track of the individual items of data that the rule is triggering on and
suspend a fired rule until those particular items change.

Least Recently Used

A linked list holds all the rules in the system. The list is considered in order, just as before, and
the first triggered rule in the list gets to fire. When a rule fires, it is removed from its position in
the list and added to the end. After a while, the list contains rules in reverse order of use, and so
picking the first triggered rule is akin to picking the least recently used rule.

This approach specifically combats the looping issue. It makes sure that opportunities for
firing are distributed as much as possible over all rules.

Random Rule

If multiple rules trigger, then one rule is selected at random and allowed to fire.
Unlike the previous algorithms, this kind of arbiter needs to check every rule and get a list of

all triggered rules. With such a list it can pick one member and fire it. Previous algorithms have
only worked through the list until they found the first triggered rule. This arbitration scheme is
correspondingly less efficient.

Most Specific Conditions

If the conditions for a rule are very easy to meet, and the database regularly triggers it, then it is
likely to be a general rule useful in lots of situations, but not specialized. On the other hand, if a
rule has difficult conditions to fulfill, and the system finds that it triggers, then it is likely to be
very specific to the current situation. More specific rules should therefore be preferred over more
general rules.

In a rule-based system where conditions are expressed as Boolean combined clauses, the
number of clauses is a good indicator of the specificity of the rule.

Specificity can be judged based on the structure of the rules only. The priority order can
be calculated before the system is used, and the rules can be arranged in order. The arbiter
implementation is exactly the same, therefore, as the first applicable method. We only need to
add an offline step to automatically adjust the rule order based on the number of clauses in the
condition.

Dynamic Priority Arbitration

Any system of numerical priorities is identical to the first applicable method, if those priorities do
not change when the system is running. We can simply arrange the rules in order of decreasing
priority and run the first one that triggers. You will find some articles and books that misunder-
stand priority-based arbitration and uselessly describe a priority arbitration algorithm for static

5.8 Rule-Based Systems 443

priorities, when a simple first-applicable approach would be identical in practice. Priorities can
be useful, however, if they are dynamic.

Dynamic priorities can be returned by each rule based on how important its action might
be in the current situation. Suppose we have a rule that matches “no more health packs” and
schedules an action to find health packs, for example. When the character’s health is high, the rule
may return a very low priority. If there are any other rules that trigger, the health pack rule will be
ignored, so the character will get on with what it is doing and only go hunting for health packs if
it cannot think of an alternative. When the character is close to death, however, the rule returns a
very high priority: the character will stop what it is doing and go to find health packs in order to
stay alive.

We could implement dynamic priorities using several rules (one for “no more health packs
AND low health” and one for “no more health packs AND high health,” for example). Using
dynamic priorities, however, allows the rule to gradually get more important, rather than suddenly
becoming the top priority.

The arbiter checks all the rules and compiles a list of those that trigger. It requests the priority
from each rule in the list and selects the highest value to fire.

Just as for random rule selection, this approach involves searching all possible rules before
deciding which to trigger. It also adds a method call, which may involve the rule searching the
database for information to guide its priority calculating. This is the most flexible, but by far the
most time-consuming, arbitration algorithm of the five described here.

5.8.7 Unification

Suppose in our earlier example Whisker, the communications specialist, ended up dying. Her
colleague Sale takes over carrying the radio. Now suppose that Sale is severely hurt; somebody
else needs to take the radio. We could simply have a rule for each person that matches when they
are hurt and carrying the radio.

We could instead introduce a rule whose pattern contains wild cards:

1 (?person (health 0-15))
2 AND
3 (Radio (held-by ?person))

The ?person name matches any person. These wild cards act slightly differently than conven-
tional wild cards (the kind we introduced in the section on matching above). If they were normal
wild cards, then the rule would match the database:

1 (Johnson (health 38))
2 (Sale (health 15))
3 (Whisker (health 25))
4 (Radio (held-by Whisker))

444 Chapter 5 Decision Making

The first ?person would match Sale, while the second would match Whisker. This is not what
we want; we want the same person for both.

In unification, a set of wild cards are matched so that they all refer to the same thing. In our
case, the rule would not match the above database, but it would match the following:

1 (Johnson (health 38))
2 (Sale (health 42))
3 (Whisker (health 15))
4 (Radio (held-by Whisker))

where both wild cards match the same thing: Whisker.
If we wanted to match different people with each wild card, we could request that by giving

different names to each wild card. For example, we could use a pattern of the following form:

1 (?person-1 (health 0-15))
2 AND
3 (Radio (held-by ?person-2))

Unification is significant because it makes rule matching a great deal more powerful. To get
the same effect without unification would require four rules in our example. There are other
situations, such as the following pattern:

1 (Johnson (health ?value-1))
2 AND
3 (Sale (health ?value-2))
4 AND
5 ?value-1 < ?value-2

where an almost infinite number of regular rules would be required if unification wasn’t available
(assuming that the health values are floating point numbers, it would require a little less than 232

rules, certainly too many to be practical).
To take advantage of this extra power, we’d like our rule-based system to support pattern

matching with unification.

Performance

Unfortunately, unification has a downside: the most obvious implementation is computationally
complex to process. To match a pattern such as:

1 (Whisker (health 0))
2 AND
3 (Radio (held-by Whisker))

5.8 Rule-Based Systems 445

we can split the pattern into two parts, known as clauses. Each clause can individually be checked
against the database. If both clauses find a match, then the whole pattern matches.

Each part of the expression requires at most an O(n) search, where n is the number of items in
the database. So, a pattern with m clauses is, at worst, an O(nm) process. We say at worst because,
as we saw with decision trees, we might be able to avoid having to test the same thing multiple
times and arrive at an O(m log2 n) process.

In a pattern with connected wild cards, such as:

1 (?person (health < 15))
2 AND
3 (Radio (held-by ?person))

we can’t split the two clauses up. The results from the first clause directly affect the pattern in the
second clause. So, if matching the first clause comes back:

1 ?person = Whisker

then the second clause is a search for:

1 (Radio (held-by Whisker))

The first clause might potentially match several items in the database, each of which needs to
be tried with the second clause.

Using this approach, a two-clause search could take O(n2) time, and a pattern with m clauses
could take O(nm) time. This is a dramatic increase from O(nm) for the original pattern. Although
there are O(nm) linear algorithms for unification (at least the kind of unification we are doing
here), they are considerably more complex than the simple divide-and-conquer approach used in
patterns without wild cards.

We will not take the time to go through a stand-alone unification algorithm here. They are
not often used for this kind of rule-based system. Instead, we can take advantage of a different
approach to matching altogether, which allows us to perform unification at the same time as
speeding up the firing of all rules. This method is Rete.

5.8.8 Rete

The Rete algorithm is an AI industry standard for matching rules against a database. It is not the
fastest algorithm around; there are several papers detailing faster approaches. But, because expert
systems are commercially valuable, they don’t tend to give full implementation details.7

7. You should also be careful of proprietary algorithms because many are patented. Just because an algorithm is published
doesn’t mean it isn’t patented. You could end up having to pay a licence fee for your implementation, even if you wrote
the source code from scratch. We’re not lawyers, so we’d advise you to see an intellectual property attorney if you have any
doubts.

446 Chapter 5 Decision Making

Most commercial expert systems are based on Rete, and some of the more complex rule-based
systems we’ve seen in games use the Rete matching algorithm. It is a relatively simple algorithm
that provides the basic starting point for more complex optimizations.

The Algorithm

The algorithm works by representing the patterns for all rules in a single data structure: the Rete.
The Rete is a directed acyclic graph8 (see Chapter 4, Section 4.1 on the pathfinding graph for a
complete description of this structure). Each node in the graph represents a single pattern in one
or more rules. Each path through the graph represents the complete set of patterns for one rule.
At each node we also store a complete list of all the facts in the database that match that pattern.

Figure 5.48 shows a simple example of a Rete for the following rules:

1 Swap Radio Rule:
2 IF
3 (?person-1 (health < 15))
4 AND
5 (radio (held-by ?person-1))
6 AND
7 (?person-2 (health > 45))
8 THEN
9 remove(radio (held-by ?person-1))

10 add(radio (held-by ?person-2))
11

12 Change Backup Rule:
13 IF
14 (?person-1 (health < 15))
15 AND
16 (?person-2 (health > 45))
17 AND
18 (?person-2 (is-covering ?person-1))
19 THEN
20 remove(?person-2 (is-covering ?person-1))
21 add(?person-1 (is-covering ?person-2))

The first rule is as before: if someone carrying the radio is close to death, then give the radio
to someone who is relatively healthy. The second rule is similar: if a soldier leading a buddy pair is
close to death, then swap them around and make the soldier’s buddy take the lead (if you’re feeling
callous you could argue the opposite, we suppose: the weak guy should be sent out in front).

There are three kinds of nodes in our Rete diagram. At the top of the network are nodes
that represent individual clauses in a rule (known as pattern nodes). These are combined nodes
representing the AND operation (called join nodes). Finally, the bottom nodes represent rules that

8. Rete is simply a fancy anatomical name for a network.

5.8 Rule-Based Systems 447

Swap Radio rule Change Backup rule

(ra
dio

 (h
eld

-b
y ?

pe
rs

on
-1

))
(?

pe
rs

on
-1

 (h
ea

lth
 <

15
))

(?
pe

rs
on

-2
 (h

ea
lth

 >
45

))
(?

pe
rs

on
-2

 (i
s-

co
ve

rin
g

?p
er

so
n-

1)
)

Figure 5.48 A Rete

can be fired: many texts on Rete do not include these rule nodes in the network, although they
must exist in your implementation. Notice that the clauses:

1 (?person-1 (health < 15))

and

1 (?person-2 (health > 45))

are shared between both rules. This is one of the key speed features of the Rete algorithm; it
doesn’t duplicate matching effort.

Matching the Database

Conceptually, the database is fed into the top of the network. The pattern nodes try to find a
match in the database. They find all the facts that match and pass them down to the join nodes.
If the facts contain wild cards, the node will also pass down the variable bindings. So, if:

1 (?person (health < 15))

448 Chapter 5 Decision Making

matches:

1 (Whisker (health 12))

then the pattern node will pass on the variable binding:

1 ?person = Whisker

The pattern nodes also keep a record of the matching facts they are given to allow incremental
updating, discussed later in the section.

Notice that rather than finding any match, we now find all matches. If there are wild cards in
the pattern, we don’t just pass down one binding, but all sets of bindings.

For example, if we have a fact:

1 (?person (health < 15))

and a database containing the facts:

1 (Whisker (health 12))
2 (Captain (health 9))

then there are two possible sets of bindings:

1 ?person = Whisker

and

1 ?person = Captain

Both can’t be true at the same time, of course, but we don’t yet know which will be useful, so
we pass down both. If the pattern contains no wild cards, then we are only interested in whether
or not it matches anything. In this case we can move on as soon as we find the first match because
we won’t be passing on a list of bindings.

The join node makes sure that both of its inputs have matched and any variables agree.
Figure 5.49 shows three situations. In the first situation, there are different variables in each

input pattern node. Both pattern nodes match and pass in their matches. The join node passes
out its output.

In the second situation, the join node receives matches from both its inputs, as before, but the
variable bindings clash, so it does not generate an output. In the third situation, the same variable
is found in both patterns, but there is one set of matches that doesn’t clash, and the join node can
output this.

5.8 Rule-Based Systems 449

Bindings:
?person-1 = Whistler
?person-2 = Captain

Bindings:
?person-1 = Whistler
?person-2 = Captain

Bindings:
?person-1 = Whistler

Bindings:
?person-2 = Captain

Bindings:
?person-1 = Whistler
?person-2 = Captain

Bindings:
?person-1 = Whistler

Bindings:
?person-1 = Captain

Bindings:
None

Bindings:
?person-1 = Whistler

1 2

3

Figure 5.49 A join node with variable clash and two others without

The join node generates its own match list that contains the matching input facts it receives
and a list of variable bindings. It passes this down the Rete to other join nodes or to a
rule node.

If the join node receives multiple possible bindings from its input, then it needs to work out
all possible combinations of bindings that may be correct. Take the previous example, and let’s
imagine we are processing the AND join in:

1 (?person (health < 15))
2 AND
3 (?radio (held-by ?person))

against the database:

1 (Whisker (health 12))
2 (Captain (health 9))
3 (radio-1 (held-by Whisker))
4 (radio-2 (held-by Sale))

The

1 (?person (health < 15))

450 Chapter 5 Decision Making

pattern has two possible matches:

1 ?person = Whisker

and

1 ?person = Captain

The

1 (radio (held-by ?person-1))

pattern also has two possible matches:

1 ?person = Whisker, ?radio = radio-1

and

1 ?person = Sale, ?radio = radio-2

The join node therefore has two sets of two possible bindings, and there are four possible
combinations, but only one is valid:

1 ?person = Whisker, ?radio = radio-1

So this is the only one it passes down. If multiple combinations were valid, then it would pass
down multiple bindings.

If your system doesn’t need to support unification, then the join node can be much simpler:
variable bindings never need to be passed in, and an AND join node will always output if it receives
two inputs.

We don’t have to limit ourselves to AND join nodes. We can use additional types of join
nodes for different Boolean operators. Some of them (such as AND and XOR) require additional
matching to support unification, but others (such as OR) do not and have a simple implementation
whether unification is used or not. Alternatively, these operators can be implemented in the
structure of the Rete, and AND join nodes are sufficient to represent them. This is exactly the
same as we saw in decision trees.

Eventually, the descending data will stop (when no more join nodes or pattern nodes have
output to send), or they will reach one or more rules. All the rules that receive input are triggered.
We keep a list of rules that are currently triggered, along with the variable bindings and facts
that triggered it. We call this a trigger record. A rule may have multiple trigger records, with
different variable bindings, if it received multiple valid variable bindings from a join node or
pattern.

5.8 Rule-Based Systems 451

Some kind of rule arbitration system needs to determine which triggered rule will go on to
fire. (This isn’t part of the Rete algorithm; it can be handled as before.)

An Example

Let’s apply our initial Rete example to the following database:

1 (Captain (health 57) (is-covering Johnson))
2 (Johnson (health 38))
3 (Sale (health 42))
4 (Whisker (health 15) (is-covering Sale))
5 (Radio (held-by Whisker))

Figure 5.50 shows the network with the data stored at each node.
Notice that each pattern node is passing down all of the data that it matches. Each join

node is acting as a filter. With this database, only the Swap Radio rule is active; the Change

Swap Radio rule Change Backup rule

(ra
dio

 (h
eld

-b
y ?

pe
rso

n-
1)

)

(?
pe

rso
n-

1
(h

ea
lth

 <
15

))
(?

pe
rso

n-
2

(h
ea

lth
 >

45
))

(?
pe

rso
n-

2
(is

-co
ve

rin
g

?p
er

so
n-

1)
)

Bindings:
?person-1 = Whisker,
?person-2 = Captain

Bindings:
None

Bindings:
?person-1 = Whisker,
?person-2 = Captain

Bindings:
?person-2 = Captain

Bindings:
?person-1 = Whisker

Bindings:
?person-1 = Whisker

Bindings:
(?person-1 = Johnson,
 ?person-2 = Captain) OR
(?person-1 = Sale,
 ?person-2 = Whisker)

Figure 5.50 The Rete with data

452 Chapter 5 Decision Making

Backup rule doesn’t get triggered because the join node immediately above it doesn’t have a
clash-free set of inputs. The Swap Radio rule gets a complete set of variable bindings and is told
to fire.

We can use Rete by plugging in the complete database each time and seeing which rules fire.
This is a simple approach, but in many applications data don’t change much from iteration to
iteration.

Rete is designed to keep hold of data and only update those nodes that need it. Each node keeps
a list of the database facts that it matches or that it can join successfully. At successive iterations,
only the data that have changed are processed, and knock-on effects are handled by walking down
the Rete.

The update process consists of an algorithm to remove a database fact and another algorithm
to add one (if a value has changed, then the database fact will be removed and then added back
with the correct value).

Removing a Fact

To remove a fact, a removal request is sent to each pattern node. The request identifies the fact that
has been removed. If the pattern node has a stored match on the fact, then the match is removed,
and the removal request is sent down its outputs to any join nodes.

When a join node receives a removal request, it looks at its list of matches. If there are any
entries that use the removed fact, it deletes them from its list and passes the removal request
on down.

If a rule node receives a removal request, it removes any of its trigger records from the triggered
list that contains the removed fact.

If any node doesn’t have the given fact in its storage, then it needs to do nothing; it doesn’t
pass the request on down.

Adding a Fact

Adding a fact is very similar to removing one. Each pattern node is sent an addition request
containing the new fact. Patterns that match the fact add it to their list and pass a notification of
the new match down the Rete.

When a join node receives a new match, it checks if there are any new sets of non-clashing
inputs that it can make, using the new fact. If there are, it adds them to its match list and
sends the notification of the new match down. Notice that, unlike removal requests, the noti-
fication it sends down is different from the one it received. It is sending down notification
of one or more whole new matches: a full set of inputs and variable bindings involving the
new fact.

If a rule node receives a notification, it adds one or more trigger records to the trigger list
containing the new input it received.

Once again, if the fact doesn’t update the node, then there is no need to pass the addition
request on.

5.8 Rule-Based Systems 453

Managing the Update

Each iteration, the update routine sends the appropriate series of add and remove requests to
the pattern nodes. It doesn’t check if rules are triggered during this process but allows them all
to process. In general, it is more efficient to perform all the removals first and then all the new
additions.

After all the updates have been performed, the triggered list contains all the rules that could
be fired (along with the variable bindings that cause them to trigger). The rule arbiter can decide
which rule should fire.

An Update Example

We’ll use our previous example to illustrate the update procedure. Let’s say that, since the last
update, Whisker has used a med-pack and Sale has been hit by enemy fire. We have four changes
to make: two additions and two removals:

1 remove (Whisker (health 12))
2 add (Whisker (health 62))
3 remove (Sale (health 42))
4 add (Sale (health 5))

First, the removal requests are given to all the patterns. The check for low health used to
have only Whisker in its match list. This is deleted, and the removal request is passed on. Join
node A receives the request, removes the match involving Whisker from its match list, and passes
on the request. Join node B does the same. The rule node now receives the removal request and
removes the corresponding entry from the triggered list. The same process occurs for removing
Sale’s health, leaving the Rete as shown in Figure 5.51.

Now we can add the new data. First, Whisker’s new health is added. This matches the

1 (?person (health > 45))

pattern, which duly outputs notification of its new match. Join node A receives the notification,
but can find no new matches, so the update stops there. Second, we add Sale’s new health. The

1 (?person (health < 15))

pattern matches and sends notification down to join node A. Now join node A does have a valid
match, and it sends notification on down the Rete. Join node B can’t make a match, but join node
C, previously inactive, now can make a match. It sends notification on to the Change Backup rule,
which adds its newly triggered state to the triggered list. The final situation is shown in Figure 5.52.

The update management algorithm can now select one triggered rule from the list to fire. In
our case, there is only one to choose, so it is fired.

454 Chapter 5 Decision Making

Swap Radio rule Change Backup rule

(ra
dio

 (h
eld

-b
y ?

pe
rs

on
-1

))

(?
pe

rs
on

-1
 (h

ea
lth

 <
15

))
(?

pe
rs

on
-2

 (h
ea

lth
 >

45
))

(?
pe

rs
on

-2
 (i

s-
co

ve
rin

g
?p

er
so

n-
1)

)

Bindings:
None Bindings:

None

Bindings:
None

Bindings:
?person-2 = Captain

Bindings:
None

Bindings:
?person-1 = Whisker

Bindings:
(?person-1 = Johnson,
 ?person-2 = Captain) OR
(?person-1 = Sale,
 ?person-2 = Whisker)

A

B C

Figure 5.51 Rete in mid-update

On the Website

The pseudo-code of Rete is many pages long and doesn’t make the algorithm any clearer for its
complexity. We decided not to include it here and waste several pages with difficult-to-follow

Library

code. A full source code implementation is provided on the website, with lots of comments, that
we’d recommend you work through.

The Rule-Based System program on the website allows you to play with a simple rule-based
system and database. It is a command line program that allows you to add facts to the database
using the simple LISP syntax shown above.You can run a rule set against it to see how matches are

Program

processed. The Rete can be viewed at any time, and the program gives lots of feedback on which
nodes in the Rete are being processed and the variable bindings they are passing on.

Performance

Rete approaches O(nmp) in time, where n is the number of rules, m is the number of clauses
per rule, and p is the number of facts in the database. If a large number of wild card matches is
possible, then the process of unifying the bindings in the join node can take over the performance.
In most practical systems, however, this isn’t a major issue.

5.8 Rule-Based Systems 455

Swap Radio rule Change Backup rule

(ra
dio

 (h
eld

-b
y ?

pe
rs

on
-1

))

(?
pe

rs
on

-1
 (h

ea
lth

 <
15

))
(?

pe
rs

on
-2

 (h
ea

lth
 >

45
))

(?
pe

rs
on

-2
 (i

s-
co

ve
rin

g
?p

er
so

n-
1)

)

Bindings:
None

Bindings:
?person-1 = Sale
?person-2 = Whisker

Bindings:
None

Bindings:
?person-2 = Whisker OR

?person-2 = Captain

Bindings:
?person-1 = Sale

Bindings:
?person-1 = Whisker

Bindings:
(?person-1 = Johnson,
 ?person-2 = Captain) OR
(?person-1 = Sale,
 ?person-2 = Whisker)

Bindings:
(?person-1 = Sale,
 ?person-2 = Whisker) OR
(?person-1 = Sale,
 ?person-2 = Captain)

A

B C

Figure 5.52 Rete after-update

Rete is O(nmq) in memory, where q is the number of different wild-card matches per pattern.
This is significantly higher than the basic rule matching system we developed first. In addition, in
order to take advantage of the fast update, we need to keep the data between iterations. It is this
high memory usage that gives the speed advantage.

5.8.9 Extensions

The ubiquity of rule-based systems in early AI research led to a whole host of different extensions,
modifications, and optimizations. Each area in which a rule-based system was applied (such as
language understanding, controlling industrial processes, diagnosing faults in machinery, and
many others) has its own set of common tricks.

Very few of these are directly usable in games development. Given that rule-based systems are
only needed in a minority of AI scenarios, we’ll safely ignore most of them here. We’d recommend
Expert Systems: Principles and Programming [Giarratano and Riley, 1998], for more background
on industrial uses. It comes with a copy of CLIPS, a reasonably general expert system shell.

There are two extensions that are widespread enough to be worth mentioning. The first man-
ages huge rule-based systems and is of direct use to games developers. The second is justification,
widely used in expert systems and useful to game developers when debugging their AI code.

456 Chapter 5 Decision Making

We could fill an entire book on algorithms for rule-based systems. Given their niche status in
game development, we will limit this section to a brief overview of each extension.

Managing Large Rule Sets

One developer we know has used a rule-based system to control the team AI in a series of
two-dimensional (2D) turn-based war games. Their rule set was huge, and as each game in
the series was released they added a large number of new rules. Some new rules allowed the
AI to cope with new weapons and power-ups, and other new rules were created as a result of
player feedback from previous releases. Over the course of developing each title, bug reports
from the QA department would lead to even more rules being added. After several itera-
tions of the product, the set of rules was huge and difficult to manage. It also had serious
implications for performance: with such a large rule set, even the Rete matching algorithm is
too slow.

The solution was to group rules together. Each rule set could be switched on and off as it was
needed. Only rules in active sets would be considered for triggering. Rules in disabled sets were
never given the chance to trigger. This took the system down from several thousand rules to no
more than a hundred active rules at any time.

This is a technique used in many large rule-based systems.
The rule-based system contains a single rule set which is always switched on. Inside this rule

set are any number of rules and any number of other rule sets. Rule sets at this level or below can
be switched on or off. This switching can be performed directly by the game code or in the THEN
action of another rule.

Typically, each high-level rule set contains several rules and a few rule sets. The rules are only
used to switch on and off the contained sets. This is arranged in a hierarchy, with the sets at the
lowest level containing the useful rules that do the work.

At each iteration of the rule-based system, the top-level set is asked to provide one triggered
rule that should be fired. This set looks through all its constituent rules, searching for triggers in
the normal way. It also delegates the same query to any sets it contains: provide one triggered rule
that should be fired. Each set uses one of the arbitration algorithms to decide which rule to return
for firing.

In our implementation of this process, shown in Figure 5.53, a different arbitration routine
could be set for each set in the hierarchy. In the end, this flexibility wasn’t used, and all sets ran
on a most specific strategy.

The hierarchy of sets allows a great deal of flexibility. At one point in the hierarchy, we used a
rule set for all the rules corresponding to the peculiarities of each weapon in the game. Only one
of these sets was enabled at any time: the set corresponding to the weapon held by the character.
The enabling of the appropriate set was handled by the game code.

At another point in the hierarchy, there were sets containing rules for moving in the presence
of enemies or moving freely. Because information about nearby enemies was being added to
the database anyway, we switched between these two sets using five rules placed in the set that
contained them.

An overview schematic of the rule sets is shown in Figure 5.53.

5.8 Rule-Based Systems 457

Master set

Defense

Offense

Network

Movement

Strategy

Melee

Missiles

Power-ups

Contains only rules
to enable other sets.

Activated on the
opponents move.

Activated on the
players move.

Contains rules for
lag and other network
stuff. Only active in
network play.

Contains rules for
character movement.

Active when player
has more than one
character.

Active when character
is using melee weapon.

Active when character
is using missile weapon.

Active when character
has a power-up.

One set per
weapon type

One set per
weapon type

One set per
power-up

Different sets depending
on presence and number
of enemies.

Figure 5.53 Schematic of the rule sets in the game

Justification in Expert Systems

Most generally, an expert system is any AI that encodes the knowledge from a human expert and
performs that expert’s job. Most expert systems are implemented using rule-based systems. Strictly,
the expert system is the end product: the combination of the algorithm and rules that encodes the
expert’s knowledge. The algorithm itself is the rule-based system, also known as an expert system
shell or sometimes a production system (the term production refers to the forward-chaining nature
of the algorithm: it produces new knowledge from existing data).

A common extension to the basic rule-based system has been incorporated in many expert
system shells: an audit trail of how knowledge came to be added.

When the rule-based system fires a database rewrite rule, any data added have additional
information stored with them. The rule that created the data, the items of data in the database
that the rule matched, the current values of these items, and a time stamp are all commonly
retained. Let’s call this the firing information. Similarly, when an item of data is removed, it is
retained in a “deleted” list, accompanied by the same firing information. Finally, if an item of data
is modified, its old value is retained along with the firing information.

In a game context, the data in the database can also be added or modified directly by
the game. Similar auditing information is also retained, with an indication that the data were
altered by an external process, rather than by the firing of a rule. Obviously, if a piece of data is

458 Chapter 5 Decision Making

changing every frame, it may not be sensible to keep a complete record of every value it has ever
taken.

Any piece of data in the database can then be queried, and the expert system shell will return
the audit trail of how the data got there and how the current value came to be set. This information
can be recursive. If the data we are interested in came from a rule, we can ask where the matches
came from that triggered that rule. This process can continue until we are left with just the items
of data that were added by the game (or were there from the start).

In an expert system this is used to justify the decisions that the system makes. If the expert
system is controlling a factory and chooses to shut down a production line, then the justification
system can give the reasons for its decision.

In a game context, we don’t need to justify decisions to the player, but during testing, it is often
very useful to have a mechanism for justifying the behavior of a character. Rule-based systems
can be so much more complicated than the previous decision making techniques in this chapter.
Finding out the detailed and long-term causes of a strange-looking behavior can save days of
debugging.

We’ve built an expert system shell specifically for inclusion in a game. We added a justification
system late in the development cycle after a bout of hair-pulling problems. The difference in
debugging power was dramatic. A sample portion of the output is shown below (the full output
was around 200 lines long). Unfortunately, because the code was developed commercially, we are
not able to include this application on the website.

1 Carnage XS. V104 2002-9-12.
2 JUSTIFICATION FOR <Action: Grenade (2.2,0.5,2.1)>
3

4 <Action: grenade ?target>
5 FROM RULE: flush-nest
6 BINDINGS: target = (2.2,0.5,2.1)
7 CONDITIONS:
8

9 <Visible: heavy-weapon <ptr008F8850> at (2.2,0.5,2.1)>
10 FROM RULE: covered-by-heavy-weapon
11 BINDINGS: ?weapon = <ptr008F8850>
12 CONDITIONS:
13 <Ontology: machine-gun <ptr008F8850>>
14 FROM FACT: <Ontology: machine-gun <ptr008F8850>>
15 <Location: <ptr008F8850> at (312.23, 0.54, 12.10)>
16 FROM FACT: <Location: <ptr008F8850> at (2.2,0.5,2.1)>
17

18 <Visible: enemy-units in group>
19 ...

To make sure the final game wasn’t using lots of memory to store the firing data, the justifica-
tion code was conditionally compiled so it didn’t end up in the final product.

5.9 Blackboard Architectures 459

5.8.10 Where Next

The rule-based systems in this section represent the most complex non-learning decision makers
we’ll cover in this book. A full Rete-implementation with justification and rule set support is
a formidable programming task that can support incredible sophistication of behavior. It can
support more advanced AI than any seen in current-generation games (providing someone was
capable of writing enough good rules). Likewise, GOAP is well ahead of the current state of the
art and is the cutting edge of AI being explored in several big studios.

The remainder of this chapter looks at the problem of making decisions from some different
angles, examining ways to combine different decision makers together, to script behaviors directly
from code, and to execute actions that are requested from any decision making algorithm.

5.9 Blackboard Architectures

A blackboard system isn’t a decision making tool in its own right. It is a mechanism for coordi-
nating the actions of several decision makers.

The individual decision making systems can be implemented in any way: from a decision tree
to an expert system or even to learning tools such as the neural networks we’ll meet in Chapter 7.
It is this flexibility that makes blackboard architectures appealing.

In the AI literature, blackboard systems are often large and unwieldy, requiring lots of man-
agement code and complicated data structures. For this reason they have something of a bad rep-
utation among game AI programmers. At the same time, many developers implement AI systems
that use the same techniques without associating them with the term “blackboard architecture.”

5.9.1 The Problem

We would like to be able to coordinate the decision making of several different techniques. Each
technique may be able to make suggestions as to what to do next, but the final decision can only
be made if they cooperate.

We may have a decision making technique specializing in targeting enemy tanks, for example.
It can’t do its stuff until a tank has been selected to fire at. A different kind of AI is used to select
a firing target, but that bit of AI can’t do the firing itself. Similarly, even when the target tank is
selected, we may not be in a position where firing is possible. The targeting AI needs to wait until
a route-planning AI can move to a suitable firing point.

We could simply put each bit of AI in a chain. The target selector AI chooses a target, the
movement AI moves into a firing position, and the ballistics AI calculates the firing solution. This
approach is very common but doesn’t allow for information to pass in the opposite direction. If
the ballistics AI calculates that it cannot make an accurate shot, then the targeting AI may need
to calculate a new solution. On the other hand, if the ballistics AI can work out a shot, then there
is no need to even consider the movement AI. Obviously, whatever objects are in the way do not
affect the shell’s trajectory.

460 Chapter 5 Decision Making

We would like a mechanism whereby each AI can communicate freely without requiring all
the communication channels to be set up explicitly.

5.9.2 The Algorithm

The basic structure of a blackboard system has three parts: a set of different decision making
tools (called experts in blackboard-speak), a blackboard, and an arbiter. This is illustrated in
Figure 5.54.

The blackboard is an area of memory that any expert may use to read from and write to.
Each expert needs to read and write in roughly the same language, although there will usually be
messages on the blackboard that not everyone can understand.

Each expert looks at the blackboard and decides if there’s anything on it that they can use.
If there is, they ask to be allowed to have the chalk and board eraser for a while. When they
get control they can do some thinking, remove information from the blackboard, and write new
information, as they see fit. After a short time, the expert will relinquish control and allow other
experts to have a go.

The arbiter picks which expert gets control at each go. Experts need to have some mechanism
of indicating that they have something interesting to say. The arbiter chooses one at a time and
gives it control. Often, none or only one expert wants to take control, and the arbiter is not
required.

The Arbiter

Maneuver
expert

Firearms
expert

Power-ups
expert

Level tactics
expert

Trap
detection

expert

Stealth
expert

Panel of experts

The Blackboard

 ammo=4

healthy

enemy-sighted

hide

Figure 5.54 Blackboard architecture

5.9 Blackboard Architectures 461

The algorithm works in iterations:

1. Experts look at the board and indicate their interest.

2. The arbiter selects an expert to have control.

3. The expert does some work, possibly modifying the blackboard.

4. The expert voluntarily relinquishes control.

The algorithm used by the arbiter can vary from implementation to implementation. The
simple and common approach we will use asks the experts to indicate how useful they think they
can be in the form of a numeric insistence value. The arbiter can then simply pick the expert with
the highest insistence value. In the case of a tie, a random expert is selected.

Extracting an Action

Suggested actions can be written to the blackboard by experts in the same way that they write
any other information. At the end of an iteration (or multiple iterations if the system is running
for longer), actions placed on the blackboard can be removed and carried out using the action
execution techniques at the end of this chapter.

Often, an action can be suggested on the blackboard before it has been properly thought
through. In our tank example, the targeting expert may post a “fire at tank 15” action on the
board. If the algorithm stopped at that point, the action would be carried out without the ballistic
and movement experts having had a chance to agree.

A simple solution is to store the potential action along with a set of agreement flags. An action
on the blackboard is only carried out if all relevant experts have agreed to it. This does not have
to be every expert in the system, just those who would be capable of finding a reason not to carry
the action out.

In our example the “fire at tank 15” action would have one agreement slot: that of the ballistics
expert. Only if the ballistics expert has given the go ahead would the action be carried out. The
ballistics expert may refuse to give the go ahead and instead either delete the action or add a
new action “move into firing position for tank 15.” With the “fire at tank 15” action still on the
blackboard, the ballistics expert can wait to agree to it until the firing position is reached.

5.9.3 Pseudo-Code

The blackboardIteration function below takes as input a blackboard and a set of experts. It
returns a list of actions on the blackboard that have been passed for execution. The function acts
as the arbiter, following the highest insistence algorithm given above.

1 def blackboardIteration(blackboard, experts):
2

3 # Go through each expert for their insistence

462 Chapter 5 Decision Making

4 bestExpert = None
5 highestInsistence = 0
6 for expert in experts:
7 # Ask for the expert’s insistence
8 insistence = expert.getInsistence(blackboard)
9

10 # Check against the highest value so far
11 if insistence > highestInsistence:
12 highestInsistence = insistence
13 bestExpert = expert
14

15 # Make sure somebody insisted
16 if bestExpert:
17

18 # Give control to the most insistent expert
19 bestExpert.run(blackboard)
20

21 # Return all passed actions from the blackboard
22 return blackboard.passedActions

5.9.4 Data Structures and Interfaces

The blackboardIteration function relies on three data structures: a blackboard consisting of
entries and a list of experts.

The Blackboard has the following structure:

1 class Blackboard:
2 entries
3 passedActions

It has two components: a list of blackboard entries and a list of ready-to-execute actions. The
list of blackboard entries isn’t used in the arbitration code above and is discussed in more detail
later in the section on blackboard language. The actions list contains actions that are ready to
execute (i.e., they have been agreed upon by every expert whose permission is required). It can be
seen as a special section of the blackboard: a to-do list where only agreed-upon actions are placed.

More complex blackboard systems also add meta-data to the blackboard that controls its
execution, keeps track of performance, or provides debugging information. Just as for rule-
based systems, we can also add data to hold an audit trail for entries: which expert added them
and when.

Other blackboard systems hold actions as just another entry on the blackboard itself, without
a special section. For simplicity, we’ve elected to use a separate list; it is the responsibility of
each expert to write to the “actions” section when an action is ready to be executed and to keep

5.9 Blackboard Architectures 463

unconfirmed actions off the list. This makes it much faster to execute actions. We can simply work
through this list rather than searching the main blackboard for items that represent confirmed
actions.

Experts can be implemented in any way required. For the purpose of being managed by the
arbiter in our code, they need to conform to the following interface:

1 class Expert:
2 def getInsistence(blackboard)
3 def run(blackboard)

The getInsistence function returns an insistence value (greater than zero) if the expert thinks
it can do something with the blackboard. In order to decide on this, it will usually need to have
a look at the contents of the blackboard. Because this function is called for each expert, the
blackboard should not be changed at all from this function. It would be possible, for example, for
an expert to return some instance, only to have the interesting stuff removed from the blackboard
by another expert. When the original expert is given control, it has nothing to do.

The getInsistence function should also run as quickly as possible. If the expert takes a long
time to decide if it can be useful, then it should always claim to be useful. It can spend the time
working out the details when it gets control. In our tanks example, the firing solution expert may
take a while to decide if there is a way to fire. In this case, the expert simply looks on the blackboard
for a target, and if it sees one, it claims to be useful. It may turn out later that there is no way to
actually hit this target, but that processing is best done in the run function when the expert has
control.

The run function is called when the arbiter gives the expert control. It should carry out the
processing it needs, read and write to the blackboard as it sees fit, and return. In general, it is
better for an expert to take as little time as possible to run. If an expert requires lots of time,
then it can benefit from stopping in the middle of its calculations and returning a very high
insistence on the next iteration. This way the expert gets its time split into slices, allowing the
rest of the game to be processed. Chapter 9 has more details on this kind of scheduling and
time slicing.

The Blackboard Language

So far we haven’t paid any attention to the structure of data on the blackboard. More so than
any of the other techniques in this chapter, the format of the blackboard will depend on the
application. Blackboard architectures can be used for steering characters, for example, in which
case the blackboard will contain three-dimensional (3D) locations, combinations of maneuvers,
or animations. Used as a decision making architecture, it might contain information about the
game state, the position of enemies or resources, and the internal state of a character.

There are general features to bear in mind, however, that go some way toward a generic black-
board language. Because the aim is to allow different bits of code to talk to each other seamlessly,
information on the blackboard needs at least three components: value, type identification, and
semantic identification.

464 Chapter 5 Decision Making

The value of a piece of data is self-explanatory. The blackboard will typically have to cope
with a wide range of different data types, however, including structures. It might contain health
values expressed as an integer and positions expressed as a 3D vector, for example.

Because the data can be in a range of types, its content needs to be identified. This can be a
simple type code. It is designed to allow an expert to use the appropriate type for the data (in
C/C++ this is normally done by typecasting the value to the appropriate type). Blackboard entries
could achieve this by being polymorphic: using a generic Datum base class with sub-classes for
FloatDatum, Vector3DDatum, and so on, or with runtime-type information (RTTI) in a language
such as C++, or the sub-classes containing a type identifier. It is more common, however, to
explicitly create a set of type codes to identify the data, whether or not RTTI is used.

The type identifier tells an expert what format the data are in, but it doesn’t help the expert
understand what to do with it. Some kind of semantic identification is also needed. The semantic
identifier tells each expert what the value means. In production blackboard systems this is com-
monly implemented as a string (representing the name of the data). In a game, using lots of string
comparisons can slow down execution, so some kind of magic number is often used.

A blackboard item may therefore look like the following:

1 struct BlackboardDatum:
2 id
3 type
4 value

The whole blackboard consists of a list of such instances.
In this approach complex data structures are represented in the same way as built-in types. All

the data for a character (its health, ammo, weapon, equipment, and so on) could be represented
in one entry on the blackboard or as a whole set of independent values.

We could make the system more general by adopting an approach similar to the one we used in
the rule-based system. Adopting a hierarchical data representation allows us to effectively expand
complex data types and allows experts to understand parts of them without having to be hard-
coded to manipulate the type. In languages such as Java, where code can examine the structure
of a type, this would be less important. In C++, it can provide a lot of flexibility. An expert could
look for just the information on a weapon, for example, without caring if the weapon is on the
ground, in a character’s hand, or currently being constructed.

While many blackboard architectures in non-game AI follow this approach, using nested
data to represent their content, we have not seen it used in games. Hierarchical data tend to be
associated with rule-based systems and flat lists of labeled data with blackboard systems (although
the two approaches overlap, as we’ll see below).

5.9.5 Performance

The blackboard arbiter uses no memory and runs in O(n) time, where n is the number of experts.
Often, each expert needs to scan through the blackboard to find an entry that it might be interested
in. If the list of entries is stored as a simple list, this takes O(m) time for each expert, where m is the

5.9 Blackboard Architectures 465

number of entries in the blackboard. This can be reduced to almost O(1) time if the blackboard
entries are stored in some kind of hash. The hash must support lookup based on the semantics of
the data, so an expert can quickly tell if something interesting is present.

The majority of the time spent in the blackboardIteration function should be spent in the
run function of the expert who gains control. Unless a huge number of experts is used (or they are
searching through a large linear blackboard), the performance of each run function is the most
important factor in the overall efficiency of the algorithm.

5.9.6 Other Things Are Blackboard Systems

When we described the blackboard system, we said it had three parts: a blackboard containing
data, a set of experts (implemented in any way) that read and write to the blackboard, and
an arbiter to control which expert gets control. It is not alone in having these components,
however.

Rule-Based Systems

Rule-based systems have each of these three elements: their database contains data, each rule is
like an expert—it can read from and write to the database, and there is an arbiter that controls
which rule gets to fire. The triggering of rules is akin to experts registering their interest, and the
arbiter will then work in the same way in both cases.

This similarity is no coincidence. Blackboard architectures were first put forward as a kind of
generalization of rule-based systems: a generalization in which the rules could have any kind of
trigger and any kind of rule.

A side effect of this is that if you intend to use both a blackboard system and a rule-based
system in your game, you may need to implement only the blackboard system. You can then create
“experts” that are simply rules: the blackboard system will be able to manage them.

The blackboard language will have to be able to support the kind of rule-based matching you
intend to perform, of course. But, if you are planning to implement the data format needed in the
rule-based system we discussed earlier, then it will be available for use in more flexible blackboard
applications.

If your rule-based system is likely to be fairly stable, and you are using the Rete match-
ing algorithm, then the correspondence will break down. Because the blackboard architecture
is a super-set of the rule-based system, it cannot benefit from optimizations specific to rule
handling.

Finite State Machines

Less obviously, finite state machines are also a subset of the blackboard architecture (actually they
are a subset of a rule-based system and, therefore, of a blackboard architecture). The blackboard
is replaced by the single state. Experts are replaced by transitions, determining whether to act

466 Chapter 5 Decision Making

based on external factors, and rewriting the sole item on the blackboard when they do. In the
state machines in this chapter we have not mentioned an arbiter. We simply assumed that the first
triggered transition would fire. This is simply the first-applicable arbitration algorithm.

Other arbitration strategies are possible in any state machine. We can use dynamic priorities,
randomized algorithms, or any kind of ordering. They aren’t normally used because the state
machine is designed to be simple; if a state machine doesn’t support the behavior you are looking
for, it is unlikely that arbitration will be the problem.

State machines, rule-based systems, and blackboard architectures form a hierarchy of increas-
ing representational power and sophistication. State machines are fast, easy to implement, and
restrictive, while blackboard architectures can often appear far too general to be practical. The
general rule, as we saw in the introduction, is to use the simplest technique that supports the
behavior you are looking for.

5.10 Scripting

A significant proportion of the decision making in games uses none of the techniques described so
far in this chapter. In the early and mid-1990s, most AI was hard-coded using custom written code
to make decisions. This is fast and works well for small development teams when the programmer
is also likely to be designing the behaviors for game characters. It is still the dominant model for
platforms with modest development needs (i.e., last-generation handheld consoles prior to PSP,
PDAs, and mobile phones).

As production became more complex, there arose a need to separate the content (the behavior
designs) from the engine. Level designers were empowered to design the broad behaviors of
characters. Many developers moved to use the other techniques in this chapter. Others continued
to program their behaviors in a full programming language but moved to a scripting language
separate from the main game code. Scripts can be treated as data files, and if the scripting language
is simple enough level designers or technical artists can create the behaviors.

An unexpected side effect of scripting language support is the ability for players to create their
own character behavior and to extend the game. Modding is an important financial force in PC
games (it can extend their full-price shelf life beyond the eight weeks typical of other titles), so
much so that most triple-A titles have some kind of scripting system included. On consoles the
economics is less clear cut. Most of the companies we worked with who had their own internal
game engine had some form of scripting language support.

While we are unconvinced about the use of scripts to run top-notch character AI, they have
several important applications: in scripting the triggers and behavior of game levels (which keys
open which doors, for example), for programming the user interface, and for rapidly prototyping
character AI.

This section provides a brief primer for supporting a scripting language powerful enough to
run AI in your game. It is intentionally shallow and designed to give you enough information
to either get started or decide it isn’t worth the effort. Several excellent websites are available
comparing existing languages, and a handful of texts cover implementing your own language
from scratch.

5.10 Scripting 467

5.10.1 Language Facilities

There are a few facilities that a game will always require of its scripting language. The choice of
language often boils down to trade-offs between these concerns.

Speed

Scripting languages for games need to run as quickly as possible. If you intend to use a lot of
scripts for character behaviors and events in the game level, then the scripts will need to execute
as part of the main game loop. This means that slow-running scripts will eat into the time you
need to render the scene, run the physics engine, or prepare audio.

Most languages can be anytime algorithms, running over multiple frames (see Chapter 9 for
details). This takes the pressure off the speed to some extent, but it can’t solve the problem entirely.

Compilation and Interpretation

Scripting languages are broadly interpreted, byte-compiled, or fully compiled, although there are
many flavors of each technique.

Interpreted languages are taken in as text. The interpreter looks at each line, works out what
it means, and carries out the action it specifies.

Byte-compiled languages are converted from text to an internal format, called byte code. This
byte code is typically much more compact than the text format. Because the byte code is in a
format optimized for execution, it can be run much faster.

Byte-compiled languages need a compilation step; they take longer to get started, but then
run faster. The more expensive compilation step can be performed as the level loads but is usually
performed before the game ships.

The most common game scripting languages are all byte-compiled. Some, like Lua, offer the
ability to detach the compiler and not distribute it with the final game. In this way all the scripts
can be compiled before the game goes to master, and only the compiled versions need to be
included with the game. This removes the ability for users to write their own script, however.

Fully compiled languages create machine code. This normally has to be linked into the main
game code, which can defeat the point of having a separate scripting language. We do know
of one developer, however, with a very neat runtime-linking system that can compile and link
machine code from scripts at runtime. In general, however, the scope for massive problems with
this approach is huge. We’d advise you to save your hair and go for something more tried and
tested.

Extensibility and Integration

Your scripting language needs to have access to significant functions in your game. A script that
controls a character, for example, needs to be able to interrogate the game to find out what it can
see and then let the game know what it wants to do as a result.

468 Chapter 5 Decision Making

The set of functions it needs to access is rarely known when the scripting language is
implemented or chosen. It is important to have a language that can easily call functions or
use classes in your main game code. Equally, it is important for the programmers to be able to
expose new functions or classes easily when the script authors request it.

Some languages (Lua being the best example) put a very thin layer between the script and the
rest of the program. This makes it very easy to manipulate game data from within scripts, without
having a whole set of complicated translations.

Re-Entrancy

It is often useful for scripts to be re-entrant. They can run for a while, and when their time budget
runs out they can be put on hold. When a script next gets some time to run, it can pick up where
it left off.

It is often helpful to let the script yield control when it reaches a natural lull. Then a scheduling
algorithm can give it more time, if it has it available, or else it moves on. A script controlling a
character, for example, might have five different stages (examine situation, check health, decide
movement, plan route, and execute movement). These can all be put in one script that yields
between each section. Then each will get run every five frames, and the burden of the AI is
distributed.

Not all scripts should be interrupted and resumed. A script that monitors a rapidly changing
game event may need to run from its start at every frame (otherwise, it may be working on
incorrect information). More sophisticated re-entrancy should allow the script writer to mark
sections as uninterruptible.

These subtleties are not present in most off-the-shelf languages, but can be a massive boon if
you decide to write your own.

5.10.2 Embedding

Embedding is related to extensibility. An embedded language is designed to be incorporated into
another program. When you run a scripting language from your workstation, you normally run
a dedicated program to interpret the source code file. In a game, the scripting system needs to be
controlled from within the main program. The game decides which scripts need to be run and
should be able to tell the scripting language to process them.

5.10.3 Choosing a Language

A huge range of scripting languages is available, and many of them are released under licences that
are suitable for inclusion in a game. Traditionally, most scripting languages in games have been
created by developers specifically for their needs. In the last few years there has been a growing
interest in off-the-shelf languages.

Some commercial game engines include scripting language support (Unreal and Quake by
id Software, for example). Other than these complete solutions, most existing languages used

5.10 Scripting 469

in games were not originally designed for this purpose. They have associated advantages and
disadvantages that need to be evaluated before you make a choice.

Advantages

Off-the-shelf languages tend to be more complete and robust than a language you write yourself.
If you choose a fairly mature language, like those described below, you are benefiting from a lot
of development time, debugging effort, and optimization that has been done by other people.

When you have deployed an off-the-shelf language, the development doesn’t stop. A commu-
nity of developers is likely to be continuing work on the language, improving it and removing
bugs. Many open source languages provide web forums where problems can be discussed, bugs
can be reported, and code samples can be downloaded. This ongoing support can be invaluable
in making sure your scripting system is robust and as bug free as possible.

Many games, especially on the PC, are written with the intention of allowing consumers to
edit their behavior. Customers building new objects, levels, or whole mods can prolong a game’s
shelf life. Using a scripting language that is common allows users to learn the language easily
using tutorials, sample code, and command line interpreters that can be downloaded from the
web. Most languages have newsgroups or web forums where customers can get advice without
calling the publisher’s help line.

Disadvantages

When you create your own scripting language, you can make sure it does exactly what you want it
to. Because games are sensitive to memory and speed limitations, you can put only the features you
need into the language. As we’ve seen with re-entrancy, you can also add features that are specific
to game applications and that wouldn’t normally be included in a general purpose language.

By the same token, when things go wrong with the language, your staff knows how it is built
and can usually find the bug and create a workaround faster.

Whenever you include third-party code into your game, you are losing some control over it. In
most cases, the advantages outweigh the lack of flexibility, but for some projects control is a must.

Open-Source Languages

Many popular game scripting languages are released under open-source licences.
Open-source software is released under a licence that gives users rights to include it in their

own software without paying a fee. Some open-source licences require that the user release the
newly created product open source. These are obviously not suitable for commercial games.

Open-source software, as its name suggests, also allows access to see and change the source
code. This makes it easy to attract studios by giving you the freedom to pull out any extraneous
or inefficient code. Some open-source licences, even those that allow you to use the language in
commercial products, require that you release any modifications to the language itself. This may
be an issue for your project.

470 Chapter 5 Decision Making

Whether or not a scripting language is open source, there are legal implications of using the
language in your project. Before using any outside technology in a product you intend to distribute
(whether commercial or not), you should always consult a good intellectual property lawyer. This
book cannot properly advise you on the legal implications of using a third-party language. The
following comments are intended as an indication of the kinds of things that might cause concern.
There are many others.

With nobody selling you the software, nobody is responsible if the software goes wrong. This
could be a minor annoyance if a difficult-to-find bug arises during development. It could be a
major legal problem, however, if your software causes your customer’s PC to wipe its hard drive.
With most open-source software, you are responsible for the behavior of the product.

When you licence technology from a company, the company normally acts as an insulation
layer between you and being sued for breach of copyright or breach of patent. A researcher, for
example, who develops and patents a new technique has rights to its commercialization. If the
same technique is implemented in a piece of software, without the researcher’s permission, he may
have cause to take legal action. When you buy software from a company, it takes responsibility
for the software’s content. So, if the researcher comes after you, the company that sold you the
software is usually liable for the breach (it depends on the contract you sign).

When you use open-source software, nobody is licencing the software to you, and because you
didn’t write it, you don’t know if part of it was stolen or copied. Unless you are very careful, you
will not know if it breaks any patents or other intellectual property rights. The upshot is that
you could be liable for the breach.

You need to make sure you understand the legal implications of using “free” software. It is not
always the cheapest or best choice, even though the up-front costs are very low. Consult a lawyer
before you make the commitment.

5.10.4 A Language Selection

Everyone has a favorite language, and trying to back a single pre-built scripting language is
impossible. Read any programming language newsgroup to find endless “my language is better
than yours” flame wars.

Even so, it is a good idea to understand which languages are the usual suspects and what
their strengths and weaknesses are. Bear in mind that it is usually possible to hack, restructure, or
rewrite existing languages to get around their obvious failings. Many (probably most) commercial
games developers using scripting languages do this. The languages described below are discussed
in their out-of-the-box forms.

We’ll look at three languages in the order we would personally recommend them: Lua, Scheme,
and Python.

Lua

Lua is a simple procedural language built from the ground up as an embedding language. The
design of the language was motivated by extensibility. Unlike most embedded languages, this isn’t

5.10 Scripting 471

limited to adding new functions or data types in C or C++. The way the Lua language works can
also be tweaked.

Lua has a small number of core libraries that provide basic functionality. Its relatively feature-
less core is part of the attraction, however. In games you are unlikely to need libraries to process
anything but maths and logic. The small core is easy to learn and very flexible.

Lua does not support re-entrant functions. The whole interpreter (strictly the “state” object,
which encapsulates the state of the interpreter) is a C++ object and is completely re-entrant. Using
multiple state objects can provide some re-entrancy support, at the cost of memory and lack of
communication between them.

Lua has the notion of “events” and “tags.” Events occur at certain points in a script’s execution:
when two values are added together, when a function is called, when a hash table is queried,
or when the garbage collector is run, for example. Routines in C++ or Lua can be registered
against these events. These “tag” routines are called when the event occurs, allowing the default
behavior of Lua to be changed. This deep level of behavior modification makes Lua one of the
most adjustable languages you can find.

The event and tag mechanism is used to provide rudimentary object-oriented support (Lua
isn’t strictly object oriented, but you can adjust its behavior to get as close as you like to it), but
it can also be used to expose complex C++ types to Lua or for tersely implementing memory
management.

Another Lua feature beloved by C++ programmers is the “userdata” data type. Lua supports
common data types, such as floats, ints, and strings. In addition, it supports a generic “userdata”
with an associated sub-type (the “tag”). By default, Lua doesn’t know how to do anything with
userdata, but by using tag methods, any desired behavior can be added. Userdata is commonly
used to hold a C++ instance pointer. This native handling of pointers can cause problems, but
often means that far less interface code is needed to make Lua work with game objects.

For a scripting language, Lua is at the fast end of the scale. It has a very simple execution model
that at peak is fast. Combined with the ability to call C or C++ functions without lots of interface
code, this means that real-world performance is impressive.

The syntax for Lua is recognizable for C and Pascal programmers. It is not the easiest language
to learn for artists and level designers, but its relative lack of syntax features means it is achievable
for keen employees.

Despite its documentation being poorer than for the other two main languages here, Lua is
the most widely used pre-built scripting language in games. The high-profile switch of Lucas Arts
from its internal SCUMM language to Lua motivated a swathe of developers to investigate its
capabilities.

We started using Lua several years ago, and it is easy to see why it is rapidly becoming the de
facto standard for game scripting. To find out more, the best source of information is the Lua
book Programming in Lua [Ierusalimschy, 2006], which is also available free online.

Scheme and Variations

Scheme is a scripting language derived from LISP, an old language that was used to build most of
the classic AI systems prior to the 1990s (and many since, but without the same dominance).

472 Chapter 5 Decision Making

The first thing to notice about Scheme is its syntax. For programmers not used to LISP, Scheme
can be difficult to understand.

Brackets enclose function calls (and almost everything is a function call) and all other code
blocks. This means that they can become very nested. Good code indentation helps, but an editor
that can check enclosing brackets is a must for serious development. For each set of brackets, the
first element defines what the block does; it may be an arithmetic function:

1 (+ a 0.5)

or a flow control statement:

1 (if (> a 1.0) (set! a 1.0))

This is easy for the computer to understand but runs counter to our natural language.
Non-programmers and those used to C-like languages can find it hard to think in Scheme for
a while.

Unlike Lua and Python, there are literally hundreds of versions of Scheme, not to mention
other LISP variants suitable for use as an embedded language. Each variant has its own trade-
offs, which make it difficult to make generalizations about speed or memory use. At their best,
however (minischeme and tinyscheme come to mind), they can be very, very small (minischeme
is less than 2500 lines of C code for the complete system, although it lacks some of the more
exotic features of a full scheme implementation) and superbly easy to tweak. The fastest imple-
mentations can be as fast as any other scripting language, and compilation can typically be much
more efficient than other languages (because the LISP syntax was originally designed for easy
parsing).

Where Scheme really shines, however, is its flexibility. There is no distinction in the lan-
guage between code and data, which makes it easy to pass around scripts within Scheme, modify
them, and then execute them later. It is no coincidence that most notable AI programs using the
techniques in this book were originally written in LISP.

We have used Scheme a lot, enough to be able to see past its awkward syntax (many of us had
to learn LISP as an AI undergraduate). Professionally, we have never used Scheme unmodified in
a game (although we know at least one studio that has), but we have built more languages based
on Scheme than on any other language (six to date and one more on the way). If you plan to roll
your own language, we would strongly recommend you first learn Scheme and read through a
couple of simple implementations. It will probably open your eyes as to how easy a language can
be to create.

Python

Python is an easy-to-learn, object-oriented scripting language with excellent extensibility and
embedding support. It provides excellent support for mixed language programming, including
the ability to transparently call C and C++ from Python. Python has support for re-entrant
functions as part of the core language from version 2.2 onward (called Generators).

5.10 Scripting 473

Python has a huge range of libraries available for it and has a very large base of users. Python
users have a reputation for helpfulness, and the comp.lang.python newsgroup is an excellent
source of troubleshooting and advice.

Python’s major disadvantages are speed and size. Although significant advances in execution
speed have been made over the last few years, it can still be slow. Python relies on hash table lookup
(by string) for many of its fundamental operations (function calls, variable access, object-oriented
programming). This adds lots of overhead.

While good programming practice can alleviate much of the speed problem, Python also has
a reputation for being large. Because it has much more functionality than Lua, it is larger when
linked into the game executable.

Python 2.X and further Python 2.3 releases added a lot of functionality to the language.
Each additional release fulfilled more of Python’s promise as a software engineering tool, but
by the same token made it less attractive as an embedded language for games. Earlier versions
of Python were much better in this regard, and developers working with Python often prefer
previous releases.

Python often appears strange to C or C++ programmers, because it uses indentation to group
statements, just like the pseudo-code in this book.

This same feature makes it easier to learn for non-programmers who don’t have brackets to
forget and who don’t go through the normal learning phase of not indenting their code.

Python is renowned for being a very readable language. Even relatively novice programmers
can quickly see what a script does. More recent additions to the Python syntax have damaged this
reputation greatly, but it still seems to be somewhat above its competitors.

Of the scripting languages we have worked with, Python has been the easiest for level designers
and artists to learn. On a previous project we needed to use this feature but were frustrated by the
speed and size issues. Our solution was to roll our own language (see the section below) but use
Python syntax.

Other Options

There is a whole host of other possible languages. In our experience each is either completely
unused in games (to the best of our knowledge) or has significant weaknesses that make it a
difficult choice over its competitors. To our knowledge, none of the languages in this section has
seen commercial use as an in-game scripting tool. As usual, however, a team with a specific bias
and a passion for one particular language can work around these limitations and get a usable
result.

Tcl

Tcl is a very well-used embeddable language. It was designed to be an integration language, linking
multiple systems written in different languages. Tcl stands for Tool Control Language.

Most of Tcl’s processing is based on strings, which can make execution very slow.
Another major drawback is its bizarre syntax, which takes some getting used to, and unlike
Scheme it doesn’t hold the promise of extra functionality in the end. Inconsistencies in the

474 Chapter 5 Decision Making

syntax (such as argument passing by value or by name) are more serious flaws for the casual
learner.

Java

Java is becoming ubiquitous in many programming domains. Because it is a compiled language,
however, its use as a scripting language is restricted. By the same token, however, it can be fast.
Using JIT compiling (the byte code gets turned into native machine code before execution), it can
approach C++ for speed. The execution environment is very large, however, and there is a sizeable
memory footprint.

It is the integration issues that are most serious, however. The Java Native Interface (that links
Java and C++ code) was designed for extending Java, rather than embedding it. It can therefore
be difficult to manage.

JavaScript

JavaScript is a scripting language designed for web pages. It really has nothing to do with Java,
other than its C++-like syntax.

There isn’t one standard JavaScript implementation, so developers who claim to use JavaScript
are most likely rolling their own language based on the JavaScript syntax.

The major advantage of JavaScript is that it is known by many designers who have worked on
the web. Although its syntax loses lots of the elegance of Java, it is reasonably usable.

Ruby

Ruby is a very modern language with the same elegance of design found in Python, but its
support for object-oriented idioms is more ingrained. It has some neat features that make it able
to manipulate its own code very efficiently. This can be helpful when scripts have to call and
modify the behavior of other scripts. It is not highly re-entrant from the C++ side, but it is very
easy to create sophisticated re-entrancy from within Ruby.

It is very easy to integrate with C code (not as easy as Lua, but easier than Python, for example).
Ruby is only beginning to take off, however, and hasn’t reached the audience of the other languages
in this chapter. It hasn’t been used (modified or otherwise) in any game we have heard about. One
weakness is its lack of documentation, although that may change rapidly as it gains wider use. It’s
a language we have resolved to follow closely for the next few years.

5.10.5 Rolling Your Own

Most game scripting languages are custom written for the job at hand. While this is a long and
complex procedure for a single game, the added control can be beneficial in the long run. Studios
developing a whole series of games using the same engine will effectively spread the development
effort and cost over multiple titles.

5.10 Scripting 475

Regardless of the look and capabilities of the final language, scripts will pass through the same
process on their way to being executed: all scripting languages must provide the same basic set
of elements. Because these elements are so ubiquitous, tools have been developed and refined to
make it easy to build them.

There is no way we can give a complete guide to building your own scripting language in this
book. There are many other books on language construction (although, surprisingly, there aren’t
any good books we know of on creating a scripting, rather than a fully compiled, language). This
section looks at the elements of scripting language construction from a very high level, as an aid
to understanding rather than implementation.

The Stages of Language Processing

Starting out as text in a text file, a script typically passes through four stages: tokenization, parsing,
compiling, and interpretation.

The four stages form a pipeline, each modifying its input to convert it into a format more
easily manipulated. The stages may not happen one after another. All steps can be interlinked, or
sets of stages can form separate phases. The script may be tokenized, parsed, and compiled offline,
for example, for interpretation later.

Tokenizing

Tokenizing identifies elements in the text. A text file is just a sequence of characters (in the sense
of ASCII characters!). The tokenizer works out which bytes belong together and what kind of
group they form.

A string of the form:

1 a = 3.2;

can be split into six tokens:

a text

<space> whitespace

= equality operator

<space> whitespace

3.2 floating point number

; end of statement identifier

Notice that the tokenizer doesn’t work out how these fit together into meaningful chunks; that
is the job of the parser.

The input to the tokenizer is a sequence of characters. The output is a sequence of tokens.

476 Chapter 5 Decision Making

Parsing

The meaning of a program is very hierarchical: a variable name may be found inside an assignment
statement, found inside an IF-statement, which is inside a function body, inside a class definition,
inside a namespace declaration, for example. The parser takes the sequence of tokens, identifies
the role each plays in the program, and identifies the overall hierarchical structure of the program.

The line of code:

1 if (a < b) return;

converted into the token sequence:

1 keyword(if), whitespace, open-brackets, name(a), operator(<),
2 name(b), close-brackets, whitespace, keyword(return),
3 end-of-statement

is converted by the parser into a structure such as that shown in Figure 5.55.
This hierarchical structure is known as the parse tree, or sometimes a syntax tree or abstract

syntax tree (AST for short). Parse trees in a full language may be more complex, adding additional
layers for different types of symbol or for grouping statements together. Typically, the parser
will output additional data along with the tree, most notably a symbol table that identifies what
variable or function names have been used in the code. This is not essential. Some languages

Statement

If

Bracketed expression Return

<

a b

Figure 5.55 A parse tree

5.10 Scripting 477

look up variable names dynamically when they run in the interpreter (Python does this, for
example).

Syntax errors in the code show up during parsing because they make it impossible for the
parser to build an output.

The parser doesn’t work out how the program should be run; that is the job of the compiler.

Compiling

The compiler turns the parse tree into byte code that can be run by the interpreter. Byte code is
typically sequential binary data.

Non-optimizing compilers typically output byte code as a literal translation of the parse tree.
So a code such as:

1 a = 3;
2 if (a < 0) return 1;
3 else return 0;

could get compiled into:

1 load 3
2 set-value-of a
3 get-value-of a
4 compare-with-zero
5 if-greater-jump-to LABEL
6 load 1
7 return
8 LABEL:
9 load 0

10 return

Optimizing compilers try to understand the program and make use of prior knowledge to
make the generated code faster. An optimizing compiler may notice that a must be 3 when the
IF-statement above is encountered. It can therefore generate:

1 load 3
2 set-value-of a
3 load 0
4 return

Building an efficient compiler is well beyond the scope of this book. Simple compilers are
not difficult to build, but don’t underestimate the effort and experience needed to build a good
solution. There are many hundreds of home-brewed languages out there with pathetic compilers.
We’ve seen it very many times.

478 Chapter 5 Decision Making

Tokenizing, parsing, and compiling are often done offline and are usually called “compiling,”
even though the process includes all three stages. The generated byte code can then be stored and
interpreted at runtime. The parser and compiler can be large, and it makes sense not to have the
overhead of these modules in the final game.

Interpreting

The final stage of the pipeline runs the byte code. In a compiler for a language such as C or C++,
the final product will be machine instructions that can be directly run by the processor. In a
scripting language, you often need to provide services (such as re-entrancy and secure execution)
that are not easily achieved with machine language.

The final byte code is run on a “virtual machine.” This is effectively an emulator for a machine
that has never existed in hardware.

You decide the instructions that the machine can execute, and these are the byte code instruc-
tions. In the previous example,

1 load <value>
2 set-value-of <variable>
3 get-value-of <variable>
4 compare-with-zero
5 if-greater-jump-to <location>
6 return

are all byte codes.
Your byte code instructions don’t have to be limited to those that might be seen in real

hardware, either. For example, there may be a byte code for “turn the data into a set of game
coordinates”: the kind of instruction that makes your compiler easier to create but that no real
hardware would ever need.

Most virtual machines consist of a big switch statement in C: each byte code has a short bit of
C code that gets executed when the byte code is reached in the interpreter. So the “add” byte code
has a bit of C/C++ code that performs the addition operation. Our conversion example may have
two or three lines of C++ to perform the required conversion and copy the results back into the
appropriate place.

Just-in-Time Compiling

Because of the highly sequential nature of byte code, it is possible to write a virtual machine that is
very fast at running it. Even though it is still interpreted, it is many times faster than interpreting
the source language a line at a time.

It is possible to remove the interpretation step entirely, however, by adding an additional
compilation step. Some byte code can be compiled into the machine language of the target
hardware. When this is done in the virtual machine, just before execution, it is called just-in-time
(JIT) compiling. This is not common in game scripting languages but is a mainstay of languages
such as Java and Microsoft’s .NET byte code.

5.10 Scripting 479

Tools: A Quick Look at Lex and Yacc

Lex and Yacc are the two principal tools used in building tokenizers and parsers, respectively. Each
has many different implementations and is provided with most UNIX distributions (versions
are available for other platforms, too). The Linux variants we have most often used are Flex and
Bison.

To create a tokenizer with Lex, you tell it what makes up different tokens in your language.
What constitutes a number, for example (even this differs from language to language—compare
0.4f to 1.2e−9). It produces C code that will convert the text stream from your program into a
stream of token codes and token data. The software it generates is almost certainly better and
faster than that you could write yourself.

Yacc builds parsers. It takes a representation of the grammar of your language—what tokens
make sense together and what large structures can be made up of smaller ones, for example. This
grammar is given in a set of rules that show how larger structures are made from simpler ones or
from tokens, for example:

1 assignment: NAME ‘=’ expression;

This rule tells Yacc that when it finds a NAME token, followed by an equals sign, followed by a
structure it knows as an expression (for which there will be a recognizer rule elsewhere), then it
knows it has an assignment.

Yacc also generates C code. In most cases, the resulting software is as good as or better than
you would create manually, unless you are experienced with writing parsers. Unlike Lex, the final
code can often be further optimized if speed is absolutely critical. Fortunately, for game scripting
the code can usually be compiled when the game is not being played, so the slight inefficiency is
not important.

Both Lex and Yacc allow you to add your own C code to the tokenizing or parsing software.
There isn’t a de facto standard tool for doing the compiling, however. Depending on the way the
language will behave, this will vary widely. It is very common to have Yacc build an AST for the
compiler to work on, however, and there are various tools to do this, each with their own particular
output format.

Many Yacc-based compilers don’t need to create a syntax tree. They can create byte code
output from within the rules using C code written into the Yacc file. As soon as an assignment is
found, for example, its byte code is output. It is very difficult to create optimizing compilers this
way, however. So if you intend to create a professional solution, it is worth heading directly for a
parse tree of some kind.

5.10.6 Scripting Languages and Other AI

If you make the effort to build a scripting language into your game, chances are it will run most of
your AI. Most of the other techniques in this book will not need to be coded into your game. This
can seem appealing at first, but you should still have a general purpose language for the heavy
lifting.

480 Chapter 5 Decision Making

It is a successful approach taken by many commercial studios. Typically, some extra AI is
provided (normally a pathfinding engine, for example) for very processor intensive needs.

But in our opinion it misses the point of established AI techniques. They exist because they are
elegant solutions to behavior problems, not because programming in C++ is inconvenient. Even
if you go to a scripting language, you have to think about the algorithms used in the character
scripts. Writing ad hoc code in scripts can rapidly become as difficult to debug as writing it in
C++ (more so in fact, since scripting languages often have much less mature debugging tools).

Several developers we know have fallen into this trap, assuming that a scripting language
means they don’t need to think about the way characters are implemented. Even if you are using
a scripting language, we’d advise you to think about the architecture and algorithms you use in
those scripts. It may be that the script can implement one of the other techniques in this chapter,
or it may be that a separate dedicated C++ implementation would be more practical alongside or
instead of the scripting language.

5.11 Action Execution

Throughout this chapter we’ve talked about actions as if it were clear what they were. Everything
from decision trees to rule-based systems generates actions, and we’ve avoided being clear on what
format they might take.

Many developers don’t work with actions as a distinct concept. The result of each decision
making technique is simply a snippet of code that calls some function, tweaks some state variable,
or asks a different bit of the game (AI, physics, rendering, whatever) to perform some task.

On the other hand, it can be beneficial to handle a character’s actions through a central piece
of code. It makes the capabilities of a character explicit, makes the game more flexible (you can
add and remove new types of actions easily), and can aid hugely in debugging the AI. This calls
for a distinct concept for actions, with a distinct algorithm to manage and run them.

This section looks at actions in general and how they can be scheduled and executed through
a general action manager. The discussion about how different types of actions are executed is
relevant, even to projects that don’t use a central execution manager.

5.11.1 Types of Action

We can divide the kind of actions that result from AI decisions into four flavors: state change
actions, animations, movement, and AI requests.

State change actions are the simplest kind of action, simply changing some piece of the game
state. It is often not directly visible to the player. A character may change the firing mode of its
weapon, for example, or use one of its health packs. In most games, these changes only have
associated animations or visual feedback when the player carries them out. For other characters,
they simply involve a change in a variable somewhere in the game’s state.

Animations are the most primitive kind of visual feedback. This might be a particle effect
when a character casts a spell or a quick shuffle of the hands to indicate a weapon reload. Often,
combat is simply a matter of animation, whether it be the recoil from a gun, sheltering behind a
raised shield, or a lengthy combo sword attack.

5.11 Action Execution 481

Animations may be more spectacular. We might request an in-engine cutscene, sending the
camera along some predefined track and coordinating the movement of many characters.

Actions may also require the character to make some movement through the game level.
Although it isn’t always clear where an animation leaves off and movement begins, we are thinking
about larger scale movement here. A decision maker that tells a character to run for cover, to collect
a nearby power-up, or to chase after an enemy is producing a movement action.

In Chapter 3 on movement algorithms we saw the kind of AI that converts this kind of high-
level movement request (sometimes called staging) into primitive actions. These primitive actions
(e.g., apply such-and-such a force in such-and-such a direction) can then be passed to the game
physics, or an animation controller, to execute.

Although these movement algorithms are typically considered part of AI, we’re treating them
here as if they are just a single action that can be executed. In a game, they will be executed by
calling the appropriate algorithms and passing the results onto the physics or animation layer. In
other words, they will usually be implemented in terms of the next type of action.

In AI requests for complex characters, a high-level decision maker may be tasked with deciding
which lower level decision maker to use. The AI controlling one team in a real-time strategy game,
for example, may decide that it is time to build. A different AI may actually decide which building
gets to be constructed. In squad-based games, several tiers of AI are possible, with the output
from one level guiding the next level (we will cover specific tactical and strategic AI techniques in
Chapter 6).

A Single Action

The action that is output from a decision making tool may combine any or all of these flavors. In
fact, most actions have at least two of these components to them.

Reloading a weapon involves both a state change (replenishing ammo in the gun from the
overall total belonging to the character) and an animation (the hand shuffle). Running for cover
may involve an AI request (to a pathfinder), movement (following the path), and animation
(waving hands over head in panic). Deciding to build something may involve more AI (choosing
what to build) and animation (the construction yard’s chimney starts smoking).

Actions involving any animation or movement take time. State changes may be immediate,
and an AI request can be honored straight away, but most actions will take some time to complete.

A general action manager will need to cope with actions that take time; we can’t simply
complete the action in an instant.

Many developers engineer their AI so that the decision maker keeps scheduling the same
action every frame (or every time it is called) until the action is completed. This has the advantage
that the action can be interrupted at any time (see the next section), but it means that the
decision making system is being constantly processed and may have to be more complex than
necessary.

Take, for example, a state machine with a sleeping and on-guard state. When the character
wakes up, it will need to carry out a“wake-up”action, probably involving an animation and maybe
some movement. Similarly, when a character decides to take a nap, it will need a “go-to-sleep”
action. If we need to continually wake up or go to sleep every frame, then the state machine will
actually require four states, shown in Figure 5.56.

482 Chapter 5 Decision Making

Sleep Wake-up

Go-to-sleep On guard
[Tired]

[Rested]

[Go-to-sleep
animation
complete]

[Wake-up
animation
complete]

Figure 5.56 State machine with transition states

This isn’t a problem when we only have two states to transition between, but allowing tran-
sitions between five states would involve 40 additional transition states. It soon scales out of
control.

If we can support actions with some duration, then the wake-up action will simply be requested
on exiting the sleep state. The go-to-sleep action will likewise be carried out when entering the
sleep state. In this case, the state machine doesn’t need continual processing. After it signals that
it is waking up, we can wait until the character has played its waking animation before moving
onto the next thing.

Interrupting Actions

Because actions take time, they may start off being sensible things to do, but may end up being
stupid long before the action is complete. If a character is sent wandering off toward a power-up,
it will appear silly if it carries on toward the power-up after a squad of enemy units spring their
ambush: it’s time to stop going after the power-up and run away.

If a decision making system decides that an important action is needed, then it should be
able to trump other actions currently being carried out. Most games allow such emergencies
to even break the consistency of animation. While in normal circumstances a whole anima-
tion is played, if the character needs to do a rapid volte-face, the animation can be interrupted
for another (possibly with a couple of frames of blending between them to avoid a distinct
jump).

Our action manager should allow actions with higher importance to interrupt the execution
of others.

Compound Actions

It is rare for a character in a game to be doing only one thing at a time. The action of a character
is typically layered. They might be playing a “make-obscene-gesture” animation, while moving
around the level, while pursuing an enemy, while using a health pack.

5.11 Action Execution 483

It is a common implementation strategy to split these actions up so they are generated by
different decision making processes. We might use one simple decision maker to monitor health
levels and schedule the use of a health pack when things look dangerous. We might use another
decision maker to choose which enemy to pursue. This could then hand-off to a pathfinding
routine to work out a pursuit route. In turn, this might use some other AI to work out how to
follow the route and yet another piece of code to schedule the correct animations.

In this scenario, each decision making system is outputting one action of a very particular
form. The action manager needs to accumulate all these actions and determine which ones can
be layered.

An alternative is to have decision makers that output compound actions. In a strategy game,
for example, we may need to coordinate several actions in order to be successful. The decision
making system might decide to launch a small attack at a strong point in the enemy defense, while
making a full-strength flanking assault. Both actions need to be carried out together. It would be
difficult to coordinate separate decision making routines to get this effect.

In these cases the action returned from a decision making system will need to be made up of
several atomic actions, all of which are to be executed at the same time.

This is an obvious requirement, but one close to our hearts. One AI system we know of
ignored the need for compound actions until late in the development schedule. Eventually, the
decision making tool (including its loading and saving formats, the connections into the rest of
the game code, and the bindings to the scripting language and other tools) needed rewriting, a
major headache we could have avoided.

Scripted Actions

Developers and (more commonly) games journalists occasionally talk about “scripted AI” in a
way that has nothing to do with scripting languages. Scripted AI in this context usually means a
set of pre-programmed actions that will always be carried out in sequence by a character. There
is no decision making involved; the script is always run from the start.

For example, a scientist character may be placed in a room. When the player enters the
room, the script starts running. The character rushes to a computer bank, starts the self-destruct
sequence, and then runs for the door and escapes.

Scripting the behavior in this way allows developers to give the impression of better AI than
would be possible if the character needed to make its own decisions. A character can be scripted
to act spitefully, recklessly, or secretly, all without any AI effort.

This kind of scripted behavior is less common in current games because the player often has
the potential to disrupt the action. In our example, if the player immediately runs for the door
and stands there, the scientist may not be able to escape, but the script won’t allow the scientist to
react sensibly to the blockage. For this reason, these kinds of scripted actions are often limited to
in-game cutscenes in recent games.

Scripted behavior has been used for many years in a different guise without removing the
need for decision making.

Primitive actions (such as move to a point, play an animation, or shoot) can be combined into
short scripts that can then be treated as a single action. A decision making system can decide to
carry out a decision script that will then sequence a number of primitive actions.

484 Chapter 5 Decision Making

For example, it is common in shooters for enemy characters to use cover correctly in a firefight.
A character may lay down a burst of suppressing fire before rolling out of cover and running for
its next cover point. This script (fire, roll, run) can be treated as a whole, and the decision making
system can request the whole sequence.

The sequence of actions becomes a single action as far as the decision making technique is
concerned. It doesn’t need to request each component in turn. The “run to new cover” action will
contain each element.

This approach gives some of the advantages of the scripted AI approach, while not putting the
character at the mercy of a changing game environment. If the character gets blocked or thwarted
in the middle of its script, it can always use its decision making algorithms to choose another
course of action.

Scripted actions are similar to compound actions, but their elements are executed in sequence.
If we allow compound actions to be part of the sequence, then the character can perform any
number of actions at the same time and any number of actions in sequence. This gives us a
powerful mechanism.

We will return to scripted actions in Chapter 6. When it comes to coordinating the actions of
several characters at the same time, scripted actions can be a crucial technology, but they need to
have several characteristics that we’ll discuss in Section 6.4.3.

An Aside on Scripts

In our opinion, this kind of action script is an essential element of modern game AI development.
It may seem like we’re belaboring an obvious point here, but the industry has known about scripts
for a long time. They aren’t new and they aren’t clever, so what’s all the fuss about?

Our experience has shown that developers regularly get caught up in researching new tech-
nologies to provide results that would be more cheaply and reliably achieved with this “low-tech”
approach. A number of developers we’ve seen have experimented with higher level decision mak-
ing techniques intended to give the illusion of a deeper intelligence (such as neural networks and
emotional and cognitive modeling), none of which gives convincing results at the current state of
the art.

Companies such as Valve and EA have realized that most of the effect can be achieved without
the technical headaches and for a fraction of the cost using decision scripts of this kind.

While they could be seen as a hacked approach, it is difficult to overestimate their practical
value, especially considering how easy they are to implement. Too often they are dismissed because
of the bad reputation of scripted AI. Our advice is to use them freely, but don’t brag about it on
the box!

5.11.2 The Algorithm

We will deal with three different types of action. Primitive actions represent state changes, anima-
tions, movement, and AI requests. In this implementation the action is responsible for carrying
out its effect. The implementation notes discussed later cover this assumption in more detail. In

5.11 Action Execution 485

addition to primitive actions, we will support compound actions of two types: action combina-
tions and action sequences.

Action combinations provide any set of actions that should be carried out together. A reload
action, for example, may consist of one animation action (play the shuffle-hands animation, for
example) and a state change action (reset the ammo in the current weapon). We assume that all
actions in a combination can be executed at the same time.

Action sequences are identical in structure to action combinations but are treated as a sequen-
tial set of actions to carry out, one after another. The sequence waits until its first action is complete
before going on to another. Action sequences can be used for actions such as “pull door lever,”
which involves movement (go to the lever) followed by animation (pull the lever) followed by a
state change (change the door’s locked status). The actions in an action sequence can be action
combinations (i.e., carry out a bunch of actions all together, then another bunch, and so on) or
vice versa. Compound actions can be nested in any combination to any depth.

Every action (primitive or compound) has an expiry time and a priority. The expiry time
controls how long the action should be queued before it is discarded, and the priority controls
whether an action has priority over another. In addition, it has methods that we can use to
check if it has completed, if it can be executed at the same time as another action, or if it should
interrupt currently executing actions. Action sequences keep track of their component action
that is currently active and are responsible for updating this record as each subsequent action
completes.

The action manager contains two groups of actions: the queue is where actions are initially
placed and wait until they can be executed, and the active set is a group of actions that are currently
being executed.

Actions from any source are passed to the action manager where they join the queue. The
queue is processed, and high-priority actions are moved to the active set, as many as can be
executed at the same time, in decreasing order of priority. At each frame, the active actions are
executed, and if they complete, they are removed from the set.

If an item is added to the queue and wants to interrupt the currently executing actions, then it
is checked for priority. If it has higher priority than the currently executing actions, it is allowed
to interrupt and is placed in the active set.

If there are no currently executing actions (they have been completed), then the highest
priority action is moved out of the queue into the active set. The manager then adds the next
highest priority action if it can be simultaneously executed, and so on until no more actions can
be added to the currently active set.

5.11.3 Pseudo-Code

The action manager implementation looks like the following:

1 class ActionManager:
2

3 # Holds the queue of pending actions
4 queue

486 Chapter 5 Decision Making

5

6 # The currently executing actions
7 active
8

9 # The current time, a simple counter in this case
10 currentTime
11

12 # Adds an action to the queue
13 def scheduleAction(action):
14

15 # Add it to the queue.
16 queue += action
17

18 # Processes the manager.
19 def execute():
20

21 # Update the time
22 currentTime += 1
23

24 # Go through the queue to find interrupters
25 for action in queue:
26

27 # If we drop below active priority, give up
28 if action.priority <= active.getHighestPriority():
29 break
30

31 # If we have an interrupter, interrupt
32 if action.canInterrupt():
33 active.clear()
34 active = [action]
35

36 # Try to add as many actions to active set as possible
37 for action in copy(queue):
38

39 # Check if the action has timed out
40 if action.expiryTime < currentTime:
41

42 # Remove it from the queue
43 queue -= action
44

45 # Check if we can combine
46 for activeAction in active:
47 if not action.canDoBoth(activeAction):
48 break continue # i.e., go to next action in queue

5.11 Action Execution 487

49

50 # Move the action to the active set
51 queue -= action
52 active += action
53

54 # Process the active set
55 for activeAction in copy(active):
56

57 # Remove completed actions
58 if activeAction.isComplete():
59 active -= activeAction
60

61 # Execute others
62 else:
63 activeAction.execute()

The execute function performs all the scheduling, queue processing, and action execution.
The scheduleAction function simply adds a new action to the queue.

The copy function creates a copy of a list of actions (either the queue or the active set). This
is needed in both top-level loops in the process function because items may be removed from the
list within the loop.

5.11.4 Data Structures and Interfaces

The action manager relies on a general action structure with the following interface:

1 struct Action:
2 expiryTime
3 priority
4 def canInterrupt()
5 def canDoBoth(otherAction)
6 def isComplete()

Fundamental actions will have different implementations for each method. The compound
actions can be implemented as sub-classes of this base Action.

Action combinations can be implemented as:

1 struct ActionCombination (Action):
2

3 # Holds the sub-actions
4 actions
5

488 Chapter 5 Decision Making

6 def canInterrupt():
7 # We can interrupt if any of our sub-actions can
8 for action in actions:
9 if action.canInterrupt(): return true

10 return false
11

12 def canDoBoth(otherAction):
13 # We can do both if all of our sub-actions can
14 for action in actions:
15 if not action.canDoBoth(otherAction): return false
16 return true
17

18 def isComplete():
19 # We are complete if all of our sub-actions are
20 for action in actions:
21 if not action.isComplete(): return false
22 return true
23

24 def execute():
25 # Execute all of our sub-actions
26 for action in actions: action.execute()

Action sequences are just as simple. They only expose one sub-action at a time. They can be
implemented as:

1 struct ActionSequence (Action):
2

3 # Holds the sub-actions
4 actions
5

6 # Holds the index of the currently executing sub-action
7 activeIndex = 0
8

9 def canInterrupt():
10 # We can interrupt if our first sub-actions can
11 return actions[0].canInterrupt()
12

13 def canDoBoth(otherAction):
14 # We can do both if all of our sub-actions can
15 # If we only tested the first one, we’d be in danger
16 # of suddenly finding ourselves incompatible
17 # mid-sequence
18 for action in actions:

5.11 Action Execution 489

19 if not action.canDoBoth(otherAction): return false
20 return true
21

22 def isComplete():
23 # We are complete if all of our sub-actions are
24 return activeIndex >= len(actions)
25

26 def execute()
27

28 # Execute our current action
29 actions[activeIndex].execute()
30

31 # If our current action is complete, go to the next
32 if actions[activeIndex].isComplete():
33 activeIndex += 1

In addition to the action structures, the manager algorithm has two list structures: active and
queue, both of which keep their component actions in decreasing priority order at all times. For
actions with identical priority values, the order is undefined. Marginally better performance can
be gained by ordering identical priorities by increasing expiry time (i.e., those closer to expiring
are nearer the front of the list).

In addition to its list-like behavior (adding and removing items, the clear method), the active
list has one method: getHighestPriority returns the priority of the highest priority action (i.e.,
the first in the list).

5.11.5 Implementation Notes

The active and queue lists should be implemented as priority heaps: data structures that always
retain their content in priority order. Priority heaps are a standard data structure detailed in any
algorithms text. They are discussed in more detail in Chapter 4.

We have assumed in this algorithm that actions can be executed by calling their execute
method. This follows the polymorphic structure used for algorithms throughout the book. It may
seem odd to have created an action manager so that decision makers weren’t running arbitrary
bits of code, only to then have the actions call an opaque method.

As we saw at the start of this section, actions typically come in four flavors. A full implementa-
tion, such as the one given on the website, has four types of actions, one for each flavor. Each type

Library

of action is executed in a different way by the game: state changes are simply applied to the game
state, animations are handled by an animation controller, movement is handled by movement
algorithms found later in this book, and AI requests can be processed by any other decision maker.
The code on the website uses only four classes, one for each action. Parameters within each of
those classes determine how the action is executed.

490 Chapter 5 Decision Making

Debugging

One major advantage with channeling all character actions through a central point is the ability
to add simple reporting and logging for debugging. In the execute method of each action class we
can add code that outputs logging data: the action can carry with it any information that might
help debugging (e.g., the decision maker that gave rise to the action, the time it was added to the
queue, whether it is complete or not, and so on).

Our experience in trying to debug decentralized AI has led us to come back to a centralized
action system on many occasions. We feel that debugging is the best reason to always use some
kind of centralized approach, whether it is as complete as the one above or it is a simple first-in
first-out queue.

5.11.6 Performance

The algorithm is O(n) in memory, where n is the maximum number of actions in the queue. The
algorithm assumes that action producers will behave nicely. If an action producer dumps an action
in the queue every frame, then the queue can rapidly grow unwieldy. The expiry time mechanism
will help, but probably not fast enough. The best solution is to make sure contributors to the
manager do not flood it. In an environment where that can’t be guaranteed (when the manager
is receiving actions from user scripts, for example), a limit can be placed on the size of the queue.
When a new action is added to a full queue, the lowest priority element is removed.

The algorithm is O(mh) in time, where m is the number of actions in the active set, including
sub-actions of a compound action, and h is the number of actions in the queue, again including
sub-actions (n in the last paragraph refers to actions in the queue excluding sub-actions). This
timing is due to the canDoBoth test, which tries all combinations of items in the queue with
those in the active set. When there are many actions in both lists, this can become a major
issue.

In this case, we can make the algorithm less flexible. The ability to combine actions in the
active list can easily be removed, and we can enforce that all simultaneous actions be explicitly
requested by embedding them in an action combination structure. This reduces the algorithm to
O(h) in time.

Typically, however, only a few actions are present in the manager at any one time, and the
checks do not pose a significant problem.

5.11.7 Putting It All Together

Figure 5.57 shows a complete AI structure using the action manager.
An alarm mechanism is updated every frame and can schedule emergency actions if needed.

The queue of actions is then queued. There is a single decision making system, which is called
whenever the action queue is empty (it may be made up of many component decision making
tools). When a valid action is in the queue, it is sent to be executed. The execution may be
performed by sending requests to the game state, the animation controller, the movement AI, or

5.11 Action Execution 491

Action manager Action queue Decision maker Alarm system Action execution

Called once
per frame

Process alarm
mechanism

Get next
action

Get next
action

Schedule
action

Schedule
action

[While no
action but

time
available]

Process
decision maker

Execute action

Figure 5.57 The action manager in context

some subsidiary decision maker. If the system runs out of processing time before an action is
added to the queue, then it simply returns having done nothing.

This structure represents a comprehensive architecture for building a sophisticated character.
It may be overkill for simple, quick-to-implement AI for subsidiary characters. The flexibility it
provides can be very useful during AI development, as characters inevitably require more complex
behaviors.

On the Website

The Action Manager program that is available on the website allows you to manually schedule

Program

new actions and to see the current state of the queue and active set change. Actions can be added
with different priorities, different expiry times, and different abilities to interrupt.

Compound actions can also be added and introduced into the queue. Because of the user-
interface complexity it would require, the program does not allow you to nest compound actions.
The source code is fully general, however, and you are welcome to modify the program to experi-
ment with deeper hierarchies.

This page intentionally left blank

6
Tactical and
Strategic AI

he decision making techniques we looked at in the last chapter have two importantT limitations: they are intended for use by a single character, and they don’t try to infer
from the knowledge they have a prediction of the whole situation.

Each of these limitations is broadly in the category of tactics and strategy. This chapter
looks at techniques that provide a framework for tactical and strategic reasoning in characters.
It includes methods to deduce the tactical situation from sketchy information, to use the tactical
situation to make decisions, and to coordinate between multiple characters.

In the model of AI we’ve been using so far, this provides the third layer of our system, as shown
in Figure 6.1.

It is worth remembering again that not all parts of the model are needed in every game.
Tactical and strategic AI, in particular, is simply not needed in many game genres. Where players
expect to see predictable behavior (in a two-dimensional [2D] shooter or a platform game, for
example), it may simply frustrate them to face more complex behaviors.

Looking at the developments being made in game AI, it is clear to us that tactical and
strategic AI will be one of the key fields for the next five years. We have seen a rapid
increase in the tactical capabilities of AI-controlled characters over the last five years, and given
the techniques we know are being researched at the moment we’ll probably see that trend
continue.

Copyright © 2009 by Elsevier Inc. All rights reserved. 493

494 Chapter 6 Tactical and Strategic AI

AI gets given processor time

AI has implications for
related technologies

AI gets turned into on-screen action

AI gets its
information

Character AI

Group AI

Execution management

Content creation

Decision making

W
or

ld
 in

te
rf

ac
e

Movement

Animation Physics

Scripting

Strategy

Figure 6.1 The AI model

6.1 Waypoint Tactics

A waypoint is a single position in the game level. We met waypoints in Chapter 4, although there
they were called “nodes” or “representative points.” Pathfinding uses nodes as intermediate points
along a route through the level. This was the original use of waypoints, and the techniques in this
section grew naturally from extending the data needed for pathfinding to allow other kinds of
decision making.

When we used waypoints in pathfinding, they represented nodes in the pathfinding graph,
along with associated data the algorithm required: connections, quantization regions, costs, and
so on. To use waypoints tactically, we need to add more data to the nodes, and the data we store
will depend on what we are using the waypoints for.

In this section we’ll look at using waypoints to represent positions in the level with unusual
tactical features, so a character occupying that position will take advantage of the tactical feature.
Initially, we will consider waypoints that have their position and tactical information set by the
game designer. Then, we will look at ways to deduce first the tactical information and then the
position automatically.

6.1.1 Tactical Locations

Waypoints used to describe tactical locations are sometimes called “rally points.” One of their
early uses in simulations (in particular military simulation) was to mark a fixed safe location
that a character in a losing firefight could retreat to. The same principle is used in real-world
military planning; when a platoon engages the enemy, it will have at least one pre-determined safe
withdrawal point that it can retreat to if the tactical situation warrants it. In this way a lost battle
doesn’t always lead to a rout.

6.1 Waypoint Tactics 495

More common in games is the use of tactical locations to represent defensive locations, or
cover points. In a static area of the game, the designer will typically mark locations behind barrels
or protruding walls as being good cover points. When a character engages the enemy, it will move
to the nearest cover point in order to provide itself with some shelter.

There are other popular kinds of tactical locations. Sniper locations are particularly important
in squad-based shooters. The level designer marks locations as being suitable for snipers, and then
characters with long-range weapons can head there to find both cover and access to the enemy.

In stealth games, characters that also move secretly need to be given a set of locations where
there are intense shadows. Their movement can then be controlled by moving between shadow
regions, as long as enemy sight cones are diverted (implementing sensory perception is covered
in Chapter 10, World Interfacing).

There are unlimited different ways to use waypoints to represent tactical information. We
could mark fire points where a large arc of fire can be achieved, power-up points where power-ups
are likely to respawn, reconnaissance points where a large area can be viewed easily, quick exit
points where characters can hide with many escape options if they are found, and so on. Tactical
points can even be locations to avoid, such as ambush hotspots, exposed areas, or sinking sand.

Depending on the type of game you are creating, there will be several kinds of tactics that
your characters can follow. For each of these tactics, there are likely to be corresponding tactical
locations in the game, either positive (locations that help the tactic) or negative (locations that
hamper it).

A Set of Locations

Most games that use tactical locations don’t limit themselves to one type or another. The game
level contains a large set of waypoints, each labeled with its tactical qualities. If the waypoints
are also used for pathfinding, then they will also have pathfinding data such as connections and
regions attached.

In practice, locations for cover and sniper fire are not very useful as part of a pathfinding
graph. Figure 6.2 illustrates this situation. Although it is most common to combine the two sets
of waypoints, it may provide more efficient pathfinding to have a separate pathfinding graph and
tactical location set. You would have to do this, of course, if you were using a different method for
representing the pathfinding graph, such as navigation meshes or a tile-based world.

We will assume for most of this section that the locations we are interested in are not necessarily
part of the pathfinding graph. Later, we’ll see some situations in which merging the two together
can provide very powerful behavior with almost no additional effort. In general, however, there
is no reason to link the two techniques.

Figure 6.2 shows a typical set of tactical locations for an area of a game level. It combines three
types of tactical locations: cover points, shadow points, and sniping points. Some points have
more than one tactical property. Most of the shadow points are also cover points, for example.
There is only one tactical location at each of these locations, but it has both properties.

Marking all useful locations can produce a large number of waypoints in the level. To get very
good quality behavior, this is necessary but time consuming for the level designer. Later in the
section we’ll look at some methods of automatically generating the waypoint data.

496 Chapter 6 Tactical and Strategic AI

Cover

Cover

Cover/shadow

Sniping/cover/shadow

Shadow/
sniping

Figure 6.2 Tactical points are not the best pathfinding graph

Primitive and Compound Tactics

In most games, having a set of pre-defined tactical qualities (such as sniper, shadow, cover, etc.)
is sufficient to support interesting and intelligent tactical behavior. The algorithms we’ll look at
later in this section make decisions based on these fixed categories.

We can make the model more sophisticated, however. When we looked at sniper locations,
we mentioned that a sniper location would have good cover and provide a wide view of the
enemy. We can decompose this into two separate requirements: cover and view of the enemy. If
we support both cover points and high visibility points in our game, we have no need to specify
good sniper locations. We can simply say the sniper locations are those points that are both cover
points and reconnaissance points. Sniper locations have a compound tactical quality; they are
made up of two or more primitive tactics.

We don’t need to limit ourselves to a single location with both properties, either. When a
character is on the offensive in a firefight, it needs to find a good cover point very near to a
location that provides clear fire. The character can duck into the cover point to reload or when
incoming fire is particularly dense and then pop out into the fire point to attack the enemy. We
can specify that a defensive cover point is a cover point with a fire point very near (often within
the radius of a sideways roll: the stereotypical animation for getting in and out of cover).

In the same way, if we are looking for good locations to mount an ambush, we could look
for exposed locations with good hiding places nearby. The “good hiding places” are compound
tactics in their own right, combining locations with good cover and shadow.

Figure 6.3 shows an example. In the corridor, cover points, shadow points, and exposed points
are marked. We decide that a good ambush point is one with both cover and shadow, next to an
exposed point. If the enemy moves into the exposed point, with a character in shadow, then it will
be susceptible to attack. The good ambush points are marked in the figure.

6.1 Waypoint Tactics 497

Cover

Cover/shadow

Cover

Sniping/cover/shadow

Exposed

Exposed

Shadow

Exposed

Ambush points

Figure 6.3 Ambush points derived from other locations

We can take advantage of these compound tactics by storing only the primitive qualities. In
the example above, we stored three tactical qualities: cover, shadow, and exposure. From these we
could calculate the best places to lay or avoid an ambush. By limiting the number of different
tactical qualities, we can support a huge number of different tactics without making the level
designer’s job impossible or flooding the memory with waypoint data that are rarely needed. On
the other hand, what we gain in memory, we lose in speed. To work out the nearest ambush point,
we would need to look for cover points in shadow and then check each nearby exposed point to
make sure it was within the radius we were looking for.

In the vast majority of cases this extra processing isn’t important. If a character needs to find
an ambush location, for example, then it is likely to be able to think for several frames. Decision
making based on tactical locations isn’t something a character needs to do every frame, and so for
a reasonable number of characters time isn’t of the essence.

For lots of characters or if the set of conditions is very complex, however, the waypoint sets
can be pre-processed offline, and all the compound qualities can be identified. This doesn’t save
memory when the game is running, but it removes the need for the level designer to specify all the
qualities of every location. This can be taken further, and we can use algorithms to detect even the
primitive qualities. We will return to algorithms for automatically detecting primitive qualities
later in this section.

Waypoint Graphs and Topological Analysis

The waypoints we have looked at so far are separate, isolated locations. There is no information as
to whether one waypoint can be reached from another. We mentioned at the start of this section
the similarity of waypoints to nodes in a pathfinding graph. We can certainly use nodes in a

498 Chapter 6 Tactical and Strategic AI

pathfinding graph as tactical locations (although they aren’t always the best suited, as we’ll see
later in Section 6.3 on tactical pathfinding).

But even if we aren’t using a pathfinding graph, we can link together tactical locations to give
access to more sophisticated compound tactics.

Let’s suppose that we’re looking for somewhere that provides a good location to mount a hit
and run attack. The set of waypoints in Figure 6.4 shows part of a level to consider. Waypoints are
connected when one can be reached from the other directly. There are no connections through
the wall, for example. In the balcony we have a location (A) with good visibility of the room, a
candidate for an attack spot. Similarly, there is one other location in a small anteroom (B) that
might be useful.

The balcony is obviously better than the anteroom because it has three exits, only one of
which leads into the room. If we are looking to perform a hit and run attack, then we need to find
locations with good visibility, but lots of exit routes.

This is a topological analysis. It reasons about the structure of the level by looking at the
properties of the waypoint graph. It is a kind of compound tactic, but one that uses the connections
between waypoints as well as their tactical qualities and positions.

Topological analysis can be performed using the pathfinding graph, or it can be performed on
basic tactical waypoints. It does require connections between waypoints, however. Without these
connections, we wouldn’t know whether the nearby waypoints constitute exit routes or whether
there was a wall between them.

Unfortunately, this kind of topological analysis can rapidly get complicated. It is extremely
sensitive to the density of waypoints. Take location C in Figure 6.4. Once again the shooting
position has three exit routes. In this case, however, they all lead to locations in the same vicinity
with immediate escape. The character looking for a good hit and run location based on the
number of exits alone might mistakenly mount its attack in the middle of the room.

Of course, we can make the topological analysis algorithm more sophisticated. We could look
not just at the number of connections, but also where those connections lead, and so on.

Stairs

A

B

C

Figure 6.4 Topological analysis of a waypoint graph

6.1 Waypoint Tactics 499

In our experience the complexity of this kind of analysis is formidable and beyond what
most developers want to spend time implementing and tweaking. In our opinion there isn’t a
dilemma between developing a comprehensive topological analysis system and having a level
designer simply specify the appropriate tactical locations. For all but the simplest analysis, the
level designer gets the job every time.

Automatic topological analysis comes up from time to time in books and papers. Our advice
would be to treat it with caution, unless you can spare a couple of months of playing to get it
right. The manual way is often less painful in the long run.

Continuous Tactics

To support more complicated compound tactics, we can move away from simple Boolean states.
Rather than marking a location as being “cover” or “shadow,” for example, we can provide a
numerical value for each. A waypoint will have a value for “cover” and a different value for
“shadow.”

The meaning of these values will depend on the game, and they can have any range that
is convenient. For the purpose of clarity, however, let’s assume the values are floating points in
the range (0,1), where a value of 1 indicates that the waypoint has the maximum amount of a
property (a maximum amount of cover or shadow, for example). The value doesn’t have to be
floating point. If we were developing a game for a memory-limited platform or a game without
optimized floating point hardware, we could as easily use an integer in the range (0,255).

On its own we can use this information to simply compare the quality of a waypoint. If a
character is trying to find cover, and it has equally achievable options between a waypoint with
cover = 0.9 or cover = 0.6, it should head for the waypoint with cover = 0.9.

We can also interpret these values as a degree of membership of a fuzzy set (we looked at the
basics of fuzzy logic in Chapter 5, Decision Making). A waypoint with a “cover” value of 0.9 has a
high degree of membership in the set of cover locations.

Interpreting the values as degrees of membership allows us to produce values for compound
tactics using the fuzzy logic rule. Recall that we defined a sniper location as a waypoint that had
both a view of the enemy and good cover. In other words,

sniper = cover AND visibility.

If we have a waypoint with cover = 0.9 and visibility = 0.7, we can use the fuzzy rule:

m(A AND B) = min(mA,mB),

where mA and mB are the degrees of membership of A and B. Adding in our data, we get

msniper = min(mcover,mvisibility)

= min(0.9,0.7)

= 0.7.

500 Chapter 6 Tactical and Strategic AI

So we can derive the quality of a sniper location and use that as the basis of a character’s tactical
actions. This example is very simple, using just AND to combine its components. As we saw in
the previous section, we can devise considerably more complex conditions for compound tactics.
Interpreting the values as degrees of membership in fuzzy states allows us to work with even the
most complex definitions made up of lots of clauses. It provides a tried and tested mechanism for
ending up with a dependable value.

The disadvantage of using this approach is that each waypoint needs to have a complete set
of values stored for it. If we are keeping track of five different tactical properties, then for the
non-numeric situation we only need to keep a list of waypoints in each set. There is no wasted
storage. On the other hand, if we store a numeric value for each, then there will be five numbers
for each waypoint.

We can slightly reduce the need for storage by not storing zero values, although this makes
things more complex because we need a reliable way to store both the value and the meaning of
that value (if we always store the five numbers, then we can tell what each number means by its
position in the array).

For large outdoor worlds, such as those used in real-time strategy (RTS) or massively multi-
player games, we might be driven to save memory. In most shooters, however, the extra memory
is unlikely to cause problems.

Context Sensitivity

However, there is still a problem with marking tactical locations in the way we’ve described so far.
The tactical properties of a location are almost always sensitive to actions of the character or the
current state of the game.

Hiding behind a barrel, for example, might produce cover only if the character is crouched.
If the character stands behind the barrel, it is a sitting duck for incoming fire. Likewise, hiding
behind a protruding rock is of no use if the enemy is behind you. The aim is to put the rock
between the character and the incoming fire.

This problem isn’t limited to just cover points. Any of the tactical locations in this section may
be invalid in certain circumstances. If the enemy manages to mount a flank attack, then there is
no use heading for a withdrawal location which is now behind enemy lines.

Some tactical locations have an even more complicated context. A sniper point is likely to be
useless if everyone knows the sniper is camped there. Unless it happens to be an impenetrable
hideout (which is a sign of faulty level design, we would suggest), then sniper positions depend
to some extent on secrecy.

There are two options for implementing context sensitivity. First, we could store multiple
values for each node. A cover waypoint, for example, might have four different directions. For
any given cover point, only some of those directions are covered. We call these four directions the
states of the waypoint. For cover, we have four states, and each of these may have a completely
independent value for the quality of the cover (or just a different yes/no value if we aren’t using
continuous tactic values). We could use any number of different states. We might have an addi-
tional state that dictates whether the character needs to be ducking to receive cover, for example,
or additional states for different enemy weapons; a location that provides cover from small arms
fire might not protect its inhabitant from an RPG.

6.1 Waypoint Tactics 501

For tactics where the set of states is fairly obvious, such as cover or firing points (we can use the
four directions again as firing arcs), this is a good solution. For other types of context sensitivities,
such as the withdrawal location example, it is difficult to come up with a sensible set of different
states for the territory controlled by the enemy, for example.

The second approach is to use only one state per waypoint, as we have seen throughout this
section. Rather than treating this value as the final truth about the tactical quality of a waypoint,
we add an extra step to check if it is appropriate. This checking step can consist of any check
against the game state. In the cover example we might check for line of sight with our enemies.
In the withdrawal example we might check on an influence map (see Section 6.2.2 on influence
mapping later in this chapter) to see if the location is currently under enemy control.

In the sniper example we could simply keep a list of Boolean flags to track if the enemy has
fired toward a sniper location (a simple heuristic to approximate if the enemy knows the location is
there). This post-processing step has similarities to the processing used to automatically generate
the tactical properties of a waypoint. We’ll return to these techniques later.

As an example of each approach, consider a character that needs to choose a cover point to
reload behind during a firefight. There are two cover points nearby that it can select from, as
shown in Figure 6.5.

In the diagram on the left of Figure 6.5 the cover points are shown with their quality of cover in
each of the four directions. The character works out the direction to each enemy and determines
that it needs cover from the south and east directions. So the character checks for a cover point
that provides that. Cover point B does, and it selects that point.

In the diagram on the right of Figure 6.5 we use a post-processing step. The character checks
the line of sight from both cover points to both enemies. It determines that cover point B does not
have a line of sight to either, so it is preferable to cover point A that has a line of sight to one enemy.

The trade-off between these two methods is between quality, memory, and execution speed.
Using multiple states per waypoint makes decision making fast. We don’t need to perform any

Indicates the pre-determined
directions of cover

Cover point B

Cover point A

Character
needing cover

Enemy

Enemy

Indicates ray checks
made from a cover point

Cover point B

Cover point A

Character
needing cover

Enemy

Enemy

Figure 6.5 A character selecting a cover point in two different ways

502 Chapter 6 Tactical and Strategic AI

tactical calculations during the game. We just need to work out which states we are interested
in. On the other hand, to get very high-quality tactics we may need a huge number of states.
If we need cover in four directions, both standing and crouched, against any of five different
types of weapons, we’d need 40 states for a cover waypoint. Clearly, this can very quickly become
too much.

Performing a post-processing step gives us much more flexibility. It allows the character to
take advantage of quirks in the environment. A cover point may not provide cover to the north
except for attacks from a particular walkway (the position of a roof girder provides cover there,
for example). If the enemy is on that walkway, then the cover point is valid. Using a simple state
for the cover from northerly attacks would not allow the character to take advantage of this.

On the other hand, post-processing takes time, especially if we are doing lots of line-of-sight
checks through the level geometry. In several games we’ve seen, tactical line-of-sight checks have
taken up the majority of all the AI time used in the game, over 30% of the total processor time in
some cases. If you have a lot of characters that have to react quickly to changing tactical situations,
this may be unacceptable. If the characters can afford to take a couple of seconds to weigh up their
options, then it is unlikely to be a problem.

In our opinion, the games that really benefit from good tactical play, such as squad-based
shooters, need the post-processing approach. For other games where tactics aren’t the focus, a small
number of states will be sufficient. We know of one developer who combined both approaches
in the same game, with a good deal of success: the multiple states provided a filtering mechanism
that reduced the number of different cover waypoints that needed line-of-sight checks.

Putting It Together

We’ve considered a range of complexities for tactical waypoints, from a simple label for the
tactical quality of a location through to compound, context-sensitive tactics based on fuzzy logic.
In practice, most games don’t need to go the whole way.

Many games can get away with simple tactical labels. If this produces odd behavior, then the
next stage to implement is context sensitivity, which provides a huge increase in the competency
of the AI.

Next, we would advise trying to add continuous tactical values and allow characters to make
decisions based on the quality of a waypoint.

For highly tactical games where the quality of the tactical play is a selling point for the game,
using compound tactics (with fuzzy logic) then allows you to support new tactics without adding
or changing the information that the level designer needs to create. So far we haven’t worked on
a game that has gone this far, although it isn’t new in the field of military simulation.

6.1.2 Using Tactical Locations

So far we’ve looked at how a game level can be augmented with tactical waypoints. However,
on their own they are just values. We need some mechanism to include their data into decision
making.

6.1 Waypoint Tactics 503

We’ll look at three approaches. The first is a very simple process for controlling tactical move-
ment. The second incorporates tactical information into the decision making process. The third
uses tactical information during pathfinding to produce character motion that is always tactically
aware. None of these three approaches is a new algorithm or technique. They are simply ways in
which to bring the tactical information into the algorithms we looked at in previous chapters.

For now, we’ll limit our focus to decision making for a single character. Later, in Section 6.4,
we’ll return to the task of coordinating the actions of several characters, while making sure they
remain tactically aware.

Simple Tactical Movement

In most cases a character’s decision making process implies what kind of tactical location it needs.
For example, we might have a decision tree that looks at the current state of the character, its
health and ammo supply, and the current position of the enemy. The decision tree is run, and the
character decides that it needs to reload its weapon.

The action generated by the decision making system is “reload.” This could be achieved simply
by playing the reload animation and updating the number of rounds in the character’s weapon.
Alternatively, and more tactically, we can choose to find a suitable place to reload, under cover.

This is simply achieved by querying the tactical waypoints in the immediate vicinity. Suitable
waypoints (in our case, waypoints providing cover) are found, and any post-processing steps are
taken to ensure that they are suitable for the current context.

The character then chooses a suitable location and uses it as the target of its movement. The
choice can be simply “the nearest suitable location,” in which case the character can begin with
the nearest waypoint and check them in order of increasing distance until a match is found.
Alternatively, we can use some kind of numeric measure of how good a location is. If we are
using continuous values for the quality of a waypoint, this might be what we need. We are not
necessarily interested in selecting the best node in the whole level, however. There is no point in
running all the way across the map just to find a really secure location to reload. Instead, we need
to balance distance and quality.

This approach makes the action decision first, independent of the tactical information, and
then applies tactical information to achieve its decision. It is a powerful technique on its own and
forms the basis of most squad-based AI. It is the bread and butter of shooters right through to
present titles.

It does have a significant limitation, however. Because the tactical information isn’t used in
the decision making process, we may end up discovering the decision is foolish only after the
decision has been made. We might find, for example, that after making a decision to reload, we
can’t find anywhere safe nearby to do so. A person in this situation would try something different.
For example, he may choose to run away. If the character is committed to the decision, however,
then it will be stuck.

Games rarely allow the AI to detect this and go back and reconsider the decision, so it can
cause problems.

In most games this isn’t a significant problem in practice, particularly if the level designer is
clued up. Every area in the game usually has several tactical points of each type (with the exception

504 Chapter 6 Tactical and Strategic AI

of sniping points, perhaps, but we normally don’t mind if characters go wandering off a long way
to find these).

When it is an issue, however, we need to take account of the tactical information in the original
decision making process.

Using Tactical Information Like Any Other Data

The simplest way to bring tactical information into the decision making process is to give the
decision maker access to it in the same way as it has access to other information about the game
world.

If we want to use a decision tree, for example, we could allow decisions to be made based on
the tactical context of the character. We might make a decision based on the nearest cover point,
as Figure 6.6 shows. The character in this case will not decide to head for cover and then find there
is no suitable cover. The decision to move to cover takes into account the availability of cover
points to move to.

Similarly, if we are using a state machine we might only trigger certain transitions based on
the availability of waypoints.

In both of these cases we should keep track of any suitable waypoints we find during decision
making so that we can use them after the decision has been made. If the decision tree in the first
example ends up suggesting the “take cover” action, then we will need to work out which cover
point to take cover in.

This involves the same search for nearby decision points that we had using the simple tactical
movement approach previously. To avoid a duplication of effort, we cache the cover point that is
found during the decision tree processing. We then use that target in the movement AI and move
directly toward it without further search.

Do I have ammo?

No

No No

Yes

Yes Yes

NoYes

Is there cover nearby?

Is there
cover nearby?

Can I see an enemy?

Hunt
enemy

Take
cover

Attack
Take
cover

Reload

Figure 6.6 Tactical information in a decision tree

6.1 Waypoint Tactics 505

Tactical Information in Fuzzy Logic Decision Making

For both decision trees and state machines, we can use tactical information as a yes or no
condition, either at a decision node in the decision tree or as a condition of making a state
transition.

In both cases we are interested in finding a tactical location where some condition is met (it
might be to find a tactical location where the character can take cover, for example). We aren’t
interested in the quality of the tactical location.

We can go one stage further and allow the decision making to take account of the quality of a
tactical location as it makes a decision. Imagine a character is weighing up two strategies. It might
camp out behind cover and provide suppression fire, or it might take up a position in shadow
ready to lay an ambush to unwary enemies passing by. We are using continuous tactical data for
each location, and the cover quality is 0.7 while the shadow quality is 0.9.

Using a decision tree, we would simply check if there is a cover point, and upon finding that
there is, the character would follow the suppression fire strategy. There is no sense in weighing up
the pros and cons of each option.

If we use a fuzzy decision making system, however, we can use the quality values directly in
the decision making process. Recall from Chapter 5 that a fuzzy decision making system has a set
of fuzzy rules. These rules combine the degrees of membership of several fuzzy sets into values
that indicate which action is preferred.

We can incorporate our tactical values directly into this method, as another degree of mem-
bership value.

For example, we might have the following rules:

IF cover-point THEN lay-suppression-fire

IF shadow-point THEN lay-ambush

For the tactical values given above, we get the following result:

lay-suppression-fire: membership = 0.7

lay-ambush: membership = 0.9

If the two values are independent (i.e., if it is impossible to do both at once, which we’ll assume
it is), then we choose lay-ambush as the action to take.

The rules can be significantly more complex, however:

IF cover-point AND friend-moving THEN lay-suppression-fire

IF shadow-point AND no-visible-enemies THEN lay-ambush

Now if we have the memberships values:

friend-moving = 0.9

no-visible-enemies = 0.5

506 Chapter 6 Tactical and Strategic AI

we would end up with the results:

lay-suppression-fire: membership = min(0.7,0.9) = 0.7

lay-ambush: membership = min(0.9,0.5) = 0.5

and the correct action is to lay suppression fire.
There are no doubt numerous other ways to include the tactical values into a decision making

process. We can use them to calculate priorities for rules in a rule-based system, or we can include
them in the input state for a learning algorithm. This approach, using the rule-based fuzzy logic
system, provides a simple to implement extension that gives very powerful results. It is not a
well-used technique, however. Most games rely on a much simpler use of tactical information in
decision making.

Generating Nearby Waypoints

If we use any of these approaches, we will need a fast method of generating nearby way-
points. Given the location of a character, we ideally need a list of suitable waypoints in order of
distance.

Most game engines provide a mechanism to rapidly work out what objects are nearby. Spatial
data structures such as quad-trees or binary space partitions (BSPs) are often used for collision
detection. Other spatial data structures such as multi-resolution maps (a tile-based approach with
a hierarchy of different tile sizes) are also suitable. For tile-based worlds, we have also used stored
patterns of tiles for different radii, simply superimposed the pattern on the character’s tile, and
looked up the tiles within that pattern for suitable waypoints.

As we said in Chapter 3, spatial data structures for proximity and collision detection are
beyond the scope of this book. There is another book in this series [Ericson, 2005] that covers the
topic. The references appendix lists this and other suitable resources.

Distance isn’t the only thing to take into account, however. Figure 6.7 shows a character in a
corridor. The nearest waypoint is in an adjacent room and is completely impractical as a cover

Best
cover
point

Character

Closest
cover
point

Figure 6.7 Distance problems with cover selection

6.1 Waypoint Tactics 507

point. If we simply selected the cover point based on distance, we’d see the character run into a
different room to reload, rather than use the crate near the end of the corridor.

We can minimize this problem with careful level design. It is often a sensible idea not to use
thin walls in a game level. As we saw in Chapter 4, this can also confuse the quantization algorithm.
Sometimes, however, it is unavoidable, and a better solution is required.

Another approach would be to determine how close each tactical waypoint is by performing
a pathfinding step to generate the distance. This then takes into account the structure of the level,
rather than using a simple Euclidean distance. We can interrupt the pathfinding when we realize
that it will be a longer path than the path to the nearest waypoint we’ve found so far. Even with
such optimizations, this adds a significant amount of processing overhead.

Fortunately, we can perform the pathfinding and the search for the nearest target in one step.
This also solves the problem of confusion by thin walls and of finding nearby waypoints. It also has
an additional benefit: the route it returns can be used to make characters move, while constantly
taking into account their tactical situation.

Tactical Pathfinding

Tactical waypoints can also be used for tactical pathfinding. Tactical pathfinding is a hot topic
in game AI, but is a relatively simple extension of the basic A* pathfinding algorithm. Rather
than finding the shortest or quickest route, however, it takes into account the tactical situation of
the game.

Tactical pathfinding is more commonly associated with tactical analyses, however, so we’ll
return to a full discussion in Section 6.3 later in the chapter.

6.1.3 Generating the Tactical Properties of
a Waypoint

So far we have assumed that all the waypoints for our game have been created, and each has been
given its appropriate properties: a set of labels for the tactical features of its location and possibly
additional data for the quality of the tactical location, or context-sensitive information.

In the simplest case these are often created by the level designer. The level designer can place
cover points, shadow points, locations with high visibility, and excellent sniper locations. As long
as there are only a few hundred cover points, this task isn’t onerous. It is the approach used
in a large number of shooters. Beyond the simplest games, however, the effort may increase
dramatically.

If the level designer has to place context-sensitive information or set the tactical quality of a
location, then the job becomes very difficult, and the tools needed to support the designer have
to be significantly more complicated. For context-sensitive, continuous valued tactical waypoints,
we may need to set up different context states and be able to enter numeric values for each. To
make sure the values are sensible, we will need some kind of visualization.

While it is possible for the designer to place the waypoints, all the extra burden makes it
unlikely that the level designer will be tasked with setting the tactical information unless it is of
the simplest Boolean kind.

508 Chapter 6 Tactical and Strategic AI

For other games we may not need to have the locations placed manually; they may arise
naturally from the structure of the game. If the game relies on a tile-based grid, for example,
then locations in the game are often positioned at corresponding tiles. While we know where the
locations are, we don’t know the tactical properties of each one. If the game level is built up from
pre-fabricated sections, then we could have tactical locations placed in the pre-fabs.

In both cases we need some mechanism for calculating the tactical properties of each waypoint
automatically.

This is usually performed using an offline pre-processing step, although it can also be per-
formed as it is needed during the game. The latter approach allows us to generate the tactical
properties of a waypoint in the current game context, which in turn can support more subtle tac-
tical behavior. As we saw in the section on context sensitivity above, however, this has a significant
impact on performance, especially if there are a large number of waypoints to consider.

The algorithm for calculating a tactical quality depends on the type of tactic we are interested
in. There are as many calculations as there are types of tactics. We will look at the types of
waypoints we’ve used so far in the chapter to give a feel for the types of processing involved. Other
tactics will tend to be similar to these types, but may need some modification.

Cover Points

The quality of a cover point is calculated by testing how many different incoming attacks might
succeed. We run many different simulated attacks and see how many get through.

We can run a complete simulated attack,but this takes time. It is normally easier to approximate
an attack by a line-of-sight test: a ray cast through the level geometry.

For each attack we start by selecting a location in the vicinity of the candidate cover point.
This location will usually be in the same or an adjoining room to the cover point. We can test
from everywhere in the level, of course, but that is wasteful as most attacks will not succeed. In
outdoor levels we may have to check everywhere within weapons range, which is potentially a
time-consuming process.

One way to do this is to check attacks at regular angles around the point. We need to first
make sure that the location we are checking is in the same room or area as the point it is trying to
attack. A point in the middle of a corridor, for example, can be hit from anywhere in the corridor.
If the corridor is thin, however, using all the angles around will give a high cover value: most of the
angles are covered by the corridor walls. Testing nearby locations that can be occupied, however,
will show correctly that the point is 100% exposed.

Being too regular, however, can also lead to problems. If we test just locations around the
point at the same height as the point, we might get the wrong value. A character standing behind
an oil can, for example, can be covered from the ground level, but would be exposed from a gun
at shoulder height. We can solve this problem by checking each angle several times, with small
random offsets, and at different heights.

From the location we select, a ray is cast toward the candidate cover point. Crucially, the ray
is cast toward a random point in a person-sized volume at the candidate point. If we aim toward
just the point, we may be checking if a small point on the floor is covered, rather than the area a
character would occupy.

6.1 Waypoint Tactics 509

This process is repeated many times from different locations. We keep track of the proportion
of rays that hit the volume.

The pseudo-code to perform these checks looks like the following:

1 def getCoverQuality(location, iterations, characterSize):
2

3 # Set up the initial angle
4 theta = 0
5

6 # We start with no hits
7 hits = 0
8

9 # Not all rays are valid
10 valid = 0
11

12 for i in 0..iterations:
13

14 # Create the from location
15 from = location
16 from.x += RADIUS * cos(theta) + randomBinomial() * RANDOM_RADIUS
17 from.y += rand() * 2 * RANDOM_RADIUS
18 from.z += RADIUS * sin(theta) + randomBinomial() * RANDOM_RADIUS
19

20 # Check for a valid from location
21 if not inSameRoom(from, location): continue
22 else: valid++
23

24 # Create the to location
25 to = location
26 to.x += randomBinomial() * characterSize.x
27 to.y += rand() * characterSize.y
28 to.z += randomBinomial() * characterSize.z
29

30 # Do the check
31 if doesRayCollide(from, to): hits++
32

33 # Update the angle
34 theta += ANGLE
35

36 return float(hits) / float(valid)

In this code, we have used a doesRayCollide function to perform the actual ray cast. rand
returns a random number from 0 to 1, and randomBinomial creates a binomially distributed

510 Chapter 6 Tactical and Strategic AI

random number from −1 to 1, as before. inSameRoom checks if two locations are in the same
room. This can be done very easily with a hierarchical pathfinding graph, for example, or can be
calculated using a pathfinder.

There are a number of constants in the function. The RADIUS constant controls how far from
the point to begin the attack. This should be far enough so that the attack isn’t trivially easy,
but not so far that the attack is guaranteed to be in another room. It depends on the scale of
your level geometry. The RANDOM_RADIUS constant controls how much randomness is added to the
from location. This should be smaller than RADIUS * sin(ANGLE); otherwise, we will be moving it
farther than it will move to check the next angle, and we’ll not cover all the angles correctly. The
ANGLE constant controls how many samples around the point are considered. It should be set so
that each angle is considered many times (i.e., the smaller the number of iterations, the larger the
ANGLE should be).

Context-sensitive values can be calculated in the same way as above. Rather than lumping all
the results together, we need to calculate the proportion of ray casts that hit coming from each
direction or the proportion that hit a crouched or standing character volume, depending on the
contexts we are interested in.

If we are running the processing during the game, then there is no reason to choose random
directions to test. Instead, we use the enemy characters that the AI is trying to find cover from to
check the possibility of hitting the cover point. It is still a good idea to repeat the test several times
with different random offsets, however. If time is a critical issue, we can skip this and only check
a direct line of sight. This makes the algorithm faster, but it can be foiled by thin structures that
happen to block the only ray tested.

Visibility Points

Visibility points are calculated in a similar way to cover points, using many line of sight tests.
For each ray cast, we select a location in the vicinity of the cover point. This time we shoot rays
out from the waypoint (actually from the position of the character’s eyes if it was occupying the
waypoint). There is no random component needed around the waypoint. We can use their eye
location directly.

The quality of visibility for the waypoint is related to the average length of the rays sent out
(i.e., the distance they travel before they hit an object). Because the rays are being shot out, we
are approximating the volume of the level that can be seen from the waypoint: a measure of how
good the location is for viewing or targeting enemies.

Context-sensitive values can be generated in the same way by grouping the ray tests into a
number of different states.

At first glance it might seem like visibility and cover are merely opposites. If a location is a
good cover point, then it is a poor visibility point. Because of the way the ray tests are performed,
this isn’t the case. Figure 6.8 shows a point which has both good cover and reasonable visibility.
It’s the same logic that has people spying through keyholes: they can see a good amount while
maintaining low visibility themselves.

6.1 Waypoint Tactics 511

Non-visible
region

Non-visible
region

Visibility arc

Region of
full cover

Region of
full cover

Arc of no cover

Region of
partial cover

Region of
partial cover

Figure 6.8 Good cover and visibility

Shadow Points

Shadow points need to be calculated based on the lighting model for a level. Most studios now
use some kind of global illumination (radiosity) lighting as a pre-processing step to calculate light
maps for in-game use. For titles that involve a great deal of stealth, a dynamic shadow model is
used at runtime to render cast shadows from static and moving lights.

To determine the quality of a shadow point, several samples are taken from a character-sized
volume around the waypoint. For each sample, the amount of light at the point is tested. This
might involve ray casts to nearby light sources to determine if the point is in shadow, or it may
involve looking up data from the global illumination model to check the strength of indirect
illumination.

Because the aim of a shadow point is to conceal, we take the maximum lightness found in the
sampling. If we took the average, then the character would prefer a spot where its body was in very
dark shadow but its head was in direct light, over a location where all its body was in moderate
shadow. The quality of a hiding position is related to the visibility of the most visible part of the
character, not its average visibility as a whole.

For games with dynamic lighting, the shadow calculations need to be performed at runtime.
Global illumination is a very slow process, however, and is best performed offline. Combining
the two can be problematic. Developers are only just beginning to get simple global illumination
models running at interactive frame rates in next-generation hardware. We are a couple of years
away from general solutions for real-time rendering.

Fortunately, in many current-generation stealth games, no global illumination is used at
runtime. The environments are simply lit by direct line, and the global illumination is handled
with static texture maps. In this case the shadow calculations can be performed over several frames
without a severe slowdown.

512 Chapter 6 Tactical and Strategic AI

Compound Tactics

As we saw earlier, a compound tactic is one that can be assessed by combining a set of primitive
tactics. A sniper location might be one that has both cover and good visibility of the level.

If compound tactics are needed in the game, we may be able to generate them as part of a
pre-processing step, using the output results of the primitive calculations above. The results can
then be stored as an additional channel of tactical information for appropriate waypoints. This
only works if the tactics they are using are also available at this time. You can’t pre-process a
compound tactic based on information that changes during the game.

Alternatively, we can calculate the compound tactical information dynamically during the
game by combining the tactical data of nearby waypoints on the fly.

Generating Tactical Properties and Tactical Analysis

Generating the tactical properties of waypoints in this way brings us very close to a technique
we’ll cover in the next section. Tactical analysis works in a similar way: we try to find the tactical
and strategic properties of regions in a game level by combining different concerns together.

Taking tactical waypoints to the extreme, using automatic identification of the tactical proper-
ties of a location, would be akin to performing a tactical analysis on a game level. Tactical analysis
tends to use larger scale properties—for example, balance of power or influence—rather than the
amount of cover.

It is not common to recognize the similarity, however. As fairly new techniques in game AI,
they both tend to have their own devotees and advocates. It is worth recognizing the similarity
and even combining the best of both approaches, as required by your game design.

6.1.4 Automatically Generating the Waypoints

In most games waypoints are specified by the level designer. Cover points, areas that are prone to
ambush, and dark corners are all more easily identified by a human being than by an algorithm.

Some developers have experimented with the automatic placement of waypoints. The most
promising approaches we have seen are similar to those used in automatically marking up a level
for pathfinding.

Watching Human Players

If your game engine supports it, keeping records of the way human players act can provide good
information on tactically significant locations. The position of each character is stored at each
frame or every few frames. If the character remains in roughly the same location for several
samples in a row, or if the same location is used by several characters repeatedly over the course
of the game, then it is likely that the location is significant tactically.

With a set of candidate positions,we can then assess their tactical qualities,using the algorithms
to assess the tactical quality we saw in the previous section. Locations with sufficient quality are
retained as the waypoints to be stored for use in the AI.

6.1 Waypoint Tactics 513

It is worth generating far more candidate locations than you will end up using. The assessment
of the tactical quality can then filter out the best waypoints from the rest. You do need to be careful
in choosing just the best 50 waypoints, for example, because they may be concentrated in one part
of the level, leaving no tactical locations in more tactically tight areas (where, conversely, they are
probably more important).

A better approach is to make sure the best few locations for each type of tactic in a specific area
are kept. This can be achieved using the condensation algorithm (see Section 6.1.5), a technique
that can also be used on its own without generating the candidate locations by watching human
players.

Condensing a Waypoint Grid

Rather than trying to anticipate the best locations in the game level, we can instead test (almost)
every possible location in the level and choose the best.

This is usually done by applying a dense grid to all floor areas in the level and testing each one.
First, the locations are tested to make sure they are a valid location for the character to occupy.
Locations too close to the walls or underneath obstacles are discarded.

Valid locations are then assessed for tactical qualities in the same way as we saw in the previous
section. In order to perform the condensation step, we need to work with real-valued tactical
qualities. A simple Boolean value will not suffice.

Normally, we keep a set of threshold values for each tactical property. If a location doesn’t make
the grade for any property, then it can be immediately discarded. This makes the condensation
step much faster.

The threshold levels should be low enough so that many more locations pass than could
possibly be needed. This is to avoid discarding locations that are significant, but only marginally.
In a room where there is virtually no cover, a location with even very poor cover might be the best
place to defend from.

The remaining locations then enter into a condensation algorithm, which ends with only a
small number of significant locations in each area of the level for each tactical property. If we used
the “watching player actions” technique above, then the tactical locations that resulted could be
condensed in the same way as the remaining locations from a grid. Because it is useful in several
contexts, it is worth taking a look at the condensation algorithm in more detail.

6.1.5 The Condensation Algorithm

The condensation algorithm works by having tactical locations compete against one another for
inclusion into the final set. We would like to keep locations that are either very high quality or a
long distance from any other waypoint of the same type.

For each pair of locations, we first check that a character can move between the locations
easily. This is almost always done using a line-of-sight test, although it would be better to allow
slight deviations. If the movement check fails, then the locations can’t compete with one another.
Including this check makes sure that we don’t remove a waypoint on one side of a wall, for
example, because there is a better location on the other side.

514 Chapter 6 Tactical and Strategic AI

If the movement check succeeds, then the quality values for each location are compared. If
the difference between the values is greater than a weighted distance between the locations, then
the location with the lower value is discarded. There are no hard and fast rules for the weight
value to use. It depends on the size of the level, the complexity of the level geometry, and the scale
and distribution of quality values for the tactical property. The weight should be selected so that
it gives the right number of output waypoints, and that means tweaking by hand so that it looks
right. If you use a lower weight value, the difference in quality will be more important, leaving
fewer waypoints. Higher weights similarly produce more waypoints.

If there are a large number of waypoints, then there will be a huge number of pairs to consider.
Because the final check depends on distance, we can speed this up significantly by only considering
pairs of locations that are fairly close together. If we are using a grid representation, this is fairly
simple; otherwise, we may have to rely on some other spatial data structure to provide sensible
pairs to test.

This condensation algorithm is highly dependent on the order in which pairs of locations are
considered. Figure 6.9 shows three locations. If we perform a competition between locations A
and B, then A is discarded. B is then checked against C. In this case C wins. We end up with only
location C. If we first check B and C, however, then C wins. A is now too far from C for C to beat
it, so both C and A remain.

To avoid removing a series of waypoints in this way, we start with the strongest waypoints
and work down to the weakest. For each of these waypoints, we perform the competition against
other waypoints working from the weakest to the strongest. The first waypoint check, therefore,
is between the strongest and the weakest. Because we will only consider pairs of waypoints fairly
close to one another, the first check is likely to be between the overall strongest waypoint and the
weakest nearby waypoint.

A: 1.1
B: 1.7

C: 2.3

B: 1.7

C: 2.3

C: 2.3

A: 1.1
C: 2.3

Check A-B

Check B-C

Check B-C

Figure 6.9 Order dependence in condensation checks

6.1 Waypoint Tactics 515

The condensation phase should be carried out for each different tactical property. There is no
use discarding a cover point because there is a good nearby ambush location, for example. The
tactical locations that make it through the algorithm are those that are left in any property after
condensation.

Pseudo-Code

The algorithm can be implemented in the following way:

1 def condenseWaypoints(waypoints, distanceWeight):
2

3 # We only ever need this squared, so do it now
4 distanceWeight *= distanceWeight
5

6 # Sort the list in decreasing order
7 waypoints.sortReversed()
8

9 # Loop through
10 while current:
11

12 # Get the next waypoint
13 current = waypoints.next()
14

15 # Find and sort its neighbors
16 neighbors = waypoints.getNearby(current)
17 neighbors.sort()
18

19 # Check each in turn
20 while neighbors:
21

22 target = neighbors.next()
23

24 # If the target’s value is higher than
25 # ours, then we’ve already performed this
26 # check (when the target was the current) and
27 # all subsequent checks on the neighbors
28 if target.value > current.value:
29 break
30

31 # Check for easy movement
32 if not canMove(current, target):
33 continue
34

516 Chapter 6 Tactical and Strategic AI

35 # Perform competition calculations
36 deltaPos = current.position - target.position
37 deltaPos *= deltaPos * deltaWeight
38 deltaVal = current.value - target.value
39 deltaVal *= deltaVal
40

41 # Check if the difference is value is significant
42 if deltaPos < deltaVal:
43

44 # They are close enough so the target loses
45 neighbors.remove(target)
46 waypoints.remove(target)

Data Structures and Interfaces

The algorithm assumes we can get position and value from the waypoints. They should have the
following structure:

1 struct Waypoint:
2 # Holds the position of the waypoint
3 position
4

5 # Holds the value of the waypoint for the tactic we are
6 # currently condensing
7 value

The waypoints are presented in a data structure in a way that allows the algorithm to extract
the elements in sequence and to perform a spatial query to get the nearby waypoints to any given
waypoint. The order of elements is set by a call to either sort or sortReversed, which orders
the elements either by increasing or decreasing value, respectively. The interface looks like the
following:

1 class WaypointList:
2

3 # Initializes the iterator to move in order of
4 # increasing value
5 def sort()
6

7 # Initializes the iterator to move in order of
8 # decreasing value

6.1 Waypoint Tactics 517

9 def sortReversed()
10

11 # Returns a new waypoint list containing those waypoints
12 # that are near to the given one.
13 def getNearby(waypoint)
14

15 # Returns the next waypoint in the iteration. Iterations
16 # are initialized by a call to one of the sort functions.
17 # Note that this function must work in such a way that
18 # remove() can be called between calls to next() without
19 # causing problems.
20 def next()
21

22 # Removes the given waypoint from the list
23 def remove(waypoint)

The Trade-Off

Watching player actions produces better quality tactical waypoints than simply condensing a grid.
On the other hand, it requires additional infrastructure to capture player actions and a lot of
playing time by testers. To get a similar quality using condensation, we need to start with an
exceptionally dense grid (in the order of every 10 centimeters of game space for average human-
sized characters). This also has time implications. For a reasonably sized level, there could be
billions of candidate locations to check. This can take many minutes or hours, depending on the
complexity of the tactical assessment algorithms being used.

The results from these algorithms are less robust than the automatic generation of pathfinding
meshes (which have been used without human supervision), because the tactical properties of
a location apply to such a small area. Automatic generation of waypoints involves generating
locations and testing them for tactical properties. If the generated location is even slightly out, its
tactical properties can be very different. A location slightly to the side of a pillar, for example, has
no cover, whereas it might provide perfect cover if it were immediately behind the pillar.

When we generate pathfinding graphs, the same kind of small error rarely makes any
difference.

Because of this, we’re not aware of anyone reliably using automatic tactical waypoint gen-
eration without some degree of human supervision. Automatic algorithms can provide a useful
initial guess at tactical locations, but you will probably need to add facilities into your level design
tool to allow the locations to be tweaked by the level designer.

Before you embark on implementing an automatic system, make sure you work out whether
the implementation effort will be worth it for time saved in level design. If you are designing huge,
tactically complex levels, it may be so. If there will only be a few tens of waypoints of each kind in
a level, then it is probably better to go the manual route.

518 Chapter 6 Tactical and Strategic AI

6.2 Tactical Analyses

Tactical analyses of all kinds are sometimes known as influence maps. Influence mapping is a
technique pioneered and widely applied in real-time strategy games, where the AI keeps track
of the areas of military influence for both sides. Similar techniques have also made inroads into
squad-based shooters and massively multi-player games. For this chapter, we’ll refer to the general
approach as tactical analysis to emphasize that military influence is only one thing we might base
our tactics on.

In military simulation an almost identical approach is commonly called terrain analysis (a
phrase also used in game AI), although again that also more properly refers to just one type of
tactical analysis. We’ll look at both influence mapping and terrain analysis in this section, as well
as general tactical analysis architectures.

There is not much difference between tactical waypoint approaches and tactical analyses. By
and large, papers and talks on AI have treated them as separate beasts, and admittedly the technical
problems are different depending on the genre of game being implemented. The general theory is
remarkably similar, however, and the constraints in some games (in shooters, particularly) mean
that implementing the two approaches would give pretty much the same structure.

6.2.1 Representing the Game Level

For tactical analysis we need to split the game level into chunks. The areas contained in each chunk
should have roughly the same properties for any tactics we are interested in. If we are interested
in shadows, for example, then all locations within a chunk should have roughly the same amount
of illumination.

There are lots of different ways to split a level. The problem is exactly the same as for pathfind-
ing (in pathfinding we are interested in chunks with the same movement characteristics), and all
the same approaches can be used: Dirichlet domains, floor polygons, and so on.

Because of the ancestry of tactical analysis in RTS games, the overwhelming majority of current
implementations are based on a tile-based grid. This may change over the coming years, as the
technique is applied to more indoor games, but most current papers and books talk exclusively
about tile-based representations.

This does not mean that the level itself has to be tile based, of course. Very few RTS games
are purely tile based anymore, although the outdoor sections of RTS, shooters, and other genres
normally use a grid-based height field for rendering terrain. For a non-tile-based level, we can
impose a grid over the geometry and use the grid for tactical analysis.

We haven’t been involved in a game that used Dirichlet domains for tactical analysis, but our
understanding is that several developers have experimented with this approach and have had
some success. The disadvantage of having a more complex level representation is balanced against
having fewer, more homogeneous, regions.

Our advice would be to use a grid representation initially, for ease of implementation
and debugging, and then experiment with other representations when you have the core code
robust.

6.2 Tactical Analyses 519

6.2.2 Simple Influence Maps

An influence map keeps track of the current balance of military influence at each location in
the level. There are many factors that might affect military influence: the proximity of a military
unit, the proximity of a well-defended base, the duration since a unit last occupied a location, the
surrounding terrain, the current financial state of each military power, the weather, and so on.

There is scope to take advantage of a huge range of different factors when creating a tactical
or strategic AI. Most factors only have a small effect, however. Rainfall is unlikely to dramatically
affect the balance of power in a game (although it often has a surprisingly significant effect in
real-world conflict). We can build up complex influence maps, as well as other tactical analyses,
from many different factors, and we’ll return to this combination process later in the section. For
now, let’s focus on the simplest influence maps, responsible for (we estimate) 90% of the influence
mapping in games.

Most games make influence mapping easier by applying a simplifying assumption: military
influence is primarily a factor of the proximity of enemy units and bases and their relative military
power.

Simple Influence

If four infantry soldiers in a fire team are camped out in a field, then the field is certainly under
their influence, but probably not very strongly. Even a modest force (such as a single platoon)
would be able to take it easily. If we instead have a helicopter gunship hovering over the same
corner, then the field is considerably more under their control. If the corner of the field is occupied
by an anti-aircraft battery, then the influence may be somewhere between the two (anti-aircraft
guns aren’t so useful against a ground-based force, for example).

Influence is taken to drop off with distance. The fire team’s decisive influence doesn’t sig-
nificantly extend beyond the hedgerow of the next field. The apache gunship is mobile and can
respond to a wide area, but when stationed in one place its influence is only decisive for a mile or
so. The gun battery may have a larger radius of influence.

If we think of power as a numeric quantity, then the power value drops off with distance: the
farther from the unit, the smaller the value of its influence. Eventually, its influence will be so
small that it is no longer felt.

We can use a linear drop off to model this: double the distance and we get half the influence.
The influence is given by:

Id = I0

It
− 1,

where Id is the influence at a given distance, d , and I0 is the influence at a distance of 0. This is
equivalent to the intrinsic military power of the unit. We could instead use a more rapid initial
drop off, but with a longer range of influence, such as:

Id = I0√
1 + d

,

520 Chapter 6 Tactical and Strategic AI

for example. Or we could use something that plateaus first before rapidly tailing off at a distance:

Id = I0

(1 + d)2

has this format. It is also possible to use different drop-off equations for different units. In practice,
however, the linear drop off is perfectly reasonable and gives good results. It is also faster to process.

In order for this analysis to work, we need to assign each unit in the game a single military
influence value. This might not be the same as the unit’s offensive or defensive strength: a recon-
naissance unit might have a large influence (it can command artillery strikes, for example) with
minimal combat strength.

The values should usually be set by the game designers. Because they can affect the AI con-
siderably, some tuning is almost always required to get the balance right. During this process it
is often useful to be able to visualize the influence map, as a graphical overlay into the game, to
make sure that areas clearly under a unit’s influence are being picked up by the tactical analysis.

Given the drop-off formula for the influence at a distance and the intrinsic power of each unit,
we can work out the influence of each side on each location in the game: who has control there
and by how much. The influence of one unit on one location is given by the drop-off formula
above. The influence for a whole side is found by simply summing the influence of each unit
belonging to that side.

The side with the greatest influence on a location can be considered to have control over it,
and the degree of control is the difference between its winning influence value and the influence
of the second placed side. If this difference is very large, then the location is said to be secure.

The final result is an influence map: a set of values showing both the controlling side and the
degree of influence (and optionally the degree of security) for each location in the game.

Figure 6.10 shows an influence map calculated for all locations on a tiny RTS map. There are
two sides, white and black, with a few units on each side. The military influence of each unit is
shown as a number. The border between the areas that each side controls is also shown.

Calculating the Influence

To calculate the map we need to consider each unit in the game for each location in the level. This
is obviously a huge task for anything but the smallest levels. With a thousand units and a million
locations (well within the range of current RTS games), a billion calculations would be needed.
In fact, execution time is O(nm), and memory is O(m), where m is the number of locations in
the level, and n is the number of units.

There are three approaches we can use to improve matters: limited radius of effect, convolution
filters, and map flooding.

Limited Radius of Effect

The first approach is to limit the radius of effect for each unit. Along with a basic influence, each
unit has a maximum radius. Beyond this radius the unit cannot exert influence, no matter how

6.2 Tactical Analyses 521

WWWWWWWWWWWWWWW

WWWWWWWWWWWWWW

WWWWWWWWWWWWW

WWWWWWWWWWWWW

WWWWWWWWWWWW

WWWWWWWWWWW

WWWWWWWWWWW

WWWWWWWWWW

WWWWWWWWW

WWWWWWWW

WWWWWWWWWWWWWWW

BBBBBBBBBBBBBBB B

BBBBBBBBBBBBBBB B

BBBBBBBBBBBBBBB B

W

WWWWWWWW

WWW BBBBBBBBBBBB B

BBBBBBB B

BBBBBBB B

BBBBBB B

BBBBB B

BBBB B

BBBB B

BBB B

BB B

BB B

B B

B

2

2

2

2

2

3

2

2

2

4

1

1

Figure 6.10 An example influence map

weak. The maximum radius might be manually set for each unit, or we could use a threshold. If
we use the linear drop-off formula for influence, and if we have a threshold influence (beyond
which influence is considered to be zero), then the radius of influence is given by:

r = I0

It − 1
,

where It is the threshold value for influence.
This approach allows us to pass through each unit in the game, adding its contribution to

only those locations within its radius. We end up with O(nr) in time and O(m) in memory,
where r is the number of locations within the average radius of a unit. Because r is going to be
much smaller than m (the number of locations in the level), this is a significant reduction in
execution time.

522 Chapter 6 Tactical and Strategic AI

The disadvantage of this approach is that small influences don’t add up over large distances.
Three infantry units could together contribute a reasonable amount of influence to a location
between them, although individually they have very little. If a radius is used and the location is
outside this influence, it would have no influence even though it is surrounded by troops who
could take it at will.

Convolution Filters

The second approach applies techniques more common in computer graphics. We start with the
influence map where the only values marked are those where the units are actually located. You can
imagine these as spots of influence in the midst of a level with no influence. Then the algorithm
works through each location and changes its value so it incorporates not only its own value but
also the values of its neighbors. This has the effect of blurring out the initial spots so that they
form gradients reaching out. Higher initial values get blurred out further.

This approach uses a filter: a rule that says how a location’s value is affected by its neighbors.
Depending on the filter, we can get different kinds of blurring. The most common filter is called
a Gaussian, and it is useful because it has mathematical properties that make it even easier to
calculate.

To perform filtering, each location in the map needs to be updated using this rule. To make
sure the influence spreads to the limits of the map, we need to then repeat the whole update
several times again. If there are significantly fewer units in the game than there are locations in the
map (we can’t imagine a game when this wouldn’t be true), then this approach is more expensive
than even our initial naive algorithm. Because it is a graphics algorithm, however, it is easy to
implement using graphical techniques.

We’ll return to filtering, including a full algorithm, later in this chapter.

Map Flooding

The last approach uses an even more dramatic simplifying assumption: the influence of each
location is equal to the largest influence contributed by any unit. In this assumption if a tank is
covering a street, then the influence on that street is the same even if 20 solders arrive to also cover
the street. Clearly, this approach may lead to some errors, as the AI assumes that a huge number
of weak troops can be overpowered by a single strong unit (a very dangerous assumption).

On the other hand, there exists a very fast algorithm to calculate the influence values, based on
the Dijkstra algorithm we saw in Chapter 4. The algorithm floods the map with values, starting
from each unit in the game and propagating its influence out.

Map flooding can usually perform in around O(min[nr,m]) time and can exceed O(nr) time
if many locations are within the radius of influence of several units (it is O(m) in memory, once
again). Because it is so easy to implement and is fast in operation, several developers favor this
approach. The algorithm is useful beyond simple influence mapping and can also incorporate
terrain analysis while performing its calculations. We’ll analyze it in more depth in Section 6.2.6.

Whatever algorithm is used for calculating the influence map, it will still take a while. The
balance of power on a level rarely changes dramatically from frame to frame, so it is normal for
the influence mapping algorithm to run over the course of many frames. All the algorithms can be
easily interrupted. While the current influence map may never be completely up to date, even at

6.2 Tactical Analyses 523

a rate of one pass through the algorithm every 10 seconds, the data are usually sufficiently recent
for character AI to look sensible.

We’ll also return to this algorithm later in the chapter, after we have looked at other kinds of
tactical analyses besides influence mapping.

Applications

An influence map allows the AI to see which areas of the game are safe (those that are very secure),
which areas to avoid, and where the border between the teams is weakest (i.e., where there is little
difference between the influence of the two sides).

Figure 6.11 shows the security for each location in the same map as we looked at previously.
Look at the region marked. You can see that, although white has the advantage in this area, its
border is less secure. The region near black’s unit has a higher security (paler color) than the area

WWWWWWWWWWWWWWW

WWWWWWWWWWWWWW

WWWWWWWWWWWWW

WWWWWWWWWWWWW

WWWWWWWWWWWW

WWWWWWWWWWW

WWWWWWWWWWW

WWWWWWWWWW

WWWWWWWWW

WWWWWWWW

WWWWWWWWWWWWWWW

BBBBBBBBBBBBBBB B

BBBBBBBBBBBBBBB B

BBBBBBBBBBBBBBB B

W

WWWWWWWW

WWW BBBBBBBBBBBB B

BBBBBBB B

BBBBBBB B

BBBBBB B

BBBBB B

BBBB B

BBBB B

BBB B

BB B

BB B

B B

B

2

2

2

2

2

3

2

2

2

4

1

1

Figure 6.11 The security level of the influence map

524 Chapter 6 Tactical and Strategic AI

immediately over the border. This would be a good point to mount an attack, since white’s border
is much weaker than black’s border at this point.

The influence map can be used to plan attack locations or to guide movement. A decision
making system that decides to “attack enemy territory,” for example, might look at the current
influence map and consider every location on the border that is controlled by the enemy. The
location with the smallest security value is often a good place to launch an attack. A more
sophisticated test might look for a connected sequence of such weak points to indicate a weak
area in the enemy defense. A (usually beneficial) feature of this approach is that flanks often show
up as weak spots in this analysis. An AI that attacks the weakest spots will tend naturally to prefer
flank attacks.

The influence map is also perfectly suited for tactical pathfinding (explored in detail later in
this chapter). It can also be made considerably more sophisticated, when needed, by combining
its results with other kinds of tactical analyses, as we’ll see later.

Dealing with Unknowns

If we do a tactical analysis on the units we can see, then we run the risk of underestimating
the enemy forces. Typically, games don’t allow players to see all of the units in the game. In
indoor environments we may be only able to see characters in direct line of sight. In outdoor
environments units typically have a maximum distance they can see, and their vision may be
additionally limited by hills or other terrain features. This is often called “fog-of-war” (but isn’t
the same thing as fog-of-war in military-speak).

The influence map on the left of Figure 6.12 shows only the units visible to the white side.
The squares containing a question mark show the regions that the white team cannot see. The

WWWWWW

WWWWWW

WWWWWW

WWWWWW

WWWWWW

22

2

4

4

1

2

2

4

1

WWWWWWWWWWWWWWW

WWWWWWWWWWWWWW

WWWWWWWWWWWWW

WWWWWWWWWWWWW

WWWWWWWWWWWW

WWWWWWWWWWW

WWWWWWWWWW

WWWWWWWWW

WWWWWWWW

WWWWWWW

WWWWWWWWWWWWWWW

BBBBBBBB B

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BB

BBBBBBBB BBBBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBBBB BB

BBBBBBBB B

BBBBBBBBB B

W

W

WW

WWW

WWWWWWW

WWWWWW

WWWWWW

W

WWWWWW W

WWWWWW W

BBBBBBBB B

BBBBBBBB B

BBBBBBBB B

BBBBBB B

BBBBBB

B

B

BBBBB B

BBBB B

BBB B

BB B

2

2

2

4

1

????? ?

????? ?

????? ?

????? ?

?

?

???? ?

????? ?

????? ?

?????

?

? ?

????? ?

????? ?

????? ?

????? ?

?

?

?

Figure 6.12 Influence map problems with lack of knowledge

6.2 Tactical Analyses 525

influence map made from the white team’s perspective shows (incorrectly) that they control a
large proportion of the map. If we knew the full story, the influence map on the right would be
created.

The second issue with lack of knowledge is that each side has a different subset of the whole
knowledge. In the example above, the units that the white team is aware of are very different from
the units that the black team is aware of. They both create very different influence maps. With
partial information, we need to have one set of tactical analyses per side in the game. For terrain
analysis and many other tactical analyses, each side has the same information, and we can get
away with only a single set of data.

Some games solve this problem by allowing all of the AI players to know everything. This
allows the AI to build only one influence map, which is accurate and correct for all sides. The AI
will not underestimate the opponent’s military might. This is widely viewed as cheating, however,
because the AI has access to information that a human player would not have. It can be quite
oblivious. If a player secretly builds a very powerful unit in a well-hidden region of the level, they
would be frustrated if the AI launched a massive attack aimed directly at the hidden super-weapon,
obviously knowing full well that it was there. In response to cries of foul, developers have recently
stayed away from building a single influence map based on the correct game situation.

When human beings see only partial information, they make force estimations based on a
prediction of what units they can’t see. If you see a row of pike men on a medieval battlefield,
you may assume there is a row of archers somewhere behind, for example. Unfortunately, it is
very difficult to create AI that can accurately predict the forces it can’t see. One approach is to
use neural networks with Hebbian learning. A detailed run-through of this example is given in
Chapter 7.

6.2.3 Terrain Analysis

Behind influence mapping, the next most common form of tactical analysis deals with the proper-
ties of the game terrain. Although it doesn’t necessarily need to work with outdoor environments,
the techniques in this section originated for outdoor simulations and games, so the “terrain anal-
ysis” name fits. Earlier in the chapter we looked at waypoint tactics in depth. These are more
common for indoor environments, although in practice there is almost no difference between
the two.

Terrain analysis tries to extract useful data from the structure of the landscape. The most
common data to extract are the difficulty of the terrain (used for pathfinding or other movement)
and the visibility of each location (used to find good attacking locations and to avoid being seen).
In addition, other data, such as the degree of shadow, cover, or the ease of escape, can be obtained
in the same way.

Unlike influence mapping, most terrain analyses will always be calculated on a location-by-
location basis. For military influence we can use optimizations that spread the influence out
starting from the original units, allowing us to use the map flooding techniques later in the
chapter. For terrain analysis this doesn’t normally apply.

The algorithm simply visits each location in the map and runs an analysis algorithm for each
one. The analysis algorithm depends on the type of information we are trying to extract.

526 Chapter 6 Tactical and Strategic AI

Terrain Difficulty

Perhaps the simplest useful information to extract is the difficulty of the terrain at a location.
Many games have different terrain types at different locations in the game. This may include
rivers, swampland, grassland, mountains, or forests. Each unit in the game will face a different
level of difficulty moving through each terrain type. We can use this difficulty directly; it doesn’t
qualify as a terrain analysis because there’s no analysis to do.

In addition to the terrain type, it is often important to take account of the ruggedness of the
location. If the location is grassland at a one in four gradient, then it will be considerably more
difficult to navigate than a flat pasture.

If the location corresponds to a single height sample in a height field (a very common approach
for outdoor levels), the gradient can easily be calculated by comparing the height of a location with
the height of neighboring locations. If the location covers a relatively large amount of the level
(a room indoors, for example), then its gradient can be estimated by making a series of random
height tests within the location. The difference between the highest and the lowest sample provides
an approximation to the ruggedness of the location. You could also calculate the variance of the
height samples, which may also be faster if well optimized.

Whichever gradient calculation method we use, the algorithm for each location takes constant
time (assuming a constant number of height checks per location, if we use that technique). This is
relatively fast for a terrain analysis algorithm, and combined with the ability to run terrain analyses
offline (as long as the terrain doesn’t change), it makes terrain difficulty an easy technique to use
without heavily optimizing the code.

With a base value for the type of terrain and an additional value for the gradient of the location,
we can calculate a final terrain difficulty. The combination may use any kind of function—a
weighted linear sum, for example, or a product of the base and gradient values. This is equivalent
to having two different analyses—the base difficulty and the gradient—and applying a multi-
tiered analysis approach. We’ll look at more issues in combining analyses later in the section on
multi-tiered analysis.

There is nothing to stop us from including additional factors into the calculation of terrain
difficulty. If the game supports breakdowns of equipment,we might add a factor for how punishing
the terrain is. For example, a desert may be easy to move across, but it might take its toll on
machinery. The possibilities are bounded only by what kinds of features you want to implement
in your game design.

Visibility Map

The second most common terrain analysis we have worked with is a visibility map. There are
many kinds of tactics that require some estimation of how exposed a location is. If the AI is
controlling a reconnaissance unit, it needs to know locations that can see a long way. If it is trying
to move without being seen by the enemy, then it needs to use locations that are well hidden
instead.

The visibility map is calculated in the same way as we calculated visibility for waypoint tactics:
we check the line of sight between the location and other significant locations in the level.

6.2 Tactical Analyses 527

An exhaustive test will test the visibility between the location and all other locations in the
level. This is very time consuming, however, and for very large levels it can take many minutes.
There are algorithms intended for rendering large landscapes that can perform some important
optimizations, culling large areas of the level that couldn’t possibly be seen. Indoors, the situation
is typically better still, with even more comprehensive tools for culling locations that couldn’t
possibly be seen. The algorithms are beyond the scope of this book but are covered in most texts
on programming rendering engines.

Another approach is to use only a subset of locations. We can use a random selection of
locations, as long as we select enough samples to give a good approximation of the correct result.

We could also use a set of “important” locations. This is normally only done when the terrain
analysis is being performed online during the game’s execution. Here, the important locations
can be key strategic locations (as decided by the influence map, perhaps) or the location of enemy
forces.

Finally, we could start at the location we are testing, shoot out rays at a fixed angular interval,
and test the distance they travel, as we saw for waypoint visibility checks. This is a good solution
for indoor levels, but doesn’t work well outdoors because it is not easy to account for hills and
valleys without shooting a very large number of rays.

Regardless of the method chosen, the end point will be an estimate of how visible the map is
from the location. This will usually be the number of locations that can be seen, but may be an
average ray length if we are shooting out rays at fixed angles.

6.2.4 Learning with Tactical Analyses

So far we have looked at analyses that involve finding information about the game level. The
values in the resulting map are calculated by analyzing the game level and its contents.

A slightly different approach has been used successfully to support learning in tactical AI. We
start with a blank tactical analysis and perform no calculations to set its values. During the game,
whenever an interesting event happens, we change the values of some locations in the map.

For example, suppose we are trying to avoid our character falling into the same trap repeatedly
by being ambushed. We would like to know where the player is most likely to lay a trap and where
it is best to avoid. While we can perform analysis for cover locations, or ambush waypoints, the
human player is often more ingenious than our algorithms and can find creative ways to lay an
ambush.

To solve the problem we create a “frag-map.” This initially consists of an analysis where each
location gets a zero. Each time the AI sees a character get hit (including itself), it subtracts a
number from the location in the map corresponding to the victim. The number to subtract could
be proportional to the amount of hit points lost. In most implementations, developers simply
use a fixed value each time a character is killed (after all the player doesn’t normally know the
amount of hit points lost when another player is hit, so it would be cheating to give the AI that
information). We could alternatively use a smaller value for non-fatal hits.

Similarly, if the AI sees a character hit another character, it increases the value of the location
corresponding to the attacker. The increase can again be proportional to the damage, or it may be
a single value for a kill or non-fatal hit.

528 Chapter 6 Tactical and Strategic AI

Over time we will build up a picture of the locations in the game where it is dangerous to
hang about (those with negative values) and where it is useful to stand to pick off enemies (those
with positive values). The frag-map is independent of any analysis. It is a set of data learned from
experience.

For a very detailed map, it can take a lot of time to build up an accurate picture of the best
and worst places. We only find a reasonable value for a location if we have several experiences of
combat at that location. We can use filtering (see later in this section) to take the values we do
know and expand them out to form estimates for locations we have no experience of.

Frag-maps are suitable for offline learning. They can be compiled during testing to build up
a good approximation of the potential for a level. In the final game they will be fixed.

Alternatively, they can be learned online during the game execution. In this case it is usually
common to take a pre-learned version as the basis to avoid having to learn really obvious things
from scratch. It is also common, in this case, to gradually move all the values in the map toward
zero. This effectively “unlearns” the tactical information in the frag-map over time. This is done
to make sure that the character adapts to the player’s playing style.

Initially, the character will have a good idea where the hot and dangerous locations are from
the pre-compiled version of the map. The player is likely to react to this knowledge, trying to set
up attacks that expose the vulnerabilities of the hot locations. If the starting values for these hot
locations are too high, then it will take a huge number of failures before the AI realizes that the
location isn’t worth using. This can look stupid to the player: the AI repeatedly using a tactic that
obviously fails.

If we gradually reduce all the values back toward zero, then after a while all the character’s
knowledge will be based on information learned from the player, and so the character will be
tougher to beat.

Figure 6.13 shows this in action. In the first diagram we see a small section of a level with
the danger values created from play testing. Note the best location to ambush from, A, is exposed
from two directions (locations B and C). We have assumed that the AI character gets killed ten
times in location A by five attacks from B and C. The second map shows the values that would
result if there was no unlearning: A is still the best location to occupy. A frag provides +1 point
to the attacker’s location and −1 point to that of the victim; it will take another 10 frags before
the character learns its lesson. The third map shows the values that would result if all the values
are multiplied by 0.9 before each new frag is logged. In this case location A will no longer be used
by the AI; it has learned from its mistakes. In a real game it may be beneficial to forget even more
quickly: the player may find it frustrating that it takes even five frags for the AI to learn that a
location is vulnerable.

If we are learning online, and gradually unlearning at the same time, then it becomes crucial
to try to generalize from what the character does know into areas that it has no experience of. The
filtering technique later in the section gives more information on how to do this.

6.2.5 A Structure for Tactical Analyses

So far we’ve looked at the two most common kinds of tactical analyses: influence mapping
(determining military influence at each location) and terrain analysis (determining the effect of
terrain features at each location).

6.2 Tactical Analyses 529

frags = 2

frags = 4

C
A

B

Stairs

Stairs

frags = 7

frags = 15 frags = 9

C
A

B

Stairs

Stairs

No unlearning

frags = 5.4

frags = 3.1 frags = 5.8

C
A

B

Stairs

Stairs

With unlearning

frags = 15

Figure 6.13 Learning a frag-map

Category 1

Category 2

Category 3

M
u

lt
i-

la
ye

r
p

ro
p

er
ti

es
co

m
bi

ne
 a

ny
 c

at
eg

or
ie

s Static properties
terrain, topology, (lighting)

Evolving properties
influence, resources

Dynamic properties
danger, dynamic shadows

Suitable for
offline processing

Suitable for
interruptible processing

Requires
ad hoc querying

Figure 6.14 Tactical analyses of differing complexity

Tactical analysis isn’t limited to these concerns, however. Just as we saw for tactical waypoints,
there may be any number of different pieces of tactical information that we might want to base
our decisions on. We may be interested in building a map of regions with lots of natural resources
to focus an RTS side’s harvesting/mining activities. We may be interested in the same kind of
concerns we saw for waypoints: tracking the areas of shadow in the game to help a character move
in stealth. The possibilities are endless.

We can distinguish different types of tactical analyses based on the when and how they need
to be updated. Figure 6.14 illustrates the differences.

530 Chapter 6 Tactical and Strategic AI

In the first category are those analyses that calculate unchanging properties of the level. These
analyses can be performed offline before the game begins. The gradients in an outdoor landscape
will not change, unless the landscape can be altered (some RTS games do allow the landscape to
be altered). If the lighting in a level is constant (i.e., you can’t shoot out the lights or switch them
off), then shadow areas can often be calculated offline. If your game supports dynamic shadows
from movable objects, then this will not be possible.

In the second category are those analyses that change slowly during the course of the game.
These analyses can be performed using updates that work very slowly, perhaps only reconsidering
a handful of locations at each frame. Military influence in an RTS can often be handled in
this way. The coverage of fire and police in a city simulation game could also change quite
slowly.

In the third category are properties of the game that change very quickly. To keep up, almost
the whole level will need to be updated every frame. These analyses are typically not suited for
the algorithms in this chapter. We’ll need to handle rapidly changing tactical information slightly
differently.

Updating almost any tactical analysis for the whole level at each frame is too time con-
suming. For even modestly sized levels it can be noticeable. For RTS games with their larger
level sizes, it will often be impossible to recalculate all the levels within one frame’s pro-
cessing time. No optimization can get around this; it is a fundamental limitation of the
approach.

To make some progress, however, we can limit the recalculation to those areas that we are
planning to use. Rather than recalculate the whole level, we simply recalculate those areas that are
most important. This is an ad hoc solution: we defer working any data out until we know they
are needed. Deciding which locations are important depends on how the tactical analysis system
is being used.

The simplest way to determine importance is the neighborhood of the AI-controlled charac-
ters. If the AI is seeking a defensive location away from the enemy’s line of sight (which is changing
rapidly as the enemy move in and out of cover), then we only need to recalculate those areas that
are potential movement sites for the characters. If the tactical quality of potential locations is
changing fast enough, then we need to limit the search to only nearby locations (otherwise, the
target location may end up being in line of sight by the time we get there). This limits the area we
need to recalculate to just a handful of neighboring locations.

Another approach to determine the most important locations is to use a second-level tactical
analysis, one that can be updated gradually and that will give an approximation to the third-level
analysis. The areas of interest from the approximation can then be examined in more depth to
make a final decision.

For example, in an RTS, we may be looking for a good location to keep a super-unit concealed.
Enemy reconnaissance flights can expose a secret very easily. A general analysis can keep track of
good hiding locations. This could be a second-level analysis that takes into account the current
position of enemy armor and radar towers (things that don’t move often) or a first-level analysis
that simply uses the topography of the level to calculate low-visibility spots. At any time, the game
can examine the candidate locations from the lower level analysis and run a more complete hiding
analysis that takes into account the current motion of recon flights.

6.2 Tactical Analyses 531

Multi-Layer Analyses

For each tactical analysis the end result is a set of data on a per-location basis: the influence
map provides an influence level, side, and optionally a security level (one or two floating point
numbers and an integer representing the side); the shadow analysis provides shadow intensity at
each location (a single floating point number); and the gradient analysis provides a value that
indicates the difficulty of moving through a location (again, a single floating point number).

In Section 6.1 we looked at combining simple tactics into more complex tactical information.
The same process can be done for tactical analyses. This is sometimes called multi-layer analysis,
and we’ve shown it on the schematic for tactical analyses (Figure 6.14) as spanning all three
categories: any kind of input tactical analysis can be used to create the compound information.

Imagine we have an RTS game where the placement of radar towers is critical to success.
Individual units can’t see very far alone. To get a good situational awareness we need to build
long-distance radar. We need a good method for working out the best locations for placing the
radar towers.

Let’s say, for example, that the best radar tower locations are those with the following
properties:

� Wide range of visibility (to get the maximum information)

� In a well-secured location (towers are typically easy to destroy)

� Far from other radar towers (no point duplicating effort)

In practice, there may be other concerns also, but we’ll stick with these for now. Each of these
three properties is the subject of its own tactical analysis. The visibility tactic is a kind of terrain
analysis, and the security is based on a regular influence map.

The distance from other towers is also a kind of influence map. We create a map where the
value of a location is given by the distance to other towers. This could be just the distance to the
nearest tower, or it might be some kind of weighted value from several towers. We can simply use
the influence map function covered earlier to combine the influence of several radar positions.

The three base tactical analyses are finally combined into a single value that demonstrates how
good a location is for a radar base.

The combination might be of the form:

Quality = Security × Visibility × Distance,

where “Security” is a value for how secure a location is. If the location is controlled by another
side, this should be zero. “Visibility” is a measure of how much of the map can be seen from the
location, and “Distance” is the distance from the nearest tower. If we use the influence formula to
calculate the influence of nearby towers, rather than the distance to them, then the formula may
be of the form:

Quality = Security × Visibility

Tower Influence
,

although we need to make sure the influence value is never zero.

532 Chapter 6 Tactical and Strategic AI

W WWWWWW W

W WWWWWW W

W WWWWWW W

W WWWWWW W

W WWWWWW W

W WWWWWW W

W BBBWWW W

W BBBWWW B

2

2

2

2

2

2

Security Visibility Proximity

Existing tower

Combined analyses

Figure 6.15 The combined analyses

Figure 6.15 shows the three separate analyses and the way they have been combined into a
single value for the location of a radar tower. Even though the level is quite small, we can see that
there is a clear winner for the location of the next radar tower.

There is nothing special in the way we’ve combined the three terms. There may be better ways
to put them together, using a weighted sum, for example (although then care needs to be taken
not to try to build on another side’s territory). The formula for combining the layers needs to be
created by the developer, and in a real game, it will involve fine tuning and tweaking.

We have found throughout AI that whenever something needs tweaking, it is almost essen-
tial to be able to visualize it in the game. In this case we would support a mode where the
tower-placement value can be displayed in the game at any time (this would only be part of
the debug version, not the final distribution) so that we could see the results of combining
each feature.

When to Combine Things

Combining tactical analyses is exactly the same as using compound tactics with waypoints: we
can choose when to perform the combination step.

6.2 Tactical Analyses 533

If the base analyses are all calculated offline, then we have the option of performing the
combination offline also and simply storing its results. This might be the best option for a tactical
analysis of terrain difficulty: combining gradient, terrain type, and exposure to enemy fire, for
example.

If any of the base analyses are changed during the game, then the combined value needs to be
recalculated. In our example above, both the security level and distance to other towers change
over the course of the game, so the whole analysis needs to be recalculated during the game also.

Considering the hierarchy of tactical analyses we introduced earlier, the combined analysis
will be in the same category as the highest base analysis it relies on. If all the base analyses are in
category one, then the combined value will also be in category one. If we have one base analysis
in category one and two base analyses in category two (as in our radar example), then the overall
analysis will also be in category two. We’ll need to update it during the game, but not very rapidly.

For analyses that aren’t used very often, we could also calculate values only when needed. If the
base analyses are readily available, we can query a value and have it created on the fly. This works
well when the AI is using the analysis a location at a time—for example, for tactical pathfinding. If
the AI needs to consider all the locations at the same time (to find the highest scoring location in
the whole graph), then it may take too long to perform all the calculations on the fly. In this case
it is better to have the calculations being performed in the background (possibly taking hundreds
of frames to completely update) so that a complete set of values is available when needed.

Building a Tactical Analysis Server

If your game relies heavily on tactical analyses, then it is worth investing the implementation
time in building a tactical analysis server that can cope with each different category of analysis.
Personally, we have only needed to do this once, but building a common application programming
interface (API) that allowed any kind of analysis (as a plug-in module), along with any kind of
combination, really helped speed up the addition of new tactical concerns and made debugging
problems with tactics much easier. Unlike the example we gave earlier, in this system only weighted
linear combinations of analyses were supported. This made it easier to build a simple data file
format that showed how to combine primitive analyses into compound values.

The server should support distributing updates over many frames, calculating some values
offline (or during loading of the level) and calculating values only when they are needed. This
can easily be based on the time-slicing and resource management systems discussed in Chapter 9,
Execution Management (this was our approach, and it worked well).

We also found it very useful to build a common debugging interface that allowed us to select
any of the currently registered analyses to be displayed as an overlay on the game level.

6.2.6 Map Flooding

The techniques developed in Chapter 4 are used to split the game level into regions. In particular,
Dirichlet domains are very widely used. They are regions closer to one of a set of characteristic
points than any other.

534 Chapter 6 Tactical and Strategic AI

The same techniques can be used to calculate Dirichlet domains in influence maps. When we
have a tile-based level, however, these two different sets of regions can be difficult to reconcile.
Fortunately, there is a technique for calculating the Dirichlet domains on tile-based levels. This is
map flooding, and it can be used to work out which tile locations are closer to a given location
than any other. Beyond Dirichlet domains, map flooding can be used to move properties around
the map, so the properties of intermediate locations can be calculated.

Starting from a set of locations with some known property (such as the set of locations where
there is a unit), we’d like to calculate the properties of every other location. As a concrete example
we’ll consider an influence map for a strategy game: a location in the game belongs to the player
who has the nearest city to that location. This would be an easy task for a map flooding algorithm.
To show off a little more of what the algorithm can do, we can make things harder by adding some
complications:

� Each city has a strength, and stronger cities tend to have larger areas of influence than weaker
ones.

� The region of a city’s influence should extend out from the city in a continuous area. It can’t
be split into multiple regions.

� Cities have a maximum radius of influence that depends on the city’s strength.

We’d like to calculate the territories for the map. For each location we need to know the city
that it belongs to (if any).

The Algorithm

We will use a variation of the Dijkstra algorithm we saw in Chapter 4.
The algorithm starts with the set of city locations. We’ll call this the open list. Internally, we

keep track of the controlling city and strength of influence for each location in the level.
At each iteration the algorithm takes the location with the greatest strength and processes

it. We’ll call this the current location. Processing the current location involves looking at the
location’s neighbors and calculating the strength of influence for each location for just the city
recorded in the current node.

This strength is calculated using an arbitrary algorithm (i.e., we will not care how it is calcu-
lated). In most cases it will be the kind of drop-off equation we saw earlier in the chapter, but
it could also be generated by taking the distance between the current and neighboring locations
into account. If the neighboring location is beyond the radius of influence of the city (normally
implemented by checking if the strength is below some minimum threshold), then it is ignored
and not processed further.

If a neighboring location already has a different city registered for it, then the currently
recorded strength is compared with the strength of influence from the current location’s city.
The highest strength wins, and the city and strength are set accordingly. If it has no existing city
recorded, then the current location’s city is recorded, along with its influence strength.

Once the current location is processed, it is placed on a new list called the closed list. When
a neighboring node has its city and strength set, it is placed on the open list. If it was already on
the closed list, it is first removed from there. Unlike for the pathfinding version of the algorithm,

6.2 Tactical Analyses 535

we cannot guarantee that an updating location will not be on the closed list, so we have to make
allowances for removing it. This is because we are using an arbitrary algorithm for the strength
of influence.

Pseudo-Code

Other than changes in nomenclature, the algorithm is very similar to the pathfinding Dijkstra
algorithm.

1 def mapfloodDijkstra(map, cities, strengthThreshold,
2 strengthFunction):
3

4 # This structure is used to keep track of the
5 # information we need for each location
6 struct LocationRecord:
7 location
8 nearestCity
9 strength

10

11 # Initialize the open and closed lists
12 open = PathfindingList()
13 closed = PathfindingList()
14

15 # Initialize the record for the start nodes
16 for city in cities:
17 startRecord = new LocationRecord()
18 startRecord.location = city.getLocation()
19 startRecord.city = city
20 startRecord.strength = city.getStrength()
21 open += startRecord
22

23 # Iterate through processing each node
24 while length(open) > 0:
25

26 # Find the largest element in the open list
27 current = open.largestElement()
28

29 # Get its neighboring locations
30 locations = map.getNeighbors(current.location)
31

32 # Loop through each location in turn
33 for location in locations:
34

35 # Get the strength for the end node

536 Chapter 6 Tactical and Strategic AI

36 strength = strengthFunction(current.city,
37 location)
38

39 # Skip if the strength is too low
40 if strength < strengthThreshold: continue
41

42 # .. or if it is closed and we’ve found a worse
43 # route
44 else if closed.contains(location):
45

46 # Find the record in the closed list
47 neighborRecord = closed.find(location)
48 if neighborRecord.city != current.city and
49 neighborRecord.strength < strength:
50 continue
51

52 # We’re going to change the city, so
53

54 # .. or if it is open and we’ve found a worse
55 # route
56 else if open.contains(location):
57

58 # Find the record in the open list
59 neighborRecord = open.find(location)
60 if neighborRecord.strength < strength:
61 continue
62

63 # Otherwise we know we’ve got an unvisited
64 # node, so make a record for it
65 else:
66 neighborRecord = new NodeRecord()
67 neighborRecord.location = location
68

69 # We’re here if we need to update the node
70 # Update the cost and connection
71 neighborRecord.city = current.city
72 neighborRecord.strength = strength
73

74 # And add it to the open list
75 if not open.contains(location):
76 open += neighborRecord
77

78 # We’ve finished looking at the neighbors for
79 # the current node, so add it to the closed list

6.2 Tactical Analyses 537

80 # and remove it from the open list
81 open -= current
82 closed += current
83

84 # The closed list now contains all the locations
85 # that belong to any city, along with the city they
86 # belong to.
87 return

Data Structures and Interfaces

This version of Dijkstra takes as input a map that is capable of generating the neighboring
locations of any location given. It should be of the following form:

1 class Map:
2 # Returns a list of neighbors for a given location
3 def getNeighbors(location)

In the most common case where the map is grid based, this is a trivial algorithm to implement
and can even be included directly in the Dijkstra implementation for speed.

The algorithm needs to be able to find the position and strength of influence of each of the
cities passed in. For simplicity, we’ve assumed each city is an instance of some city class that is
capable of providing this information directly. The class has the following format:

1 class City:
2 # The location of the city
3 def getLocation()
4 # The strength of influence imposed by the city
5 def getStrength()

Finally, both the open and closed lists behave just like they did when we used them for
pathfinding. Refer to Chapter 4, Section 4.2, for a complete rundown of their structure. The only
difference is that we’ve replaced the smallestElement method with a largestElement method.
In the pathfinding case we were interested in the location with the smallest path-so-far (i.e., the
location closest to the start). This time we are interested in the location with the largest strength
of influence (which is also a location closest to one of the start positions: the cities).

Performance

Just like the pathfinding Dijkstra, this algorithm on its own is O(nm) in time, where n is the
number of locations that belong to any city, and m is the number of neighbors for each location.

538 Chapter 6 Tactical and Strategic AI

Unlike before, the worst case memory requirement is O(n) only, because we ignore any location
not within the radius of influence of any city.

Just like in the pathfinding version, however, the data structures use algorithms that are non-
trivial. See Chapter 4, Section 4.3 for more information on the performance and optimization of
the list data structures.

6.2.7 Convolution Filters

Image blur algorithms are a very popular way to update analyses that involve spreading values out
from their source. Influence maps in particular have this characteristic, but so do other proximity
measures. Terrain analyses can sometimes benefit, but they typically don’t need the spreading-out
behavior.

Similar algorithms are used outside of games also. They are used in physics to simulate the
behavior of many different kinds of fields and form the basis of models of heat transfer around
physical components.

The blur effect inside your favorite image editing package is one of a family of convolution
filters. Convolution is a mathematical operation that we will not need to consider in this book. For
more information on the mathematics behind filters, we’d recommend Digital Image Processing
[Gonzalez and Woods, 2002]. Convolution filters go by a variety of other names, too, depending
on the field you are most familiar with: kernel filters, impulse response filters, finite element
simulation,1 and various others.

The Algorithm

All convolution filters have the same basic structure: we define an update matrix to tell us how the
value of one location in the map gets updated based on its own value and that of its neighbors.
For a square tile-based level, we might have a matrix that looks like the following:

M = 1

16

⎡
⎢⎣1 2 1

2 4 2

1 2 1

⎤
⎥⎦ .

We interpret this by taking the central element in the matrix (which, therefore, must have
an odd number of rows and columns) as referring to the tile we are interested in. Starting with
the current value of that location and its surrounding tiles, we can work out the new value by
multiplying each value in the map by the corresponding value in the matrix and summing the
results. The size of the filter is the number of neighbors in each direction. In the example above
we have a filter size of one.

So if we have a section of the map that looks like the following:

5 6 2

1 4 2

6 3 3

1. Convolution filters are strictly only one technique used in finite element simulation.

6.2 Tactical Analyses 539

and we are trying to work out a new value for the tile that currently has the value 4 (let’s call it v),
we perform the calculation:

v =
⎛
⎜⎝

5 × 1
16 + 6 × 2

16 + 2 × 1
16 +

1 × 2
16 + 4 × 4

16 + 2 × 2
16 +

6 × 1
16 + 3 × 2

16 + 3 × 1
16

⎞
⎟⎠ = 3.5.

We repeat this process for each location in the map, applying the matrix and calculating a new
value. We need to be careful, however. If we just start at the top left corner of the map and work
our way through in reading order (i.e., left to right, then top to bottom), we will be consistently
using the new value for the map locations to the left, above, and diagonally above and left, but
the old values for the remaining locations. This asymmetry can be acceptable, but very rarely. It
is better to treat all values the same.

To do this we have two copies of the map. The first is our source copy. It contains the old
values, and we only read from it. As we calculate each new value, it is written to the new destination
copy of the map. At the end of the process the destination copy contains an accurate update of
the values. In our example, the values will be

38

9

49

12

28

9

43

12

7

2

35

12

4
41

12

26

9

.

To make sure the influence propagates from a location to all the other locations in the map,
we need to repeat this process many times. Before each repeat, we set the influence value of each
location where there is a unit.

If there are n tiles in each direction on the map (assuming a square tile-based map), then we
need up to n passes through the filter to make sure all values are correct. If the source values are
in the middle of the map, we may only need half this number.

If the sum total of all the elements in our matrix is one, then the values in the map will
eventually settle down and not change over additional iterations. As soon as the values settle
down, we need no more iterations.

In a game, where time is of the essence, we don’t want to spend a long time repeatedly applying
the filter to get a correct result. We can limit the number of iterations through the filter. Often,
you can get away with applying one pass through the filter each frame and using the values from
previous frames. In this way the blurring is spread over multiple frames. If you have fast-moving
characters on the map, however, you may still be blurring their old location long after they have
moved, which may cause problems. It is worth experimenting with, however. Most developers
we know who use filters only apply one pass at a time.

540 Chapter 6 Tactical and Strategic AI

Boundaries

Before we implement the algorithm, we need to consider what happens at the edges of the map.
Here we are no longer able to apply the matrix because some of the neighbors for the edge tile do
not exist.

There are two approaches to this problem: modify the matrix or modify the map.
We could modify the matrix at the edges so that it only includes the neighbors that exist. At

the top left-hand corner, for example, our blur matrix becomes:

1

9

[
4 2

2 1

]

and

1

12

[
1 2 1

2 4 2

]

on the bottom edge.
This approach is the most correct and will give good results. Unfortunately, it involves

working with nine different matrices and switching between them at the correct time. The regular
convolution algorithm given below can be very comprehensively optimized to take advantage
of single instruction, multiple data (SIMD), processing several locations at the same time. If
we need to keep switching matrices, these optimizations are no longer easy to achieve, and we
lose a good deal of the speed (in our basic experimentation for this book, the matrix-switching
version can take 1.5 to 5 times as long).

The second alternative is to modify the map. We do this by adding a border around the
game locations and clamping their values (i.e., they are never processed during the convolution
algorithm; therefore, they will never change their value). The locations in the map can then use
the regular algorithm and draw data from tiles that only exist in this border.

This is a fast and practical solution, but it can produce edge artifacts. Because we have no way
of knowing what the border values should be set at, we choose some arbitrary value (say zero).
The locations that neighbor the border will consistently have a contribution of this arbitrary value
added to them. If the border is all set to zero, for example, and a high-influence character is next
to it, its influence will be pulled down because the edge locations will be receiving zero-valued
contributions from the invisible border.

This is a common artifact to see. If you visualize the influence map as color density, it appears
to have a paler color halo around the edge. The same thing will occur regardless of the value
chosen for the border. It can be alleviated by increasing the size of the border and allowing some
of the border values to be updated normally (even though they aren’t part of the game level). This
doesn’t solve the problem, but can make it less visible.

6.2 Tactical Analyses 541

Pseudo-Code

The convolution algorithm can be implemented in the following way:

1 # Performs a convolution of the matrix on the source
2 def convolve(matrix, source, destination):
3

4 # Find the size of the matrix
5 matrixLength = matrix.length()
6 size = (matrixLength-1)/2
7

8 # Find the dimensions of the source
9 height = source.length()

10 width = source[0].length()
11

12 # Go through each destination node, missing
13 # out a border equal to the size of the matrix.
14 for i in size..(width-size):
15 for j in size..(height-size):
16

17 # Start with zero in the destination
18 destination[i][j] = 0
19

20 # Go through each entry in the matrix
21 for k in 0..matrixLength:
22 for m in 0..matrixLength:
23

24 # Add the component
25 destination[i][j] +=
26 source[i+k-size][j+m-size] *
27 matrix[k][m]

To apply multiple iterations of this algorithm, we can use a driver function that looks like the
following:

1 def convolveDriver(matrix, source,
2 destination, iterations):
3

4 # Assign the source and destination to
5 # swappable variables (by reference, not
6 # by value).
7 if iterations % 2 > 0:
8 map1 = source

542 Chapter 6 Tactical and Strategic AI

9 map2 = destination
10 else:
11 # Copy source data into destination
12 # so we end up with the destination data
13 # in the destination array after an even
14 # number of convolutions.
15 destination = source
16 map1 = destination
17 map2 = source
18

19 # Loop through the iterations
20 for i in 0..iterations:
21

22 # Run the convolution
23 convolve(matrix, map1, map2)
24

25 # Swap the variables
26 map1, map2 = map2, map1

although, as we’ve already seen, this is not commonly used.

Data Structures and Interfaces

This code uses no peculiar data structures or interfaces. It requires both the matrix and the source
data as a rectangular array of arrays (containing numbers, of whatever type you need). The matrix
parameter needs to be a square matrix, but the source matrix can be of whatever size. A destination
matrix of the same size as the source matrix is also passed in, and its contents are altered.

Implementation Notes

The algorithm is a prime candidate for optimizing using SIMD hardware. We are performing
the same calculation on different data, and this can be parallelized. A good optimizing compiler
that can take advantage of SIMD processing is likely to automatically optimize these inner loops
for you.

Performance

The algorithm is O(whs2) in time, where w is the width of the source data, h is its height, and
s is the size of the convolution matrix. It is O(wh) in memory, because it requires a copy of the
source data in which to write updated values.

If memory is a problem, it is possible to split this down and use a smaller temporary storage
array, calculating the convolution one chunk of the source data at a time. This approach involves
revisiting certain calculations, thus decreasing execution speed.

6.2 Tactical Analyses 543

Filters

So far we’ve only seen one possible filter matrix. In image processing there is a whole wealth of
different effects that can be achieved through different filters. Most of them are not useful in
tactical analyses.

We’ll look at two in this section that have practical use: the Gaussian blur and the sharpening
filter. Gonzalez and Woods [2002] contains many more examples, along with comprehensive
mathematical explanations of how and why certain matrices create certain effects.

Gaussian Blur

The blur filter we looked at earlier is one of a family called Gaussian filters. They blur values,
spreading them around the level. As such they are ideal for spreading out influence in an
influence map.

For any size of filter, there is one Gaussian blur filter. The values for the matrix can be
found by taking two vectors made up of elements of the binomial series; for the first few values
these are

[1 2 1]

[1 4 6 4 1]

[1 6 15 20 15 6 1]

[1 8 28 56 70 56 28 8 1].

We then calculate their outer product. So for the Gaussian filter of size two, we get:

⎡
⎢⎢⎢⎢⎢⎢⎣

1

4

6

4

1

⎤
⎥⎥⎥⎥⎥⎥⎦

× [1 4 6 4 1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We could use this as our matrix, but the values in the map would increase dramatically each
time through. To keep them at the same average level, and to ensure that the values settle down,
we divide through by the sum of all the elements. In our case this is 256:

M = 1

256

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

544 Chapter 6 Tactical and Strategic AI

Figure 6.16 Screenshot of a Gaussian blur on an influence map

If we run this filter over and over on an unchanging set of unit influences, we will end up
with the whole level at the same influence value (which will be low). The blur acts to smooth out
differences, until eventually there will be no difference left.

We could add in the influence of each unit each time through the algorithm. This would have
a similar problem: the influence values would increase at each iteration until the whole level had
the same influence value as the units being added.

To solve these problems we normally introduce a bias: the equivalent of the unlearning
parameter we used for frag-maps earlier. At each iteration we add the influence of the units we
know about and then remove a small amount of influence from all locations. The total removed
influence should be the same as the total influence added. This ensures that there is no net gain
or loss over the whole level, but that the influence spreads correctly and settles down to a steady-
state value.

Figure 6.16 shows the effect of our size-two Gaussian blur filter on an influence map. The
algorithm ran repeatedly (adding the unit influences each time and removing a small amount)
until the values settled down.

Separable Filters

The Gaussian filter has an important property that we can use to speed up the algorithm.
When we created the filter matrix, we did so using the outer product of two identical

6.2 Tactical Analyses 545

vectors: ⎡
⎢⎢⎢⎢⎢⎢⎣

1

4

6

4

1

⎤
⎥⎥⎥⎥⎥⎥⎦

× [1 4 6 4 1] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This means that, during an update, the values for locations in the map are being calculated by
the combined action of a set of vertical calculations and horizontal calculations. What is more, the
vertical and horizontal calculations are the same. We can separate them out into two steps: first
an update based on neighboring vertical values and second using neighboring horizontal values.

For example, let’s return to our original example. We have part of the map that looks like the
following:

5 6 2

1 4 2

6 3 3

and, what we now know is a Gaussian blur, with the matrix:

M = 1

16

⎡
⎢⎣

1 2 1

2 4 2

1 2 1

⎤
⎥⎦ = 1

4

⎡
⎢⎣

1

2

1

⎤
⎥⎦ × 1

4
[1 2 1].

We replace the original updated algorithm with a two-step process. First, we work through
each column and apply just the vertical vector, using the components to multiply and sum the
values in the table just as before. So if the 1 value in our example is called w, then the new value
for w is given by:

v =
5 × 1

4+
1 × 2

4+
6 × 1

4

= 7

2
.

We repeat this process for the whole map, just as if we had a whole filter matrix. After this
update we end up with:

11

3

16

3
2

13

4

17

4

9

4
13

3

10

3

8

3

.

546 Chapter 6 Tactical and Strategic AI

After this is complete, we then go through again performing the horizontal equivalent (i.e.,
using the matrix [1 2 1]). We end up with:

38

9

49

12

28

9
43

12

7

2

35

12

4
41

12

26

9

exactly as before.
The pseudo-code for this algorithm looks like the following:

1 # Performs a convolution of a matrix that is the outer
2 # product of the given vectors, on the given source
3 def separableConvolve(hvector, vvector,
4 source, temp, destination):
5

6 # Find the size of the vectors
7 vectorLength = hvector.length()
8 size = (vectorLength-1)/2
9

10 # Find the dimensions of the source
11 height = source.length()
12 width = source[0].length()
13

14 # Go through each destination node, missing
15 # out a border equal to the size of the vector.
16 for i in size..(width-size):
17 for j in size..(height-size):
18

19 # Start with zero in the temp array
20 temp[i][j] = 0
21

22 # Go through each entry in the vector
23 for k in 0..vectorLength:
24

25 # Add the component
26 temp[i][j] +=
27 source[i][j+k-size] *
28 vvector[k]
29

30 # Go through each destination node again.

6.2 Tactical Analyses 547

31 for i in size..(width-size):
32 for j in size..(height-size):
33

34 # Start with zero in the destination
35 destination[i][j] = 0
36

37 # Go through each entry in the vector
38 for k in 0..vectorLength:
39

40 # Add the component (taking data
41 # from the temp array, rather than
42 # the source)
43 destination[i][j] +=
44 temp[i+k-size][j] *
45 hvector[k]
46

We are passing in two vectors, the two vectors whose outer product gives the convolution
matrix. In the examples above this has been the same vector for each direction, although it
could just as well be different. We are also passing in another array of arrays, called temp, again
the same size as the source data. This will be used as temporary storage in the middle of the
update.

Rather than doing nine calculations (a multiplication and addition in each) for each location
in the map, we’ve done only six: three vertical and three horizontal. For larger matrices the saving
is even larger, a size 3 matrix would take 25 calculations the long way or 10 if it were separable.
It is therefore O(whs) in time, rather than the O(whs2) of the previous version. It doubles the
amount of temporary storage space needed, however, although it is still O(wh).

In fact, if we are restricted to Gaussian blurs, there is a faster algorithm (called SKIPSM,
discussed in Waltz and Miller [1998]) that can be implemented in assembly and run very quickly
on the CPU. It is not designed to take full advantage of SIMD hardware, however. So in practice a
well-optimized version of the algorithm above will perform almost as well and will be considerably
more flexible.

It is not only Gaussian blurs that are separable, although most convolution matrices are not.
If you are writing a tactical analysis server that can be used as widely as possible, then you should
support both algorithms. The remaining filters in this chapter are not separable, so they require
the long version of the algorithm.

The Sharpening Filter

Rather than blur influence out, we might want to concentrate it in. If we need to understand where
the central hub of our influence is (to determine where to build a base, for example), we could
use a sharpening filter. Sharpening filters act in the opposite way of blur filters: concentrating the
values in the regions that already have the most.

548 Chapter 6 Tactical and Strategic AI

A matrix for the sharpening filter has a central positive value surrounded by negative values;
for example,

1

2

⎡
⎢⎣

−1 −1 −1

−1 18 −1

−1 −1 −1

⎤
⎥⎦

and more generally, any matrix of the form:

1

a

⎡
⎢⎣

−b −c −b

−c a(4b + 4c + 1) −c

−b −c −b

⎤
⎥⎦ ,

where a, b, and c are any positive real numbers and typically c < b.
In the same way as for the Gaussian blur, we can extend the same principle to larger matrices.

In each case, the central value will be positive, and those surrounding it will be negative.
Figure 6.17 shows the effect of the first sharpening matrix shown above. In the first part of

the figure, an influence map has been sharpened once only.
Because the sharpening filter acts to reduce the distribution of influence, if we run it

multiple times we are likely to end up with an uninspiring result. In the second part of the
figure the algorithm has been run for more iterations (adding the unit influences each time
and removing a bias quantity) until the values settle down. You can see that the only remain-
ing locations with any influence are those with units in them (i.e., those we already know the
influence of).

Where sharpening filters can be useful for terrain analysis, they are usually applied only a
handful of times and are rarely run to a steady state.

Figure 6.17 Screenshot of a sharpening filter on an influence map

6.2 Tactical Analyses 549

6.2.8 Cellular Automata

Cellular automata are update rules that generate the value at one location in the map based on
the values of other surrounding locations. This is an iterative process: at each iteration values are
calculated based on the surrounding values at the previous iteration. This makes it a dynamic
process that is more flexible than map flooding and can give rise to useful emergent effects.

In academia, cellular automata gained attention as a biologically plausible model of comput-
ing (although many commentators have subsequently shown why they aren’t that biologically
plausible), but with little practical use.

They have been used in only a handful of games, to our knowledge, mostly city simulation
games, with the canonical example being SimCity [Maxis, 1989]. In SimCity they aren’t used
specifically for the AI; they are used to model changing patterns in the way the city evolves.
We have used a cellular automaton to identify tactical locations for snipers in a small simulation,
and we suspect they can be used more widely in tactical analysis.

Figure 6.18 shows one cell in a cellular automaton. It has a neighborhood of locations whose
values it depends on. The update rule can be anything from a simple mathematical function to a
complex set of rules. The figure shows an intermediate example.

Note, in particular, that if we are dealing with numeric values at each location, and the update
rules are a single mathematical function, then we have a convolution filter, just as we saw in the
previous section. In fact, convolution filters are just one example of a cellular automaton. This
is not widely recognized, and most people tend to think of cellular automata solely in terms of
discrete values at each location and more complex update rules.

Typically, the values in each surrounding location are first split into discrete categories. They
may be enumerated values to start with (the type of building in a city simulation game, for
example, or the type of terrain for an outdoor RTS). Alternatively, we may have to split a real

2

2

3

1 4

1

2 1

1

2 1 4

12

3 2 1

IF two or more neighbors with higher values,
THEN increment

IF no neighbors with as high a value,
THEN decrement

2

Figure 6.18 A cellular automaton

550 Chapter 6 Tactical and Strategic AI

number into several categories (splitting a gradient into categories for “flat,”“gentle,”“steep,” and
“precipitous,” for example).

Given a map where each location is labeled with one category from our set, we can apply an
update rule on each location to give the category for the next iteration. The update for one location
depends only on the value of locations at the previous iteration. This means the algorithm can
update locations in any order.

Cellular Automata Rules

The most well-known variety of cellular automata has an update rule that gives an output category,
based on the numbers of its neighbors in each location. Figure 6.18 shows such a rule for just two
categories. In the rule, it states that a location that borders at least four secure locations should be
treated as secure.

Running the same rule over all the locations in a map allows us to turn an irregular zone of
security (where the AI may mistakenly send units into the folds, only to have the enemy easily
flank them) into a more convex pattern.

Cellular automaton rules could be created to take account of any information available to
the AI. They are designed to be very local, however. A simple rule decides the characteristic of
a location based only on its immediate neighbors. The complexity and dynamics of the whole
automaton arise from the way these local rules interact. If two neighboring locations change their
category based on each other, then the changes can oscillate backward and forward. In many
cellular automata, even more complex behaviors can arise, including never-ending sequences that
involve changes to the whole map.

Most cellular automata are not directional; they don’t treat one neighbor any differently from
any other. If a location in a city game has three neighboring high-crime areas, we might have a
rule that says the location is also a high-crime zone. In this case, it doesn’t matter which of the
location’s neighbors are high crime as long as the numbers add up. This enables the rule to be
used in any location on the map.

Edges can pose a problem, however. In academic cellular automata, the map is considered
to be either infinite or toroidal (i.e., the top and the bottom are joined, as are the left and right
edges). Either approach gives a map where every location has the same number of neighbors. In
a real game this will not be the case. In fact, many times we will not be working on a grid-based
map at all, and so the number of neighbors might change from location to location.

To avoid having different behavior at different locations, we can use rules that are based on
larger neighborhoods (not just locations that touch the location in question) and proportions
rather than absolute numbers. We might have a rule that says if at least 25% of neighboring
locations are high-crime areas then a location is also high crime, for example.

Running a Cellular Automaton

We need two copies of the tactical analysis to allow the cellular automaton to update. One copy
stores the values at the previous iteration, and the other copy stores the updated values. We can
alternate which copy is which and repeatedly use the same memory.

6.2 Tactical Analyses 551

0.4 1.1 1.4

1.1 1.8 2.2

2.5 3.6 2.9

Data map Category map Result

1 2 2

2 2 3

3 4 3

2 2 2

3 3 3

333

Quantization into
categories

Cellular automation
rules

Figure 6.19 Updating a cellular automaton

Each location is considered in sequence (in any order, as we’ve seen), taking its input from its
neighboring location and placing its output in the new copy of the analysis.

If we need to split a real-valued analysis into categories, this is often done as a pre-processing
step first. A third copy of the map is kept, containing integers that represent the enumerated
categories. The correct category is filled in each location from the real-numbered source data.
Finally, the cellular automaton update rule runs as normal, converting its category output into a
real number for writing into the destination map. This process is shown in Figure 6.19.

If the update function is a simple mathematical function of its inputs, without branches, then
it can often be written as parallel code that can be run on either the graphics card or a specialized
vector mathematics unit. This can speed up the execution dramatically, as long as there is some
headroom on those chips (if the graphics processing is taking every ounce of their power, then
you may as well run the simulation on the CPU, of course).

In most cases, however, update functions of cellular automata tend to be heavily branched;
they consist of lots of switch or if statements. This kind of processing isn’t as easily parallelized,
and so it is often performed in series on the main CPU, with a corresponding performance
decrease. Some cellular automata rule sets (in particular, Conway’s “The Game of Life”: the most
famous set of rules, but practically useless in a game application) can be easily rewritten without
branches and have been implemented in a highly efficient parallel manner. Unfortunately, it is
not always sensible to do so because the rewrites can take longer to run than a good branched
implementation.

The Complexity of Cellular Automata

The behavior of a cellular automaton can be extremely complex. In fact, for some rules the
behavior is so complex that the patterns of values become a programmable computer. This is part
of the attraction of using the method: we can create sets of rules that produce almost any kind of
pattern we like.

552 Chapter 6 Tactical and Strategic AI

Unfortunately, because the behavior is so complex, there is no way we can accurately predict
what we are going to see for any given rule set. For some simple rules it may be obvious. However,
even very simple rules can lead to extraordinarily complex behaviors. The rule for the famous
“The Game of Life” is very simple, yet produces completely unpredictable patterns.2

In game applications we don’t need this kind of sophistication. For tactical analyses we are
only interested in generating properties of one location from that of neighboring locations. We
would like the resulting analysis to be stable. After a while, if the base data (like the positions of
units or the layout of the level) stay the same, then the values in the map should settle down to a
consistent pattern.

Although there are no guaranteed methods for creating rules that settle in this way, we have
found that a simple rule of thumb is to set only one threshold in rules. In Conway’s “The Game
of Life,” for example, a location can be on or off. It comes on if it has three on neighbors, and
it goes off if it has fewer than two or more than four (there are eight neighbors for each cell in
the grid). It is this “band” of two to three neighbors that causes the complex and unpredictable
behavior. If the rules simply made locations switch on when they had three or more neigh-
bors, then the whole map would rapidly fill up (for most starting configurations) and would be
quite stable.

Bear in mind that you don’t need to introduce the dynamism into the game through complex
rules. The game situation will be changing as the player affects it. Often, you just want fairly simple
rules for the cellular automaton: rules that would lead to boring behavior if the automaton was
the only thing running in the game.

Applications and Rules

Cellular automata are a broad topic, and their flexibility induces option paralysis. It is worth
looking through a few of their applications and the rules that support them.

Area of Security

Earlier in the chapter we looked at a set of cellular automata rules that expand an area of security
to give a smoother profile, less prone to obvious mistakes in unit placement. It is not suitable for
use on the defending side’s area of control, but is useful for the attacking side because it avoids
falling foul of a number of simple counterattack tactics.

The rule is simple:

A location is secure if at least four of its eight neighbors (or 50% for edges) are secure.

Building a City

SimCity uses a cellular automaton to work out the way buildings change depending on their
neighborhood. A residential building in the middle of a run-down area will not prosper and may

2. These are literally unpredictable in the sense that the only way to find out what will happen is to run the cellular automaton.

6.3 Tactical Pathfinding 553

fall derelict, for example. SimCity’s urban model is complex and highly proprietary. While we can
guess some of the rules, we have no idea of their exact implementation.

A less well-known game, Otostaz [Sony Computer Entertainment, 2002], uses exactly the
same principle, but its rules are simpler. In the game, a building appears on an empty patch
of land when it has one square containing water and one square containing trees. This is
a level-one building. Taller buildings come into being on squares that border two buildings
of the next smaller size, or three buildings of one size smaller, or four buildings of one size
smaller still.

So a level-two building appears on a patch of land when it has two neighboring level-one
buildings. A level-three building needs two level-two buildings or three level-one buildings, and
so on. An existing building doesn’t ever degrade on its own (although the player can remove it),
even if the buildings that caused it to generate are removed. This provides the stability to avoid
unstable patterns on the map.

This is a gameplay, rather than an AI, use of the game, but the same thing can be implemented
to build a base in an RTS. Typically, an RTS has a flow of resources: raw materials need to
be collected, and there needs to be a balance of defensive locations, manufacturing plants, and
research facilities.

We could use a set of rules such as:

A location near raw materials can be used to build a defensive building. A location bordered
by two defensive positions may be used to build a basic building of any type (training,
research, and manufacturing). A location bounded by two basic buildings may become
an advanced building of a different type (so we don’t put all the same types of technology
in one place, vulnerable to a single attack). Very valuable facilities should be bordered by
two advanced buildings.

6.3 Tactical Pathfinding

Tactical pathfinding is a hot topic in current game development. It can provide quite impressive
results when characters in the game move, taking account of their tactical surroundings, staying
in cover, and avoiding enemy lines of fire and common ambush points.

Tactical pathfinding is sometimes talked about as if it is significantly more complex or sophis-
ticated than regular pathfinding. This is unfortunate because it is no different at all from regular
pathfinding. The same pathfinding algorithms are used on the same kind of graph representation.
The only modification is that the cost function is extended to include tactical information as well
as distance or time.

6.3.1 The Cost Function

The cost for moving along a connection in the graph should be based on both distance/time (oth-
erwise, we might embark on exceptionally long routes) and how tactically sensible the maneuver is.

554 Chapter 6 Tactical and Strategic AI

The cost of a connection is given by a formula of the following type:

C = D +
∑

i

wiTi,

where D is the distance of the connection (or time or other non-tactical cost function—we
will refer to this as the base cost of the connection); wi is a weighting factor for each tactic
supported in the game; Ti is the tactical quality for the connection, again for each tactic; and
i is the number of tactics being supported. We’ll return to the choice of the weighting factors
below.

The only complication in this is the way tactical information is stored in a game. As we have
seen so far in this chapter, tactical information is normally stored on a per-location basis. We
might use tactical waypoints or a tactical analysis, but in either case the tactical quality is held for
each location.

To convert location-based information into connection-based costs, we normally average the
tactical quality of each of the locations that the connection connects. This works on the assumption
that the character will spend half of its time in each region and so should benefit or suffer half of
the tactical properties of each.

This assumption is good enough for most games, although it sometimes produces quite
poor results. Figure 6.20 shows a connection between two locations with good cover. The
connection, however, is very exposed, and the longer route around is likely to be much better
in practice.

Enemy

Enemy

Figure 6.20 Averaging the connection cost sometimes causes problems

6.3 Tactical Pathfinding 555

6.3.2 Tactic Weights and Concern Blending

In the equation for the cost of a connection, the real-valued quality for each tactic is multiplied by
a weighting factor before being summed into the final cost value. The choice of weighting factors
controls the kinds of routes taken by the character.

We could also use a weighting factor for the base cost, but this would be equivalent to changing
the weighting factors for each of the tactics. A 0.5 weight for the base cost can be achieved by
multiplying each of the tactic weights by 2, for example. We will not use a separate weight for the
base cost in this chapter, but you may find it more convenient to have one in your implementation.

If a tactic has a high weight, then locations with that tactical property will be avoided by the
character. This might be the case for ambush locations or difficult terrain, for example. Conversely,
if the weight is a large negative value, then the character will favor locations with a high value
for that property. This would be sensible for cover locations or areas under friendly control,
for example.

Care needs to be taken to make sure that no possible connection in the graph can have a
negative overall weight. If a tactic has a large negative weight and a connection has a small base
cost with a high value for the tactic, then the resulting overall cost may be negative. As we saw in
Chapter 4, negative costs are not supported by normal pathfinding algorithms such as A∗. Weights
can be chosen so that no negative value can occur, although that is often easier said than done. As
a safety net, we can also specifically limit the cost value returned so that it is always positive. This
adds additional processing time and can also lose lots of tactical information. If the weights are
badly chosen, many different connections might be mapped to negative values: simply limiting
them so they give a positive result loses any information on which connections are better than the
others (they all appear to have the same cost).

Speaking from bitter experience, we would advise you at the very least to include an assert or
other debugging message to tell you if a connection arises with a negative cost. A bug resulting
from a negative weight can be tough to track down (it normally results in the pathfinding never
returning a result, but it can cause much more subtle bugs, too).

We can calculate the costs for each connection in advance and store them with the pathfinding
graph. There will be one set of connection costs for each set of tactic weights.

This works okay for static features of the game such as terrain and visibility. It cannot take
into account the dynamic features of the tactical situation: the balance of military influence, cover
from known enemies, and so on. To do this we need to apply the cost function each time the
connection cost is requested (we can cache the cost value for multiple queries in the same frame,
of course).

Performing the cost calculations when they are needed slows down pathfinding significantly.
The cost calculation for a connection is in the lowest loop of the pathfinding algorithm, and any
slowdown is usually quite noticeable. There is a trade-off. Is the advantage of better tactical routes
for your characters outweighed by the extra time they need to plan the route in the first place?

As well as responding to changing tactical situations, performing the cost calculations for each
frame allows great flexibility to model different personalities in different characters.

In a real-time strategy game, for example, we might have reconnaissance units, light infantry,
and heavy artillery. A tactical analysis of the game map might provide information on difficulty
of terrain, visibility, and the proximity of enemy units.

556 Chapter 6 Tactical and Strategic AI

The reconnaissance units can move fairly efficiently over any kind of terrain, so they weight
the difficulty of terrain with a small positive weight. They are keen to avoid enemy units, so they
weight the proximity of enemy units with a large positive value. Finally, they need to find locations
with large visibility, so they weight this with a large negative value.

The light infantry units have slightly more difficultly with tough terrain, so their weight is
a small positive value, higher than that of the reconnaissance units. Their purpose is to engage
the enemy. However, they would rather avoid unnecessary engagements, so they use a small
positive weight for enemy proximity (if they were actively seeking combat, they’d use a negative
value here). They would rather move without being seen, so they use a small positive weight for
visibility.

Heavy artillery units have a different set of weights again. They cannot cope with tough terrain,
so they use a large positive weight for difficult areas of the map. They also are not good in close
encounters, so they have large positive weights for enemy proximity. When exposed, they are
a prime target and should move without being seen (they can attack from behind a hill quite
successfully), so they also use a large positive weight for visibility.

These three routes are shown in Figure 6.21, a screenshot for a three-dimensional (3D) level.
The black dots in the screenshot show the location of enemy units.

Figure 6.21 Screenshot of the planning system showing tactical pathfinding

6.3 Tactical Pathfinding 557

The weights don’t need to be static for each unit type. We could tailor the weights to a unit’s
aggression. An infantry unit might not mind enemy contact if it is healthy, but might increase the
weight for proximity when it is damaged. That way if the player orders a unit back to base to be
healed, the unit will naturally take a more conservative route home.

Using the same source data, the same tactical analyses, and the same pathfinding algorithm,
but different weights, we can produce completely different styles of tactical motion that display
clear differences in priority between characters.

6.3.3 Modifying the Pathfinding Heuristic

If we are adding and subtracting modifiers to the connection cost, then we are in danger of making
the heuristic invalid. Recall that the heuristic is used to estimate the length of the shortest path
between two points. It should always return less than the actual shortest path length. Otherwise,
the pathfinding algorithm might settle for a sub-optimal path.

We ensured that the heuristic was valid by using a Euclidean distance between two points:
any actual path will be at least as long as the Euclidean distance and will usually be longer. With
tactical pathfinding we are no longer using the distance as the cost of moving along a connection:
subtracting the tactical quality of a connection may bring the cost of the connection below its
distance. In this case, a Euclidean heuristic will not work.

In practice, we have only come across this problem once. In most cases, the additions to the
cost outweigh the subtractions for the majority of connections (you can certainly engineer the
weights so that this is true). The pathfinder will disproportionately tend to avoid the areas where
the additions don’t outweigh the subtractions. These areas are associated with very good tactical
areas, and it has the effect of downgrading the tendency of a character to use them. Because the
areas are likely to be exceptionally good tactically, the fact that the character treats them as only
very good (not exceptionally good) is usually not obvious to the player.

The case where we have found problems was in a character that weighted most of the tactical
concerns with a fairly large negative weight. The character seemed to miss obviously good tactical
locations and to settle for mediocre locations.

In this case, we used a scaled Euclidean distance for the heuristic, simply multiplying it by 0.5.
This produced slightly more fill (see Chapter 4 for more information about fill), but it resolved
the issue with missing good positions.

6.3.4 Tactical Graphs for Pathfinding

Influence maps (or any other kind of tactical analysis) are ideal for guiding tactical pathfinding.
The locations in a tactical analysis form a natural representation of the game level, especially in
outdoor levels. In indoor levels, or for games without tactical analyses, we can use the waypoint
tactics covered at the start of this chapter.

In either case the locations alone are not sufficient for pathfinding. We also need a record of
the connections between them. For waypoint tactics that include topological tactics, we may have

558 Chapter 6 Tactical and Strategic AI

these already. For regular waypoint tactics and most tactical analyses, we are unlikely to have a set
of connections.

We can generate connections by running movement checks or line-of-sight checks between
waypoints or map locations. Locations that can be simply moved between are candidates for
maneuvers in a planned route. Chapter 4 has more details about the automatic construction of
connections between sets of locations.

The most common graph for tactical pathfinding is the grid-based graph used in RTS games. In
this case the connections can be generated very simply: a connection exists between two locations
if the locations are adjacent. This may be modified by not allowing connections between locations
when the gradient is steeper than some threshold or if either location is occupied by an obstacle.
More information on grid-based pathfinding graphs can also be found in Chapter 4.

6.3.5 Using Tactical Waypoints

Tactical waypoints, unlike tactical analysis maps, have tactical properties that refer to a very small
area of the game level. As we saw in the section on automatically placing tactical waypoints, a
small movement from a waypoint may produce a dramatic change in the tactical quality of the
location.

To make sensible pathfinding graphs it is almost always necessary to add additional waypoints
at locations that do not have peculiar tactical properties. Figure 6.22 shows a set of tactical
locations in part of a level; none of these can be easily reached from any of the others. The figure
shows the additional waypoints needed to connect the tactical locations and to form a sensible
graph for pathfinding.

Added
waypoint

Tactical
location

Figure 6.22 Adding waypoints that are not tactically sensible

6.4 Coordinated Action 559

The simplest way to achieve this is to superimpose the tactical waypoints onto a regular
pathfinding graph. The tactical locations need to be linked into their adjacent pathfinding nodes,
but the basic graph provides the ability to move easily between different areas of the level.

The developers we have seen using indoor tactical pathfinding have all included the placement
of tactical waypoints into the same level design process used to place nodes for the pathfinding
(normally using Dirichlet domains for quantization). By allowing the level designer the ability
to mark pathfinding nodes with tactical information, the resulting graph can be used for both
simple tactical decision making and for full-blown tactical pathfinding.

6.4 Coordinated Action

So far in this book we’ve looked at techniques in the context of controlling a single character.
Increasingly, we are seeing games where multiple characters have to cooperate together to get
their job done. This can be anything from a whole side in a real-time strategy game to squads or
pairs of individuals in a shooter game.

Another change happening as we speak is the ability of AI to cooperate with the player. It is
no longer enough to have a squad of enemy characters working as a team. Many games now need
AI characters to act in a squad led by the player. Up to now this has been mostly done by giving
the player the ability to issue orders. An RTS game, for example, sees the player control many
characters on his own team. The player gives an order and some lower level AI works out how to
carry it out.

Increasingly, we are seeing games in which the cooperation needs to occur without any explicit
orders being given. Characters need to detect the player’s intent and act to support it. This is a
much more difficult problem than simple cooperation. A group of AI characters can tell each
other exactly what they are planning (through some kind of messaging system, for example).
A player can only indicate his intent through his actions, which then need to be understood by
the AI.

This change in gameplay emphasis has placed increased burdens on game AI. This section will
look at a range of approaches that can be used on their own or in concert to get more believable
team behaviors.

6.4.1 Multi-Tier AI

A multi-tier AI approach has behaviors at multiple levels. Each character will have its own AI,
squads of characters together will have a different set of AI algorithms as a whole, and there may
be additional levels for groups of squads or even whole teams. Figure 6.23 shows a sample AI
hierarchy for a typical squad-based shooter.

We’ve assumed this kind of format in earlier parts of this chapter looking at waypoint tactics
and tactical analysis. Here the tactical algorithms are generally shared among multiple characters;
they seek to understand the game situation and allow large-scale decisions to be made. Later,
individual characters can make their own specific decisions based on this overview.

560 Chapter 6 Tactical and Strategic AI

Strategy
(rule-based system)

Tactical analysis

Planning
(pathfinding)

Group movement
(steering behavior)

Movement
(steering behavior)

Movement
(steering behavior)

Movement
(steering behavior)

1 per
squad
member

Figure 6.23 An example of multi-tier AI

There is a spectrum of ways in which the multi-tier AI might function. At one extreme, the
highest level AI makes a decision, passes it down to the next level, which then uses the instruction
to make its own decision, and so on down to the lowest level. This is called a top–down approach.
At the other extreme, the lowest level AI algorithms take their own initiative, using the higher level
algorithms to provide information on which to base their action. This is a bottom–up approach.

A military hierarchy is nearly a top–down approach: orders are given by politicians to generals,
who turn them into military orders which are passed down the ranks, being interpreted and
amplified at each stage until they reach the soldiers on the ground. There is some information
flowing up the levels also, which in turn moderates the decisions that can be made. A single soldier
might spy a heavy weapon (a weapon of mass destruction, let’s say) on the theater of battle, which
would then cause the squad to act differently and when bubbled back up the hierarchy could
change political policy at an international level.

A completely bottom–up approach would involve autonomous decision making by individual
characters, with a set of higher level algorithms providing interpretation of the current game state.
This extreme is common in a large number of strategy games, but isn’t what developers normally
mean by multi-tier AI. It has more similarities to emergent cooperation, and we’ll return to this
later in this section.

Completely top–down approaches are often used and show the descending levels of decision
making characteristic of multi-tier AI.

At different levels in the hierarchy we see the different aspects of AI seen in our AI model. This
was illustrated in Figure 6.1. At the higher levels we have decision making or tactical tools. Lower
down we have pathfinding and movement behaviors that carry out the high-level orders.

6.4 Coordinated Action 561

Group Decisions

The decision making tools used are just the same as those we saw in Chapter 5. There are no
special needs for a group decision making algorithm. It takes input about the world and comes
up with an action, just as we saw for individual characters.

At the highest level it is often some kind of strategic reasoning system. This might involve
decision making algorithms such as expert systems or state machines, but often also involves
tactical analyses or waypoint tactic algorithms. These decision tools can determine the best places
to move, apply cover, or stay undetected. Other decision making tools then have to decide whether
moving, being in cover, or remaining undetected are things that are sensible in the current
situation.

The difference is in the way its actions are carried out. Rather than being scheduled for
execution by the character, they typically take the form of orders that are passed down to lower
levels in the hierarchy. A decision making tool at a middle level takes input from both the game
state and the order it was given from above, but again the decision making algorithm is typically
standard.

Group Movement

In Chapter 3 we looked at motion systems capable of moving several characters at once, using
either emergent steering, such as flocking, or an intentional formation steering system.

The formation steering system we looked at in Chapter 3, Section 3.7 is multi-tiered. At the
higher levels the system steers the whole squad or even groups of squads. At the lowest level
individual characters move in order to stay with their formation, while avoiding local obstacles
and taking into account their environment.

While formation motion is becoming more widespread, it has been more common to have
no movement algorithms at higher levels of the hierarchy. At the lowest level the decisions are
turned into movement instructions. If this is the approach you select, be careful to make sure
that problems achieving the lower level movement cannot cause the whole AI to fall over. If a
high-level AI decides to attack a particular location, but the movement algorithms cannot reach
that point from their current position, then there may be a stalemate.

In this case it is worth having some feedback from the movement algorithm that the decision
making system can take account of. This can be a simple “stuck” alarm message (see Chapter
10 for details on messaging algorithms) that can be incorporated into any kind of decision
making tool.

Group Pathfinding

Pathfinding for a group is typically no more difficult than for an individual character. Most games
are designed so that the areas through which a character can pass are large enough for several
characters not to get stuck together. Look at the width of most corridors in the squad-based games
you own, for example. They are typically significantly larger than the width of one character.

562 Chapter 6 Tactical and Strategic AI

When using tactical pathfinding, it is common to have a range of different units in a squad.
As a whole they will need to have a different blend of tactical concerns for pathfinding than any
individual would have alone. This can be approximated in most cases by the heuristic of the
weakest character: the whole squad should use the tactical concerns of their weakest member. If
there are multiple categories of strength or weakness, then the new blend will be the worst in all
categories.

Terrain Multiplier Recon Unit Heavy Weapon Infantry Squad

Gradient 0.1 1.4 0.3 1.4

Proximity 1.0 0.6 0.5 1.0

This table shows an example. We have a recon unit, a heavy weapon unit, and a regular soldier
unit in a squad. The recon unit tries to avoid enemy contact, but can move over any terrain. The
heavy weapon unit tries to avoid rough terrain, but doesn’t try to avoid engagement. To make sure
the whole squad is safe, we try to find routes that avoid both enemies and rough terrain.

Alternatively, we could use some kind of blending weights allowing the whole squad to move
through areas that had modestly rough terrain and were fairly distant from enemies. This is
fine when constraints are preferences, but in many cases they are hard constraints (an artillery
unit cannot move through woodland, for example), so the weakest member heuristic is usually
safest.

On occasion the whole squad will have pathfinding constraints that are different from those of
any individual. This is most commonly seen in terms of space. A large squad of characters may not
be able to move through a narrow area that any of the members could easily move through alone.
In this case we need to implement some rules for determining the blend of tactical considerations
that a squad has based on its members. This will typically be a dedicated chunk of code, but could
also consist of a decision tree, expert system, or other decision making technology. The content
of this algorithm completely depends on the effects you are trying to achieve in your game and
what kinds of constraints you are working with.

Including the Player

While multi-tier AI designs are excellent for most squad- and team-based games, they do not cope
well when the player is part of the team. Figure 6.24 shows a situation in which the high-level
decision making has made a decision that the player accidentally subverts. In this case, the action
of the other teammates is likely to be noticeably poor to the player. After all, the player’s decision
is sensible and would be anticipated by any sensible person. It is the multi-tiered architecture of
the AI that causes the problems in this situation.

In general, the player will always make the decisions for the whole team. The game design may
involve giving the player orders, but ultimately it is the player who is responsible for determining
how to carry them out. If the player has to follow a set route through a level, then he is likely to
find the game frustrating: early on he might not have the competence to follow the route, and later
he will find the linearity restricting. Game designers usually get around this difficulty by forcing

6.4 Coordinated Action 563

Al character Player’s character

Player’s
preferred route

Squad route
determined by

pathfinding

Figure 6.24 Multi-tiered AI and the player don’t mix well

restrictions on the player in the level design. By making it clear which is the best route, the player
can be channelled into the right locations at the right time. If this is done too strongly, then it still
makes for a poor play experience.

Moment to moment in the game there should be no higher decision making than the player.
If we place the player into the hierarchy at the top, then the other characters will base their actions
purely on what they think the player wants, not on the desire of a higher decision making layer.
This is not to say that they will be able to understand what the player wants, of course, just that
their actions will not conflict with the player. Figure 6.25 shows an architecture for a multi-tier
AI involving the player in a squad-based shooter.

Notice that there are still intermediate layers of the AI between the player and the other squad
members. The first task for the AI is to interpret what the player will be doing. This might be
as simple as looking at the player’s current location and direction of movement. If the player is
moving down a corridor, for example, then the AI can assume that he will continue to move down
the corridor.

At the next layer, the AI needs to decide on an overall strategy for the whole squad that can
support the player in their desired action. If the player is moving down the corridor, then the
squad might decide that it is best to cover the player from behind. As the player comes toward a
junction in the corridor, squad members might also decide to cover the side passages. When the
player moves into a large room, the squad members might cover the player’s flanks or secure the
exits from the room. This level of decision making can be achieved with any decision making tool
from Chapter 5. A decision tree would be ample for the example here.

From this overall strategy, the individual characters make their movement decisions. They
might walk backward behind the player covering their back or find the quickest route across a
room to an exit they wish to cover. The algorithms at this level are usually pathfinding or steering
behaviors of some kind.

564 Chapter 6 Tactical and Strategic AI

Group movement
(steering behavior)

Movement
(steering behavior)

Movement
(steering behavior)

Movement
(steering behavior)

1 per
squad
member

Player

Action recognition
(rule-based system)

Strategy
(state machine)

Figure 6.25 A multi-tier AI involving the player

Explicit Player Orders

A different approach to including the player in a multi-tiered AI is to give them the ability to
schedule specific orders. This is the way that an RTS game works. On the player’s side, the player
is the top level of AI. They get to decide the orders that each character will carry out. Lower levels
of AI then take this order and work out how best to achieve it.

A unit might be told to attack an enemy location, for example. A lower level decision making
system works out which weapon to use and what range to close to in order to perform the attack.
The next lower level takes this information and then uses a pathfinding algorithm to provide a
route, which can then be followed by a steering system. This is multi-tiered AI with the player at
the top giving specific orders. The player isn’t represented in the game by any character. He exists
purely as a general, giving the orders.

Shooters typically put the player in the thick of the action, however. Here also, there is the
possibility of incorporating player orders. Squad-based games like SOCOM: U.S. Navy SEALS
[Zipper Interactive, 2002] allow the player to issue general orders that give information about
their intent. This might be as simple as requesting the defense of a particular location in the game
level, covering fire, or an all-out onslaught. Here the characters still need to do a good deal of
interpretation in order to act sensibly (and in that game they often fail to do so convincingly).

A different balance point is seen in Full Spectrum Warrior [Pandemic Studios, 2004], where
RTS-style orders make up the bulk of the gameplay, but the individual actions of characters can
also be directly controlled in some circumstances.

6.4 Coordinated Action 565

The intent-identification problem is so difficult that it is worth seeing if you can incorporate
some kind of explicit player orders into your squad-based games, especially if you are finding it
difficult to make the squad work well with the player.

Structuring Multi-Tier AI

Multi-tier AI needs two infrastructure components in order to work well:

� A communication mechanism that can transfer orders from higher layers in the hierarchy
downward. This needs to include information about the overall strategy, targets for individual
characters, and typically other information (such as which areas to avoid because other
characters will be there, or even complete routes to take).

� A hierarchical scheduling system that can execute the correct behaviors at the right time, in
the right order, and only when they are required.

Communication mechanisms are discussed in more detail in Chapter 10. Multi-tiered AI
doesn’t need a sophisticated mechanism for communication. There will typically be only a handful
of different possible messages that can be passed, and these can simply be stored in a location that
lower level behaviors can easily find. We could, for example, simply make each behavior have an
“in-tray” where some order can be stored. The higher layer AI can then write its orders into the
in-tray of each lower layer behavior.

Scheduling is typically more complex. Chapter 9 looks at scheduling systems in general, and
Section 9.1.4 looks at combining these into a hierarchical scheduling system. This is important
because typically lower level behaviors have several different algorithms they can run, depending
on the orders they receive. If a high-level AI tells the character to guard the player, they may use a
formation motion steering system. If the high-level AI wants the characters to explore, they may
need pathfinding and maybe a tactical analysis to determine where to look. Both sets of behaviors
need to be always available to the character, and we need some robust way of marshalling the
behaviors at the right time without causing frame rate blips and without getting bogged down in
hundreds of lines of special case code.

Figure 6.26 shows a hierarchical scheduling system that can run the squad-based multi-tier
AI we saw earlier in the section. See Chapter 9 for more information on how the elements in the
figure are implemented.

6.4.2 Emergent Cooperation

So far we’ve looked at cooperation mechanics where individual characters obey some kind of
guiding control. The control might be the player’s explicit orders, a tactical decision making tool,
or any other decision maker operating on behalf of the whole group.

This is a powerful technique that naturally fits in with the way we think about the goals of a
group and the orders that carry them out. It has the weakness, however, of relying on the quality
of the high-level decision. If a character cannot obey the higher level decision for some reason,
then it is left without any ability to make progress.

566 Chapter 6 Tactical and Strategic AI

Action
recognition

Team
scheduler

Character
schedulers

Strategy Movement
behavior

Pathfinding
behavior

Pathfinding
behavior

Figure 6.26 A hierarchical scheduling system for multi-tier AI

We could instead use less centralized techniques to make a number of characters appear to
be working together. They do not need to coordinate in the same way as for multi-tier AI, but by
taking into account what each other is doing, they can appear to act as a coherent whole. This is
the approach taken in most squad-based games.

Each character has its own decision making, but the decision making takes into account what
other characters are doing. This may be as simple as moving toward other characters (which has
the effect that characters appear to stick together), or it could be more complex, such as choosing
another character to protect and maneuvering to keep them covered at all times.

Figure 6.27 shows an example finite state machine for four characters in a fire team. Four
characters with this finite state machine will act as a team, providing mutual cover and appearing
to be a coherent whole. There is no higher level guidance being provided.

If any member of the team is removed, the rest of the team will still behave relatively efficiently,
keeping themselves safe and providing offensive capability when needed.

We could extend this and produce different state machines for each character, adding their
team specialty: the grenadier could be selected to fire on an enemy behind light cover, a designated
medic could act on fallen comrades, and the radio operator could call in air strikes against heavy
opposition. All this could be achieved through individual state machines.

Scalability

As you add more characters to an emergently cooperating group, you will reach a threshold of
complexity. Beyond this point it will be difficult to control the behavior of the group. The exact
point where this occurs depends on the complexity of the behaviors of each individual.

6.4 Coordinated Action 567

Disengaged

In cover

Suppression attack

[arrived]

[highest rank
unit at current

cover]

In motion

H*

[no enemy OR
all team in cover]

[enemy sighted AND
team members in motion]

Figure 6.27 State machines for emergent fire team behavior

Reynolds’s flocking algorithm, for example, can scale to hundreds of individuals with only
minor tweaks to the algorithm. The fire team behaviors earlier in the section are fine up to six
or seven characters, whereupon they become less useful. The scalability seems to depend on
the number of different behaviors each character can display. As long as all the behaviors are
relatively stable (such as in the flocking algorithm), the whole group can settle into a reason-
able stable behavior, even if it appears to be highly complex. When each character can switch
to different modes (as in the finite state machine example), we end up rapidly getting into
oscillations.

Problems occur when one character changes behavior which forces another character to also
change behavior and then a third, which then changes the behavior of the first character again,
and so on. Some level of hysteresis in the decision making can help (i.e., a character keeps doing
what it has been doing for a while, even if the circumstances change), but it only buys us a little
time and cannot solve the problem.

To solve this issue we have two choices. First, we can simplify the rules that each character
is following. This is appropriate for games with a lot of identical characters. If, in a shooter, we
are up against 1,000 enemies, then it makes sense that they are each fairly simple and that the
challenge arises from their number rather than their individual intelligence. On the other hand,
if we are facing scalability problems before we get into double-digit numbers of characters, then
this is a more significant problem.

The best solution is to set up a multi-tiered AI with different levels of emergent behavior. We
could have a set of rules very similar to the state machine example, where each individual is a
whole squad rather than a single character. Then in each squad the characters can respond to the
orders given from the emergent level, either directly obeying the order or including it as part of
their decision making process for a more emergent and adaptive feel.

568 Chapter 6 Tactical and Strategic AI

This is something of a cheat, of course, if the aim is to be purely emergent. But if the aim is to
get great AI that is dynamic and challenging (which, let’s face it, it should be), then it is often an
excellent compromise.

In our experience many developers who have bought into the hype of emergent behaviors
have struck scalability problems quickly and ended up with some variation of this more practical
approach.

Predictability

A side effect of this kind of emergent behavior is that you often get group dynamics that you didn’t
explicitly design. This is a double-edged sword; it can be beneficial to see emergent intelligence
in the group, but this doesn’t happen very often (don’t believe the hype you read about this
stuff). The most likely outcome is that the group starts to do something really annoying that
looks unintelligent. It can be very difficult to eradicate these dynamics by tweaking the individual
character behaviors.

It is almost impossible to work out how to create individual behaviors that will emerge into
exactly the kind of group behavior you are looking for. In our experience the best you can hope
for is to try variations until you get a group behavior that is reasonable and then tweak that. This
may be exactly what you want.

If you are looking for highly intelligent high-level behavior, then you will always end up
implementing it explicitly. Emergent behavior is useful and can be fun to implement, but it is
certainly not a way of getting great AI with less effort.

6.4.3 Scripting Group Actions

Making sure that all the members of a group work together is difficult to do from first principles.
A powerful tool is to use a script that shows what actions need to be applied in what order and by
which character. In Chapter 5 we looked at action execution and scripted actions as a sequence of
primitive actions that can be executed one after another.

We can extend this to groups of characters, having a script per character. Unlike for a single
character, however, there are timing complications that make it difficult to keep the illusion
of cooperation among several characters. Figure 6.28 shows a situation in football where two
characters need to cooperate to score a touchdown. If we use the simple action script shown, then
the overall action will be a success in the first instance, but a failure in the second instance.

To make cooperative scripts workable, we need to add the notion of interdependence of scripts.
The actions that one character is carrying out need to be synchronized with the actions of other
characters.

We can achieve this most simply by using signals. In place of an action in the sequence, we
allow two new kinds of entity: signal and wait.

Signal: A signal has an identifier. It is a message sent to anyone else who is interested. This
is typically any other AI behavior, although it could also be sent through an event or sense
simulation mechanism from Chapter 10 if finer control is needed.

6.4 Coordinated Action 569

QB

QB

DE

DB

Ball trajectory

End zone

WR

WR

Script is a
success

Ball trajectory

Script
fails

Quarterback (QB) script

1. Select wide receiver
2. Pass in front of the receiver’s run

Wide receiver (WR) script

1. Find clear air
2. Receive pass
3. Run for the end zone

Figure 6.28 An action sequence needing timing data

Wait : A wait also has an identifier. It stops any elements of the script from progressing unless
it receives a matching signal.

We could go further and add additional programming language constructs, such as branches,
loops, and calculations. This would give us a scripting language capable of any kind of logic, but
at the cost of significantly increased implementation difficulty and a much bigger burden on the
content creators who have to create the scripts.

Adding just signals and waits allows us to use simple action sequences for collaborative actions
between multiple characters.

In addition to these synchronization elements, some games also admit actions that need more
than one character to participate. Two soldiers in a squad-based shooter might be needed to climb
over a wall: one to climb and the other to provide a leg-up. In these cases some of the actions in
the sequence may be shared between multiple characters. The timing can be handled using waits,
but the actions are usually specially marked so each character is aware that it is performing the
action together, rather than independently.

570 Chapter 6 Tactical and Strategic AI

Adding in the elements from Chapter 5,a collaborative action sequencer supports the following
primitives:

State Change Action: This is an action that changes some piece of game state without requiring
any specific activity from any character.

Animation Action: This is an action that plays an animation on the character and updates the
game state. This is usually independent of other actions in the game. This is often the only
kind of action that can be performed by more than one character at the same time. This can
be implemented using unique identifiers, so different characters can understand when they
need to perform an action together and when they only need to perform the same action at
the same time.

AI Action: This is an action that runs some other piece of AI. This is often a movement
action, which gets the character to adopt a particular steering behavior. This behavior can be
parameterized—for example, an arrive behavior having its target set. It might also be used to
get the character to look for firing targets or to plan a route to its goal.

Compound Action : This takes a group of actions and performs them at the same time.

Action Sequence : This takes a group of actions and performs them in series.

Signal : This sends a signal to other characters.

Wait : This waits for a signal from other characters.

The implementation of the first five types were discussed in Chapter 5, including pseudo-
code for compound actions and action sequences. To make the action execution system support
synchronized actions, we need to implement signals and waits.

Pseudo-Code

The wait action can be implemented in the following way:

1 struct Wait (Action):
2

3 # Holds the unique identifier for this wait
4 identifier
5

6 # Holds the action to carry out while waiting
7 whileWaiting
8

9 def canInterrupt():
10 # We can interrupt this action at any time
11 return true
12

13 def canDoBoth(otherAction):

6.4 Coordinated Action 571

14 # We can do no other action at the same time,
15 # otherwise later actions could be carried out
16 # despite the fact that we are waiting.
17 return false
18

19 def isComplete():
20 # Check if our identifier has been completed
21 if globalIdStore.hasIdentifier(identifier):
22 return true
23

24 def execute():
25 # Do our wait action
26 return whileWaiting.execute()

Note that we don’t want the character to freeze while waiting. We have added a waiting action
to the class, which is carried out while the character waits.

A signal implementation is even simpler. It can be implemented in the following way:

1 struct Signal (Action):
2

3 # Holds the unique identifier for this signal
4 identifier
5

6 # Checks if the signal has been delivered
7 delivered = false
8

9 def canInterrupt():
10 # We can interrupt this action at any time
11 return true
12

13 def canDoBoth(otherAction):
14 # We can do any other action at the same time
15 # as this one. We won’t be waiting on this
16 # action at all, and we shouldn’t wait another
17 # frame to carry on with our actions.
18 return true
19

20 def isComplete():
21 # This event is complete only after it has
22 # delivered its signal
23 return delivered
24

25 def execute():
26

572 Chapter 6 Tactical and Strategic AI

27 # Deliver the signal
28 globalIdStore.setIdentifier(identifier)
29

30 # Record that we’ve delivered
31 delivered = true

Data Structures and Interfaces

We have assumed in this code that there is a central store of signal identifiers that can be checked
against, called globalIdStore. This can be a simple hash set, but should probably be emptied of
stale identifiers from time to time. It has the following interface:

1 class IdStore:
2 def setIdentifier(identifier)
3 def hasIdentifier(identifier)

Implementation Notes

Another complication with this approach is the confusion between different occurrences of a
signal. If a set of characters perform the same script more than once, then there will be an existing
signal in the store from the previous time through. This may mean that none of the waits actually
waits.

For that reason it is wise to have a script remove all the signals it intends to use from the global
store before it runs. If there is more than one copy of a script running simultaneously (e.g., if
two squads are both performing the same set of actions at different locations), then the identifier
will need to be disambiguated further. If this situation could arise in your game, it may be worth
moving to a more fine-grained messaging technique among each squad, such as the message
passing algorithm in Chapter 10. Each squad then communicates signals only with others in the
squad, removing all ambiguity.

Performance

Both the signal and wait actions are O(1) in both time and memory. In the implementation above,
the Wait class needs to access the IdStore interface to check for signals. If the store is a hash set
(which is its most likely implementation), then this will be an O(n/b) process, where n is the
number of signals in the store, and b is the buckets in the hash set.

Although the wait action can cause the action manager to stop processing any further actions,
the algorithm will return in constant time each frame (assuming the wait action is the only one
being processed).

6.4 Coordinated Action 573

Creating Scripts

The infrastructure to run scripts is only half of the implementation task. In a full engine
we need some mechanism to allow level designers or character designers to create the
scripts.

Most commonly this is done using a simple text file with primitives that represent each
kind of action, signal, and wait. Chapter 5, Section 5.10, gives some high-level information
about how to create a parser to read and interpret text files of data. Alternatively, some
companies use visual tools to allow designers to build scripts out of visual components.
Chapter 11 has more information about incorporating AI editors into the game production
toolchain.

The next section on military tactics provides an example set of scripts for a collaborative
action used in a real game scenario.

6.4.4 Military Tactics

So far we have looked at general approaches for implementing tactical or strategic AI. Most of
the technology requirements can be fulfilled using common-sense applications of the techniques
we’ve looked at throughout the book. To those, we add the specific tactical reasoning algorithms
to get a better idea of the overall situation facing a group of characters.

As with all game development, we need both the technology to support a behavior and the
content for the behavior itself. Although this will dramatically vary depending on the genre of
game and the way the character is implemented, there are resources available for tactical behaviors
of a military unit.

In particular, there is a large body of freely available information on specific tactics used
by both the U.S. military and other NATO countries. This information is made up of training
manuals intended for use by regular forces.

The U.S. infantry training manuals, in particular, can be a valuable resource for implementing
military-style tactics in any genre of game from historical World War II games through to far
future science fiction or medieval fantasy. They contain information for the sequences of events
needed to accomplish a wide range of objectives, including military operations in urban terrain
(MOUT), moving through wilderness areas, sniping, relationships with heavy weapons, clearing
a room or a building, and setting up defensive camps.

We have found that this kind of information is most suited to a cooperation script approach,
rather than open-ended multi-tier or emergent AI. A set of scripts can be created that represents
the individual stages of the operation, and these can then be made into a higher level script that
coordinates the lower level events. As in all scripted behaviors, some feedback is needed to make
sure the behaviors remain sensible throughout the script execution. The end result can be deeply
uncanny: seeing characters move as a well-oiled fighting team and performing complex series of
inter-timed actions to achieve their goal.

As an example of the kinds of script needed in a typical situation, let’s look at implementations
for an indoor squad-based shooter.

574 Chapter 6 Tactical and Strategic AI

Case Study: A Fire Team Takes a House

Let’s say that we have a game with a modern military setting where the AI team is a squad of
special forces soldiers specializing in anti-terrorism duties. Their aim is to take a house rapidly
and with extreme aggression to make sure the threat from its occupants is neutralized as fast as
possible. In this simulation the player is not a member of the team but was a controlling operator
scheduling the activities of several such special forces units.

The source material for this project was the “U.S. Army Field Manual 3-06.11 Combined Arms
Operations in Urban Terrain” [U.S. Army Infantry School, 2002]. This particular manual contains
step-by-step diagrams for moving along corridors, clearing rooms, moving across junctions, and
general combat indoors.

Figure 6.29 shows the sequence for room clearing. First, the team assembles in set for-
mat outside the doorway. Second, a grenade is thrown into the room (this will be a stun
grenade if the room might contain non-combatants or a lethal grenade otherwise). The first
soldier into the room moves along the near wall and takes up a location in the corner, cov-
ering the room. The second soldier does the same to the adjacent corner. The remaining sol-
diers cover the center of the room. Each soldier shoots at any target he can see during this
movement.

Figure 6.29 Taking a room

6.4 Coordinated Action 575

The game uses four scripts:

� Move into position outside the door.

� Throw in a grenade.

� Move into a corner of the room.

� Flank the inside of the doorway.

A top-level script coordinates these actions in turn. This script needs to first calculate the two
corners required for the clearance. These are the two corners closest to the door, excluding corners
that are too close to the door to allow a defensive position to be occupied. In the implementation
for this game, a waypoint tactics system had already been used to identify all the corners in all the
rooms in the game, along with waypoints for the door and locations on either side of the door
both inside and out.

Determining the nearest corners in this way allows for the same script to be used on buildings
of all different shapes, as shown in Figure 6.30.

The interactions between the scripts (using the Signal and Wait instances we saw earlier)
allow the team to wait for the grenade to explode and to move in a coordinated way to their target
locations while maintaining cover over all of the room.

Figure 6.30 Taking various rooms

576 Chapter 6 Tactical and Strategic AI

A different top-level script is used for two- and three-person room clearances (in the case
that one or more team members are eliminated), although the lower level scripts are identical
in each case. In the three-person script, there is only one person left by the door (the first two
still take the corners). In the two-person script, only the corners are occupied, and the door
is left.

Exercises

1. Here is a map with some unlabeled tactical points:

Label points that would provide cover, points that are exposed, points that would make good
ambush points, etc.

2. On page 495 suppose that, instead of interpreting the given waypoint values as degrees of
membership, we interpret them as probabilities. Then, assuming cover and visibility values
are independent, what is the probability that the location is a good sniping location?

3. Here is a map with some cover points:

Enemy

Enemy

Character
needing cover

Cover point A

Cover point B

Pre-determine the directions of cover and then compare the results to a post-processing step
that uses line-of-sight tests to the indicated enemies.

4. Design a state machine that would produce behavior similar to that of the decision tree from
Figure 6.6.

Exercises 577

5. Using the map from question 3 calculate the runtime cover quality of the two potential cover
points. Why might it be more reliable to try testing with some random offsets around cover
point B?

6. Suppose that in Figure 6.9 the values of the waypoints are A, 1.7; B, 2.3; and C, 1.1. What is
the result of applying the condensation algorithm? Is the result desirable?

7. Convolve the following filter with the 3 × 3 section of the map that appeared in Section 6.2.7.

M = 1

9

⎡
⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎦ .

What does the filter do? Why might it be useful? What problem can occur at the edges and
how can it be fixed?

8. Use a linear influence drop-off to calculate the influence map for the following placement of
military forces:

2

2

2

2

2

4

If you are doing this exercise by hand then, for simplicity, use the Manhattan distance to
calculate all distances and assume a maximum radius of influence of 4. If you are writing
code, then experiment with different settings for distance, influence drop-off, and maximum
radius.

9. Use the influence map you calculated in question 8 to determine the security level. Identify
an area on the border where black might consider an attack.

10. If in question 9 we only had to calculate the security level at the border, what (if any) military
units could we safely ignore and why?

578 Chapter 6 Tactical and Strategic AI

11. Repeat question 9, but this time calculate the security level from white’s point of view assuming
white doesn’t know about black’s miliary unit of strength 2.

12. Suppose white uses the answer from question 11 to mount an attack that moves from right to
left along the bottom of the grid, then how might a frag map help to infer the existence of an
unknown enemy unit?

13. If black knew that white had incorrect information such as in question 11, how could black
use it to its advantage? In particular, devise a scheme to determine the best placement of a
hidden unit by calculating the quality of a cell based on the cover it provides (better cover
increases the chance of the unit remaining hidden), the actual security of the cell, and the
(incorrect) perceived security from the enemy’s point of view.

14. Using the map from question 8, calculate the influence map by using the same 3 × 3 convo-
lution filter given at the start of Section 6.2.7. You might want to use a computer to help you
answer this question.

15. Implement a tactical pathfinding program that operates on a grid-based graph that includes
tactical information on the quality of different cells.Program ming

16. Implement a complete collaborative action sequencer and use it to implement one of the plays

Program ming

like the one shown in Figure 6.28.

7
Learning

earning is a hot topic in games. In principle, learning AI has the potential to adapt toLeach player, learning their tricks and techniques and providing a consistent challenge. It
has the potential to produce more believable characters: characters that can learn about their
environment and use it to the best effect. It also has the potential to reduce the effort needed
to create game-specific AI: characters should be able to learn about their surroundings and the
tactical options that they provide.

In practice, it hasn’t yet fulfilled its promise, and not for want of trying. Applying learning to
your game requires careful planning and an understanding of the pitfalls. The hype is sometimes
more attractive than the reality, but if you understand the quirks of each technique and are
realistic about how you apply them, there is no reason why you can’t take advantage of learning in
your game.

There is a whole range of different learning techniques, from very simple number tweaking
through to complex neural networks. Each has its own idiosyncrasies that need to be understood
before they can be used in real games.

7.1 Learning Basics

We can classify learning techniques into several groups depending on when the learning occurs,
what is being learned, and what effects the learning has on a character’s behavior.

7.1.1 Online or Offline Learning

Learning can be performed during the game, while the player is playing. This is online learn-
ing, and it allows the characters to adapt dynamically to the player’s style and provides more

Copyright © 2009 by Elsevier Inc. All rights reserved. 579

580 Chapter 7 Learning

consistent challenges. As a player plays more, his characteristic traits can be better anticipated by
the computer, and the behavior of characters can be tuned to playing styles. This might be used to
make enemies pose an ongoing challenge, or it could be used to offer the player more story lines
of the kind they enjoy playing.

Unfortunately, online learning also produces problems with predictability and testing. If the
game is constantly changing, it can be difficult to replicate bugs and problems. If an enemy
character decides that the best way to tackle the player is to run into a wall, then it can be a
nightmare to replicate the behavior (at worst you’d have to play through the whole same sequence
of games, doing exactly the same thing each time as the player). We’ll return to this issue later in
this section.

The majority of learning in game AI is done offline, either between levels of the game
or more often at the development studio before the game leaves the building. This is per-
formed by processing data about real games and trying to calculate strategies or parameters
from them.

This allows more unpredictable learning algorithms to be tried out and their results to be
tested exhaustively. The learning algorithms in games are usually applied offline; it is rare to find
games that use any kind of online learning. Learning algorithms are increasingly being used offline
to learn tactical features of multi-player maps, to produce accurate pathfinding and movement
data, and to bootstrap interaction with physics engines.

Applying learning between levels of the game is offline learning: characters aren’t learning as
they are acting. But it has many of the same downsides as online learning. We need to keep it
short (load times for levels are usually part of a publisher or console manufacturer’s acceptance
criteria for a game). We need to take care that bugs and problems can be replicated without
replaying tens of games. We need to make sure that the data from the game are easily available
in a suitable format (we can’t use long post-processing steps to dig data out of a huge log file, for
example).

Most of the techniques in this chapter can be applied either online or offline. They aren’t
limited to one or the other. If they are to be applied online, then the data they will learn from
are presented as they are generated by the game. If it is used offline, then the data are stored and
pulled in as a whole later.

7.1.2 Intra-Behavior Learning

The simplest kinds of learning are those that change a small area of a character’s behavior. They
don’t change the whole quality of the behavior, but simply tweak it a little. These intra-behavior
learning techniques are easy to control and can be easy to test.

Examples include learning to target correctly when projectiles are modeled by accurate physics,
learning the best patrol routes around a level, learning where cover points are in a room, and
learning how to chase an evading character successfully. Most of the learning examples in this
chapter will illustrate intra-behavior learning.

An intra-behavior learning algorithm doesn’t help a character work out that it needs to do
something very different (if a character is trying to reach a high ledge by learning to run and
jump, it won’t tell the character to simply use the stairs instead, for example).

7.1 Learning Basics 581

7.1.3 Inter-Behavior Learning

The frontier for learning AI in games is learning of behavior. What we mean by behavior is a
qualitatively different mode of action—for example, a character that learns the best way to kill
an enemy is to lay an ambush or a character that learns to tie a rope across a backstreet to stop
an escaping motorbiker. Characters that can learn from scratch how to act in the game provide a
challenging opposition for even the best human players.

Unfortunately, this kind of AI is almost pure fantasy.
Over time, an increasing amount of character behavior may be learned, either online or offline.

Some of this may be to learn how to choose between a range of different behaviors (although
the atomic behaviors will still need to be implemented by the developer). It is doubtful that
it will be economical to learn everything. The basic movement systems, decision making tools,
suites of available behaviors, and high-level decision making will almost certainly be easier and
faster to implement directly. They can then be augmented with intra-behavior learning to tweak
parameters.

The frontier for learning AI is decision making. Developers are increasingly experimenting
with replacing the techniques discussed in Chapter 5 with learning systems. This is the only kind
of inter-behavior learning we will look at in this chapter: making decisions between fixed sets of
(possibly parameterized) behaviors.

7.1.4 A Warning

In reality, learning is not as widely used as you might think. Some of this is due to the relative
complexity of learning techniques (in comparison with pathfinding and movement algorithms,
at least). But games developers master far more complex techniques all the time, especially in
developing geometry management algorithms. The biggest problems with learning are those of
reproducibility and quality control.

Imagine a game in which the enemy characters learn their environment and the player’s
actions over the course of several hours of gameplay. While playing one level, the QA team notices
that a group of enemies is stuck in one cavern, not moving around the whole map. It is possible
that this condition occurs only as a result of the particular set of things they have learned. In this
case, finding the bug and later testing if it has been fixed involves replaying the same learning
experiences. This is often impossible.

It is this kind of unpredictability that is the most often cited reason for severely curbing the
learning ability of game characters. As companies developing industrial learning AI have often
found, it is impossible to avoid the AI learning the “wrong” thing.

When you read hyped-up papers about learning and games, they often use dramatic scenarios
to illustrate the potential of a learning character on gameplay. You need to ask yourself, if the
character can learn such dramatic changes of behavior then can it also learn dramatically poor
behavior: behavior that might fulfill its own goals but will produce terrible gameplay? You can’t
have your cake and eat it. The more flexible your learning is, the less control you have on gameplay.

The normal solution to this problem is to constrain the kinds of things that can be learned
in a game. It is sensible to limit a particular learning system to working out places to take cover,

582 Chapter 7 Learning

for example. This learning system can then be tested by making sure that the cover points it is
identifying look right. The learning will have difficulty getting carried away; it has a single task
that can be easily visualized and checked.

Under this modular approach there is nothing to stop several different learning systems from
being applied (one for cover points, another to learn accurate targeting, and so on). Care must be
taken to ensure that they can’t interact in nasty ways. The targeting AI may learn to shoot in such
a way that it often accidentally hits the cover that the cover-learning AI is selecting, for example.

7.1.5 Over-Learning

A common problem identified in much of the AI learning literature is over-fitting, or over-
learning. This means that if a learning AI is exposed to a number of experiences and learns from
them, it may learn the response to only those situations. We normally want the learning AI to be
able to generalize from the limited number of experiences it has to be able to cope with a wide
range of new situations.

Different algorithms have different susceptibilities to over-fitting. Neural networks particu-
larly can over-fit during learning if they are wrongly parameterized or if the network is too large
for the learning task at hand. We’ll return to these issues as we consider each learning algorithm
in turn.

7.1.6 The Zoo of Learning Algorithms

In this chapter we’ll look at learning algorithms that gradually increase in complexity and sophis-
tication. The most basic algorithms, such as the various parameter modification techniques in the
next section, are often not thought of as learning at all.

At the other extreme we will look at reinforcement learning and neural networks, both fields
of active AI research that are huge in their own right. We’ll not be able to do more than scratch
the surface of each technique, but hopefully there will be enough information to get the algo-
rithms running. More importantly, it will be clear why they are not useful in very many game AI
applications.

7.1.7 The Balance of Effort

The key thing to remember in all learning algorithms is the balance of effort. Learning algorithms
are attractive because you can do less implementation work. You don’t need to anticipate every
eventuality or make the character AI particularly good. Instead, you create a general-purpose
learning tool and allow that to find the really tricky solutions to the problem. The balance of
effort should be that it is less work to get the same result by creating a learning algorithm to do
some of the work.

Unfortunately, it is often not possible. Learning algorithms can require a lot of hand-holding:
presenting data in the correct way, making sure their results are valid, and testing them to avoid
them learning the wrong thing.

7.2 Parameter Modification 583

We advise developers to consider carefully the balance of effort involved in learning. If a
technique is very tricky for a human being to solve and implement, then it is likely to be tricky
for the computer, too. If a human being can’t reliably learn to keep a car cornering on the limit
of its tire’s grip, then a computer is unlikely to suddenly find it easy when equipped with a vanilla
learning algorithm. To get the result you likely have to do a lot of additional work.

7.2 Parameter Modification

The simplest learning algorithms are those that calculate the value of one or more parameters.
Numerical parameters are used throughout AI development: magic numbers that are used in
steering calculations, cost functions for pathfinding, weights for blending tactical concerns, prob-
abilities in decision making, and many other areas.

These values can often have a large effect on the behavior of a character. A small change in a
decision making probability, for example, can lead an AI into a very different style of play.

Parameters such as these are good candidates for learning. Most commonly, this is done offline,
but can usually be controlled when performed online.

7.2.1 The Parameter Landscape

A common way of understanding parameter learning is the “fitness landscape” or “energy land-
scape.”Imagine the value of the parameter as specifying a location. In the case of a single parameter
this is a location somewhere along a line. For two parameters it is the location on a plane.

For each location (i.e., for each value of the parameter) there is some energy value. This energy
value (often called a “fitness value” in some learning techniques) represents how good the value
of the parameter is for the game. You can think of it as a score.

We can visualize the energy values by plotting them against the parameter values (see
Figure 7.1).

Parameter value

Energy
(fitness

or score)

Figure 7.1 The energy landscape of a one-dimensional problem

584 Chapter 7 Learning

For many problems the crinkled nature of this graph is reminiscent of a landscape, especially
when the problem has two parameters to optimize (i.e., it forms a three-dimensional structure).
For this reason it is usually called an energy or fitness landscape.

The aim of a parameter learning system is to find the best values of the parameter. The energy
landscape model usually assumes that low energies are better, so we try to find the valleys in the
landscape. Fitness landscapes are usually the opposite, so they try to find the peaks.

The difference between energy and fitness landscapes is a matter of terminology only: the
same techniques apply to both. You simply swap searching for maximum (fitness) or minimum
(energy). Often, you will find that different techniques favor different terminologies. In this
section, for example, hill climbing is usually discussed in terms of fitness landscapes, and simulated
annealing is discussed in terms of energy landscapes.

Energy and Fitness Values

It is possible for the energy and fitness values to be generated from some function or formula. If
the formula is a simple mathematical formula, we may be able to differentiate it. If the formula
is differentiable, then its best values can be found explicitly. In this case, there is no need for
parameter optimization. We can simply find and use the best values.

In most cases, however, no such formula exists. The only way to find out the suitability of a
parameter value is to try it out in the game and see how well it performs. In this case, there needs
to be some code that monitors the performance of the parameter and provides a fitness or energy
score. The techniques in this section all rely on having such an output value.

If we are trying to generate the correct parameters for decision making probabilities, for
example, then we might have the character play a couple of games and see how it scores. The
fitness value would be the score, with a high score indicating a good result.

In each technique we will look at several different sets of parameters that need to be tried.
If we have to have a five-minute game for each set, then learning could take too long. There
usually has to be some mechanism for determining the value for a set of parameters quickly.
This might involve allowing the game to run at many times normal speed, without rendering
the screen, for example. Or, we could use a set of heuristics that generate a value based on some
assessment criteria, without ever running the game. If there is no way to perform the check other
than running the game with the player, then the techniques in this chapter are unlikely to be
practical.

There is nothing to stop the energy or fitness value from changing over time or containing
some degree of guesswork. Often, the performance of the AI depends on what the player is doing.
For online learning, this is exactly what we want. The best parameter value will change over time
as the player behaves differently in the game. The algorithms in this section cope well with this
kind of uncertain and changing fitness or energy score.

In all cases we will assume that we have some function that we can give a set of parameter
values and it will return the fitness or energy value for those parameters. This might be a fast
process (using heuristics) or it might involve running the game and testing the result. For the
sake of parameter modification algorithms, however, it can be treated as a black box: in goes the
parameters and out comes the score.

7.2 Parameter Modification 585

Energy
(fitness

or score)

Parameter value

Optimized value

Initial value

Figure 7.2 Hill climbing ascends a fitness landscape

7.2.2 Hill Climbing

Initially, a guess is made as to the best parameter value. This can be completely random; it can be
based on the programmer’s intuition or even on the results from a previous run of the algorithm.
This parameter value is evaluated to get a score.

The algorithm then tries to work out in what direction to change the parameter in order to
improve its score. It does this by looking at nearby values for each parameter. It changes each
parameter in turn, keeping the others constant, and checks the score for each one. If it sees that
the score increases in one or more directions, then it moves up the steepest gradient. Figure 7.2
shows the hill climbing algorithm scaling a fitness landscape.

In the single parameter case, two neighboring values are sufficient, one on each side of the
current value. For two parameters four samples are used, although more samples in a circle around
the current value can provide better results at the cost of more evaluation time.

Hill climbing is a very simple parametrical optimization technique. It is fast to run and can
often give very good results.

Pseudo-Code

One step of the algorithm can be run using the following implementation:

1 def optimizeParameters(parameters, function):
2

3 # Holds the best parameter change so far
4 bestParameterIndex = -1
5 bestTweak = 0
6

586 Chapter 7 Learning

7 # The initial best value is the value of the current
8 # parameters, no point changing to a worse set.
9 bestValue = function(parameters)

10

11 # Loop through each parameter
12 for i in 0..parameters.size():
13

14 # Store the current parameter value
15 currentParameter = parameters[i].value
16

17 # Tweak it both up and down
18 for tweak in [-STEP, STEP]:
19

20 # Apply the tweak
21 parameters[i].value += tweak
22

23 # Get the value of the function
24 value = function(parameters[i])
25

26 # Is it the best so far?
27 if value > bestValue:
28

29 # Store it
30 bestValue = value
31 bestParameterIndex = i
32 bestTweak = tweak
33

34 # Reset the parameter to its old value
35 parameters[i].value = currentParameter
36

37 # We’ve gone through each parameter, check if we
38 # have found a good set
39 if bestParameterIndex >= 0:
40

41 # Make the parameter change permanent
42 parameters[bestParameterIndex] += bestTweak
43

44 # Return the modified parameters, if we found a better
45 # set, or the parameters we started with otherwise
46 return parameters

The STEP constant in this function dictates the size of each tweak that can be made. We could
replace this with an array, with one value per parameter if parameters required different step sizes.

7.2 Parameter Modification 587

The optimizeParameters function can then be called multiple times in a row to give the hill
climbing algorithm. At each iteration the parameters given are the results from the previous call
to optimizeParameters.

1 def hillClimb(initialParameters, steps, function):
2

3 # Set the initial parameter settings
4 parameters = initialParameters
5

6 # Find the initial value for the initial parameters
7 value = function(parameters)
8

9 # Go through a number of steps.
10 for i in 0..steps:
11

12 # Get the new parameter settings
13 parameters = optimizeParameters(parameters, function)
14

15 # Get the new value
16 newValue = function(parameters)
17

18 # If we can’t improve, then end
19 if newValue <= value: break
20

21 # Store the new value for next iteration
22 value = newValue
23

24 # We’ve either run out of steps, or we can’t improve
25 return parameters

Data Structures and Interfaces

The list of parameters has its number of elements accessed with the size method. Other than this,
there are no special interfaces or data structures required.

Implementation Notes

In the implementation above we evaluate the function on the same set of parameters inside both
the driver and the optimization functions. This is wasteful, especially if the evaluation function is
complex or time-consuming.

588 Chapter 7 Learning

We should allow the same value to be shared, either by caching it (so it isn’t re-evaluated when
the evaluation function is called again) or by passing both the value and the parameters back from
optimizeParameters.

Performance

Each iteration of the algorithm is O(n) in time, where n is the number of parameters. It is O(1) in
memory. The number of iterations is controlled by the steps parameter. If the steps parameter
is sufficiently large, then the algorithm will return when it has found a solution (i.e., it has a set of
parameters that it cannot improve further).

7.2.3 Extensions to Basic Hill Climbing

The hill climbing problem given in the algorithm description above is very easy to solve. It has a
single slope in each direction from the highest fitness value. Following the slope will always lead
you to the top. The fitness landscape in Figure 7.3 is more complex. The hill climbing algorithm
shows that the best parameter value is never found. It gets stuck on a small sub-peak on the way
to the main peak.

This sub-peak is called a local maximum (or a local minimum if we are using an energy
landscape). The more local maxima there are in a problem, the more difficult it is for any algorithm
to solve. At worst, every fitness or energy value could be random and not correlated to the nearby
values at all. This is shown in Figure 7.4, and, in this case, no systematic search mechanism will
be able to solve the problem.

The basic hill climbing algorithm has several extensions that can be used to improve perfor-
mance when there are local maxima. None of them forms a complete solution, and none works

Energy
(fitness

or score)

Parameter value

Optimized value

Initial value

Figure 7.3 Non-monotonic fitness landscape with sub-optimal hill climbing

7.2 Parameter Modification 589

Energy
(fitness

or score)

Parameter value

Figure 7.4 Random fitness landscape

when the landscape is near to random, but they can help if the problem isn’t overwhelmed by
sub-optima.

Momentum

In the case of Figure 7.3 (and many others), we can solve the problem by introducing momentum.
If the search is consistently improving in one direction, then it should continue in that direction
for a little while, even when it seems that things aren’t improving any more.

This can be implemented using a momentum term. When the hill climber moves in a direction,
it keeps a record of the score improvement it achieved at that step. At the next step it adds a
proportion of that improvement to the fitness score for moving in the same direction again,
which then biases the algorithm to move in the same direction again.

This approach will deliberately overshoot the target, take a couple of steps to work out that it is
getting worse, and then reverse. Figure 7.5 shows the previous fitness landscape with momentum
in the hill climbing algorithm. Notice that it takes much longer to reach the best parameter value,
but it doesn’t get stuck so easily on the way to the main peak.

Adaptive Resolution

So far we have assumed that the parameter is changed by the same amount at each step of the
algorithm. When the parameter is a long way from the best value, taking small steps means that
the learning is slow (especially if it takes a while to generate a score by having the AI play the
game). On the other hand, if the steps are large, then the optimization may always overshoot and
never reach the best value.

Adaptive resolution is often used to make long jumps early in the search and smaller jumps
later on. As long as the hill climbing algorithm is successfully improving, it will increase the length
of its jumps somewhat. When it stops improving, it assumes that the jumps are overshooting the

590 Chapter 7 Learning

Energy
(fitness

or score)

Parameter value

Optimized value

Initial value

Hill climbing

Hill climbing

Momentum
carries it on

Momentum
carries it
past, then back

Figure 7.5 Non-monotonic fitness landscape solved by momentum hill climbing

best value and reduces their size. This approach can be combined with a momentum term or used
on its own in a regular hill climber.

Multiple Trials

Hill climbing is very much dependent on the initial guess. If the initial guess isn’t on the slope
toward the best parameter value, then the hill climber may move off completely in the wrong
direction and climb a smaller peak. Figure 7.6 shows this situation.

Most hill climbing algorithms use multiple different start values distributed across the whole
landscape. In Figure 7.6, the correct optimum is found on the third attempt.

In cases where the learning is being performed online and the player expects the AI not to
suddenly get worse (because it starts the hill climbing again with a new parameter value), this may
not be a suitable technique.

Finding the Global Optimum

So far we’ve talked as if the goal is to find the best possible solution. This is undoubtedly our
ultimate aspiration, but we are faced with a problem. In most problems we not only have no idea
what the best solution is but we can’t even recognize it when we find it.

Let’s say in an RTS game we are trying to optimize the best use of resources into construction
or research, for example. We may run 200 trials and find that one set of parameters is clearly the
best. We can’t guarantee it is the best of all possible sets, however. Even if the last 50 trials all come
up with the same value, we can’t guarantee that we won’t find a better set of parameters on the
next go. There is no formula we can work out that lets us tell if the solution we have is the best
possible one.

7.2 Parameter Modification 591

Energy
(fitness

or score)

Parameter value

Sub-optimum

Second
initial
value

Third
initial
value

Sub-optimum

First
initial
value

Figure 7.6 Hill climbing multiple trials

Extensions to hill climbing such as momentum, adaptive resolution, and multiple trials don’t
guarantee that we get the best solution, but compared to the simple hill climbing algorithm they
will almost always find better solutions more quickly. In a game we need to balance the time spent
looking with the quality of solution. Eventually, the game needs to stop looking and conclude that
the solution it has will be the one it uses, regardless if there is a better one out there.

This is sometimes called “satisficing” (although that term has different meanings for different
people): we are optimizing to get a satisfactory result, rather than to find the best result.

7.2.4 Annealing

Annealing is a physical process where the temperature of a molten metal is slowly reduced, allowing
it to solidify in a highly ordered way. Reducing the temperature suddenly leads to internal stresses,
weaknesses, and other undesired effects. Slow cooling allows the metal to find its lowest energy
configuration.

As a parameter optimization technique, annealing uses a random term to represent the tem-
perature. Initially, it is high, making the behavior of the algorithm very random. Over time it
reduces, and the algorithm becomes more predictable.

It is based on the standard hill climbing algorithm, although it is customary to think in terms
of energy landscapes rather than fitness landscapes (hence hill climbing becomes hill descent).

There are many ways to introduce the randomness into the hill descent algorithm. The original
method uses a calculated Boltzmann probability coefficient. We’ll look at this later in this section.
A simpler method is more commonly implemented, however, for simple parameter learning
applications.

Direct Method

At each hill climbing step, a random number is added to the evaluation for each neighbor of
the current value. In this way the best neighbor is still more likely to be chosen, but it can be

592 Chapter 7 Learning

overridden by a large random number. The range of the random number is initially large, but is
reduced over time.

For example, the random range is ±10, the evaluation of the current value is 0, and its
neighbors have evaluations of 20 and 39. A random number is added from the range ±10 to each
evaluation. It is possible that the first value (scoring 20) will be chosen over the second, but only
if the first gets a random number of +10 and the second gets a random number of −10. In the
vast majority of cases, the second value will be chosen.

Several steps later, the random range might be ±1, in which case the first neighbor could never
be chosen. On the other hand, at the start of the annealing, the random range might be ±100,
where the first neighbor has a very good chance of being chosen.

Pseudo-Code

We can apply this directly to our previous hill climbing algorithm. The optimizeParameters
function is replaced by annealParameters.

1 def annealParameters(parameters, function, temp):
2

3 # Holds the best parameter change so far
4 bestParameterIndex = -1
5 bestTweak = 0
6

7 # The initial best value is the value of the current
8 # parameters, no point changing to a worse set.
9 bestValue = function(parameters)

10

11 # Loop through each parameter
12 for i in 0..parameters.size():
13

14 # Store the current parameter value
15 currentParameter = parameters[i].value
16

17 # Tweak it both up and down
18 for tweak in [-STEP, STEP]:
19

20 # Apply the tweak
21 parameters[i].value += tweak
22

23 # Get the value of the function
24 value = function(parameters[i]) +
25 randomBinomial() * temp
26

7.2 Parameter Modification 593

27 # Is it the best so far?
28 # (Remember this is now hill-descent)
29 if value < bestValue:
30

31 # Store it
32 bestValue = value
33 bestParameterIndex = i
34 bestTweak = tweak
35

36 # Reset the parameter to its old value
37 parameters[i].value = currentParameter
38

39 # We’ve gone through each parameter, check if we
40 # have found a good set
41 if bestParameterIndex >= 0:
42

43 # Make the parameter change permanent
44 parameters[bestParameterIndex] += bestTweak
45

46 # Return the modified parameters, if we found a better
47 # set, or the parameters we started with otherwise
48 return parameters

The randomBinomial function is implemented as

1 def randomBinomial():
2 return random() - random()

as in previous chapters.
The main hill climbing function should now call annealParameters rather than

optimizeParameters.

Implementation Notes

We have changed the direction of the comparison operation in the middle of the algorithm.
Because annealing algorithms are normally written based on energy landscapes, we have changed
the implementation so that it now looks for a lower function value.

Performance

The performance characteristics of the algorithm are as before: O(n) in time and O(1) in
memory.

594 Chapter 7 Learning

Boltzmann Probabilities

Motivated by the physical annealing process, the original simulated annealing algorithm used a
more complex method of introducing the random factor to hill climbing. It was based on a slightly
less complex hill climbing algorithm.

In our hill climbing algorithm we evaluate all neighbors of the current value and work out
which is the best one to move to. This is often called “steepest gradient” hill climbing, because
it moves in the direction that will bring the best results. A simpler hill climbing algorithm will
simply move as soon as it finds the first neighbor with a better score. It may not be the best
direction to move in, but is an improvement nonetheless.

We combine annealing with this simpler hill climbing algorithm as follows. If we find a
neighbor that has a lower (better) score, we select it as normal. If the neighbor has a worse score,
then we calculate the energy we’ll be gaining by moving there, �E . We make this move with
a probability proportional to e−(�E/T), where T is the current temperature of the simulation
(corresponding to the amount of randomness). In the same way as previously, the T value is
lowered over the course of the process.

Pseudo-Code

We can implement a Boltzmann optimization step in the following way:

1 def boltzmannAnnealParameters(parameters, function, temp):
2

3 # Store the initial value
4 initialValue = function(parameters)
5

6 # Loop through each parameter
7 for i in 0..parameters.size():
8

9 # Store the current parameter value
10 currentParameter = parameters[i].value
11

12 # Tweak it both up and down
13 for tweak in [-STEP, STEP]:
14

15 # Apply the tweak
16 parameters[i].value += tweak
17

18 # Get the value of the function
19 value = function(parameters[i])
20

21 # Is it the best so far?
22 if value < initialValue:

7.2 Parameter Modification 595

23

24 # Return it
25 return parameters
26

27 # Otherwise check if we should do it anyway
28 else:
29

30 # Calculate the energy gain and coefficient
31 energyGain = value - initialValue
32 boltzmannCoeff = exp(-energyGain / temp)
33

34 # Randomly decide whether to accept it
35 if random() < boltzmannCoeff:
36

37 # We’re going with the change, return it
38 return parameters
39

40 # Reset the parameter to its old value
41 parameters[i].value = currentParameter
42

43 # We found no better parameters, return the originals
44 return parameters

The exp function returns the value of e raised to the power of its argument. It is a standard
function in most math libraries.

The driver function is as before, but now calls boltzmannAnnealParameters rather than
optimizeParameters.

Performance

The performance characteristics of the algorithm are as before: O(n) in time and O(1) in
memory.

Optimizations

Just like regular hill climbing, annealing algorithms can be combined with momentum and
adaptive resolution techniques for further optimization. Combining all these techniques is often
a matter of trial and error, however. Tuning the amount of momentum, changing the step size,
and annealing temperature so they work in harmony can be tricky.

In our experience we’ve rarely been able to make reliable improvements to annealing by adding
in momentum, although adaptive step sizes are useful.

596 Chapter 7 Learning

7.3 Action Prediction

It is often useful to be able to guess what players will do next. Whether it is guessing which passage
they are going to take, which weapon they will select, or which route they will attack from, a game
that can predict a player’s actions can mount a more challenging opposition.

Humans are notoriously bad at behaving randomly. Psychological research has been carried
out over decades and shows that we cannot accurately randomize our responses, even if we
specifically try. Mind magicians and expert poker players make use of this. They can often easily
work out what we’ll do or think next based on a relatively small amount of experience of what
we’ve done in the past.

Often, it isn’t even necessary to observe the actions of the same player. We have shared
characteristics that run so deep that learning to anticipate one player’s actions can often lead to
better play against a completely different player.

7.3.1 Left or Right

A simple prediction game beloved of poker players is “left or right.” One person holds a coin in
either the left or right hand. The other person then attempts to guess which hand the person has
hidden it in.

Although there are complex physical giveaways (called“tells”) which indicate a person’s choice,
it turns out that a computer can score reasonably well at this game also. We will use it as the
prototype action prediction task.

In a game context, this may apply to the choice of any item from a set of options: the choice
of passageway, weapon, tactic, or cover point.

7.3.2 Raw Probability

The simplest way to predict the choice of a player is to keep a tally of the number of times he chooses
each option. This will then form a raw probability of that player choosing that action again.

For example, after 20 times through a level, if the first passage has been chosen 72 times, and
the second passage has been chosen 28 times, then the AI will be able to predict that a player will
choose the first route.

Of course, if the AI then always lays in wait for the player in the first route, the player will very
quickly learn to use the second route.

This kind of raw probability prediction is very easy to implement, but it gives a lot of feedback
to the player, who can use the feedback to make their decisions more random.

In our example, the character is likely to position itself on the most likely route. The player will
only fall foul of this once and then will use the other route. The character will continue standing
where the player isn’t until the probabilities balance. Eventually, the player will learn to simply
alternate different routes and always miss the character.

When the choice is made only once, then this kind of prediction may be all that is possible. If
the probabilities are gained from many different players, then it can be a good indicator of which
way a new player will go.

7.3 Action Prediction 597

Often, a series of choices must be made, either repeats of the same choice or a series of different
choices. The early choices can have good predictive power over the later choices. We can do much
better than using raw probabilities.

7.3.3 String Matching

When a choice is repeated several times (the selection of cover points or weapons when enemies
attack, for example), a simple string matching algorithm can provide good prediction.

The sequence of choices made is stored as a string (it can be a string of numbers or objects, not
just a string of characters). In the left-and-right game this may look like “LRRLRLLLRRLRLRR,”
for example. To predict the next choice, the last few choices are searched for in the string, and the
choice that normally follows is used as the prediction.

In the example above the last two moves were “RR.” Looking back over the sequence, two
right-hand choices are always followed by a left, so we predict that the player will go for the left
hand next time. In this case we have looked up the last two moves. This is called the “window
size”: we are using a window size of two.

7.3.4 N-Grams

The string matching technique is rarely implemented by matching against a string. It is more
common to use a set of probabilities similar to the raw probability in the previous section. This
is known as an N -Gram predictor (where N is one greater than the window size parameter, so
3-Gram would be a predictor with a window size of two).

In an N -Gram we keep a record of the probabilities of making each move given all combina-
tions of choices for the previous N moves. So in a 3-Gram for the left-and-right game we keep
track of probability for left and right given four different sequences: “LL,” “LR,” “RL,” and “RR.”
That is eight probabilities in all, but each pair must add up to one.

The sequence of moves above reduces to the following probabilities:

..R ..L

LL 1
2

1
2

LR 3
5

2
5

RL 3
4

1
4

RR 0
2

2
2

The raw probability method is equivalent to the string matching algorithm, with a zero
window size.

N-Grams in Computer Science

N -Grams are used in various statistical analysis techniques and are not limited to prediction.
They have applications particularly in analysis of human languages.

598 Chapter 7 Learning

Strictly, an N -Gram algorithm keeps track of the frequency of each sequence, rather than the
probability. In other words, a 3-Gram will keep track of the number of times each sequence of
three choices is seen. For prediction, the first two choices form the window, and the probability is
calculated by looking at the proportion of times each option is taken for the third choice.

In our implementation we will follow this pattern by storing frequencies rather than prob-
abilities (they also have the advantage of being easier to update), although we will optimize the
data structures for prediction by allowing lookup using the window choices only.

Pseudo-Code

We can implement the N -Gram predictor in the following way:

1 class NGramPredictor:
2

3 # Holds the frequency data
4 data
5

6 # Holds the size of the window + 1
7 nValue
8

9 # Registers a set of actions with predictor, updating
10 # its data. We assume actions has exactly nValue
11 # elements in it.
12 def registerSequence(actions):
13

14 # Split the sequence into a key and value
15 key = actions[0:nValue]
16 value = actions[nValue]
17

18 # Make sure we’ve got storage
19 if not key in data:
20 data[key] = new KeyDataRecord()
21

22 # Get the correct data structure
23 keyData = data[key]
24

25 # Make sure we have a record for the follow on value
26 if not value in keyData.counts:
27 keyData.counts[value] = 0
28

29 # Add to the total, and to the count for the value
30 keyData.counts[value] += 1
31 keyData.total += 1
32

7.3 Action Prediction 599

33 # Gets the next action most likely from the given one.
34 # We assume actions has nValue - 1 elements in it (i.e.
35 # the size of the window).
36 def getMostLikely(actions):
37

38 # Get the key data
39 keyData = data[actions]
40

41 # Find the highest probability
42 highestValue = 0
43 bestAction = None
44

45 # Get the list of actions in the store
46 actions = keyData.counts.getKeys()
47

48 # Go through each
49 for action in actions:
50

51 # Check for the highest value
52 if keyData.counts[action] > highestValue:
53

54 # Store the action
55 highestValue = keyData.counts[action]
56 bestAction = action
57

58 # We’ve looked through all actions, if best action
59 # is still None, then its because we have no data
60 # on the given window. Otherwise we have the best
61 # action to take
62 return bestAction

Each time an action occurs, the game registers the last n actions using the registerActions
method. This updates the counts for the N -Gram. When the game needs to predict what will
happen next, it feeds only the window actions into the getMostLikely method, which returns the
most likely action or none if no data has ever been seen for the given action.

Data Structures and Interfaces

We use a hash table to store count data in this example. Each entry in the data hash is a key data
record, which has the following structure:

1 struct KeyDataRecord:
2 # Holds the counts for each successor action

600 Chapter 7 Learning

3 counts
4

5 # Holds the total number of times the window has
6 # been seen
7 total

There is one KeyDataRecord instance for each set of window actions. It contains counts for
how often each following action is seen and a total member that keeps track of the total number
of times the window has been seen.

We can calculate the probability of any following action by dividing its count by the total. This
isn’t used in the algorithm above, but it can be used to determine how accurate the prediction is
likely to be. A character may only lay an ambush in a dangerous location, for example, if it is very
sure the player will come its way.

Within the record, the counts member is also a hash table indexed by the predicted action. In
the getMostLikely function we need to be able to find all the keys in the counts hash table. This
is done using the getKeys method.

Implementation Notes

The implementation above will work with any window size and can support more than two
actions. It uses hash tables to avoid growing too large when most combinations of actions are
never seen.

If there are only a small number of actions, and all possible sequences can be visited, then it
will be more efficient to replace the nested hash tables with a single array. As in the table example
at the start of this section, the array is indexed by the window actions and the predicted action.
Values in the array initialized to zero are simply incremented when a sequence is registered. One
row of the array can then be searched to find the highest value and, therefore, the most likely
action.

Performance

Assuming that the hash tables are not full (i.e., that hash assignment and retrieval are con-
stant time processes), the registerActions function is O(1) in time. The getMostLikely func-
tion is O(m) in time, where m is the number of possible actions (since we need to search
each possible follow-on action to find the best). We can swap this over by keeping the counts
hash table sorted by value. In this case, registerActions will be O(m) and getMostLikely will
be O(1).

In most cases, however, actions will need to be registered much more often than they are
predicted, so the balance as given is optimum.

The algorithm is O(mn) in memory, where n is the N value. The N value is the number of
actions in the window, plus one.

7.3 Action Prediction 601

7.3.5 Window Size

Increasing the window size initially increases the performance of the prediction algorithm. For
each additional action in the window, the improvement reduces until there is no benefit to having
a larger window, and eventually the prediction gets worse with a larger window until we end up
making worse predictions than we would if we simply guessed at random.

This is because, while our future actions are predicted by our preceding actions, this is rarely
a long causal process. We are drawn toward certain actions and short sequences of actions, but
longer sequences only occur because they are made up of the shorter sequences. If there is a certain
degree of randomness in our actions, then a very long sequence will likely have a fair degree of
randomness in it. The very large window size is likely to include more randomness and, therefore,
be a poor predictor. There is a balance in having a large enough window to accurately capture the
way our actions influence each other, without being so long that it gets foiled by our randomness.
As the sequence of actions gets more random, the window size needs to be reduced.

Figure 7.7 shows the accuracy of an N -Gram for different window sizes on a sequence of
1,000 trials (for the left-or-right game). You’ll notice that we get greatest predictive power in the
5-Gram, and higher window sizes provide worse performance. But the majority of the power of the
5-Gram is present in the 3-Gram. If we use just a 3-Gram, we’ll get almost optimum performance,
and we won’t have to train on so many samples. Once we get beyond the 10-Gram, prediction
performance is very poor. Even on this very predictable sequence, we get worse performance than

Library

we’d expect if we guessed at random. This graph was produced using the N -Gram implementation
on the website, which follows the algorithm given above.

In predictions where there are more than two possible choices, the minimum window size
needs to be increased a little. Figure 7.8 shows results for the predictive power in a five choice
game. In this case the 3-Gram does have noticeably less power than the 4-Gram.

We can also see in this example that the falloff is faster for higher window sizes: large window
sizes get poorer more quickly than before.

There are mathematical models that can tell you how well an N -Gram predictor will predict a
sequence. They are sometimes used to tune the optimal window size. We’ve never seen this done

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
2 3 4 5 6 7 8 9

N-Gram
10 11 12 13 14 15

Performance of purely
random guessing

Accuracy

Figure 7.7 Different window sizes

602 Chapter 7 Learning

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

2 3 4 5 6 7 8 9
N-Gram

10 11 12 13 14 15

Performance of purely
random guessing

Accuracy No correct answers

Figure 7.8 Different windows in a five choice game

in games, however, and because they rely on being able to find certain inconvenient statistical
properties of the input sequence, personally we tend to start at a 4-Gram and use trial and error.

Memory Concerns

Counterbalanced against the improvement in predictive power are the memory and data require-
ments of the algorithm. For the left-and-right game, each additional move in the window doubles
the number of probabilities that need to be stored (if there are three choices rather than two it
triples the number, and so on). This increase in storage requirements can often get out of hand,
although “sparse” data structures such as a hash table (where not every value needs to have storage
assigned) can help.

Sequence Length

The larger number of probabilities requires more sample data to fill. If most of the sequences
have never been seen before, then the predictor will not be very powerful. To reach the optimal
prediction performance, all the likely window sequences need to have been visited several times.
This means that learning takes much longer, and the performance of the predictor can appear quite
poor. This final issue can be solved to some extent using a variation on the N -Gram algorithm:
hierarchical N -Grams.

7.3.6 Hierarchical N-Grams

When an N -Gram algorithm is used for online learning, there is a balance between the maximum
predictive power and the performance of the algorithm during the initial stages of learning.
A larger window size may improve the potential performance, but will mean that the algorithm
takes longer to get to a reasonable performance level.

7.3 Action Prediction 603

The hierarchical N -Gram algorithm effectively has several N -Gram algorithms working in
parallel, each with increasingly large window sizes. A hierarchical 3-Gram will have regular 1-Gram
(i.e., the raw probability approach), 2-Gram, and 3-Gram algorithms working on the same data.

When a series of actions are provided, it is registered in all the N -Grams. A sequence of “LRR”
passed to a hierarchical 3-Gram, for example, gets registered as normal in the 3-Gram, the “RR”
portion gets registered in the 2-Gram, and “R” gets registered in the 1-Gram.

When a prediction is requested, the algorithm first looks up the window actions in the
3-Gram. If there have been sufficient examples of the window, then it uses the 3-Gram to generate
its prediction. If there haven’t been enough, then it looks at the 2-Gram. If that likewise hasn’t
had enough examples, then it takes its prediction from the 1-Gram. If none of the N -Grams has
sufficient examples, then the algorithm returns no prediction or just a random prediction.

How many constitutes “enough” depends on the application. If a 3-Gram has only one entry
for the sequence “LRL,” for example, then it will not be confident in making a prediction based
on one occurrence. If the 2-Gram has four entries for the sequence “RL,” then it may be more
confident. The more possible actions there are, the more examples are needed for an accurate
prediction.

There is no single correct threshold value for the number of entries required for confidence.
To some extent it needs to be found by trial and error. In online learning, however, it is common
for the AI to make decisions based on very sketchy information, so the confidence threshold can
be small (say, 3 or 4). In some of the literature on N -Gram learning, confidence values are much
higher. As in many areas of AI, game AI can afford to take more risks.

Pseudo-Code

The hierarchical N -Gram system uses the original N -Gram predictor and can be implemented
like the following:

1 class HierarchicalNGramPredictor:
2

3 # Holds an array of n-grams with increasing n values
4 ngrams
5

6 # Holds the maximum window size + 1
7 nValue
8

9 # Holds the minimum number of samples an n-gram must
10 # have before its allowed to predict
11 threshold
12

13 def HierarchicalNGramPredictor(n):
14

15 # Store the maximum n-gram size
16 nValue = n

604 Chapter 7 Learning

17

18 # Create the array of n-grams
19 ngrams = new NGramPredictor[nValue]
20 for i in 0..nValue: ngrams[i].nValue = i+1
21

22 def registerSequence(actions):
23

24 # Go through each n-gram
25 for i in 0..nValue:
26

27 # Create the sub-list of actions and register it
28 subActions = actions[nValue-i:nValue]
29 ngrams[i].registerSequence(subActions)
30

31 def getMostLikely(actions):
32

33 # Go through each n-gram in descending order
34 for i in 0..nValue-1:
35

36 # Find the relevant n-gram
37 ngram = ngrams[nValue-i-1]
38

39 # Get the sub-list of window actions
40 subActions = actions[nValue-i-1:nValue-1]
41

42 # Check if we have enough entries
43 if subActions in ngram.data and
44 ngram.data[subActions].count > threshold:
45

46 # Get the ngram to do the prediction
47 return ngram.getMostLikely(subActions)
48

49 # If we get here, it is because no n-gram is over
50 # the threshold: return no action
51 return None

We have added an explicit constructor in the algorithm to show how the array of N -Grams is
structured.

Data Structures and Implementation

The algorithm uses the same data structures as previously and has the same implementation
caveats: its constituent N -Grams can be implemented in whatever way is best for your application,
as long as a count variable is available for each possible set of window actions.

7.3 Action Prediction 605

Performance

The algorithm is O(n) in memory and O(n) in time, where n is the highest numbered N -Gram
used.

The registerSequence method uses the O(1) registerSequence method of the N -Gram class,
so it is O(n) overall. The getMostLikely method uses the O(n) getMostLikely method of the
N -Gram class once, so it is O(n) overall.

Confidence

We used the number of samples to guide us on whether to use one level of N -Gram or to look
at lower levels. While this gives good behavior in practice, it is strictly only an approximation.
What we are interested in is the confidence that an N -Gram has in the prediction it will make.
Confidence is a formal quantity defined in probability theory, although it has several different
versions with their own characteristics. The number of samples is just one element that affects
confidence.

In general, confidence measures the likelihood of a situation being arrived at by chance. If the
probability of a situation being arrived at by chance is low, then the confidence is high.

For example, if we have four occurrences of “RL,” and all of them are followed by “R,” then
there is a good chance that RL is normally followed by R, and our confidence in choosing R
next is high. If we have 1000 “RL” occurrences followed always by “R,” then the confidence
in predicting an “R” would be much higher. If, on the other hand, the four occurrences are
followed by “R” in two cases and by “L” in two cases, then we’ll have no idea which one is more
likely.

Actual confidence values are more complex than this. They need to take into account the
probability that a smaller window size will have captured the correct data, while the more accurate
N -Gram will have been fooled by random variation.

The math involved in all this isn’t concise and doesn’t buy any performance increase. We’ve
only ever used a simple count cut-off in this kind of algorithm. In preparing for this book we
experimented and changed our implementation to take into account more complex confidence
values, and there was no measurable improvement in its ability.

7.3.7 Application in Combat

By far the most widespread application of N -Gram prediction is in combat games. Beat-em-ups,
sword combat games, and any other combo-based melee games involve timed sequences of moves.
Using an N -Gram predictor allows the AI to predict what the player is trying to do as they start
their sequence of moves. It can then select an appropriate rebuttal.

This approach is so powerful, however, that it can provide unbeatable AI. A common require-
ment in this kind of game is to remove competency from the AI so that the player has a sporting
chance.

This application is so deeply associated with the technique that many developers don’t give
it a second thought in other situations. Predicting where players will be, what weapons they will

606 Chapter 7 Learning

use, or how they will attack are all areas to which N -Gram prediction can be applied. It is worth
having an open mind.

7.4 Decision Learning

So far we have looked at learning algorithms that operate on relatively restricted domains: the
value of a parameter and predicting a series of player choices from a limited set of options.

To realize the potential of learning AI, we need to allow the AI to learn to make decisions.
Chapter 5 outlined several methods for making decisions; the following sections look at decision
makers that choose based on their experience.

These approaches cannot replace the basic decision making tools. State machines, for example,
explicitly limit the ability of a character to make decisions that are not applicable in a situation (no
point choosing to fire if your weapon has no ammo, for example). Learning is probabilistic; you
will usually have some probability (however small) of carrying out each possible action. Learning
hard constraints is notoriously difficult to combine with learning general patterns of behavior
suitable for outwitting human opponents.

7.4.1 Structure of Decision Learning

We can simplify the decision learning process into an easy to understand model. Our learning
character has some set of behavior options that it can choose from. These may be steering
behaviors, animations, or high-level strategies in a war game. In addition, it has some set of
observable values that it can get from the game level. These may include the distance to the
nearest enemy, the amount of ammo left, the relative size of each player’s army, and so on.

We need to learn to associate decisions (in the form of a single behavior option to choose)
with observations. Over time, the AI can learn which decisions fit with which observations and
can improve its performance.

Weak or Strong Supervision

In order to improve performance, we need to provide feedback to the learning algorithm. This
feedback is called “supervision,” and there are two varieties of supervision used by different
learning algorithms or by different flavors of the same algorithm.

Strong supervision takes the form of a set of correct answers. A series of observations are
each associated with the behavior that should be chosen. The learning algorithm learns to choose
the correct behavior given the observation inputs. These correct answers are often provided by a
human player. The developer may play the game for a while and have the AI watch. The AI keeps
track of the sets of observations and the decisions that the human player makes. It can then learn
to act in the same way.

Weak supervision doesn’t require a set of correct answers. Instead, some feedback is given as to
how good its action choices are. This can be feedback given by a developer, but more commonly

7.4 Decision Learning 607

it is provided by an algorithm that monitors the AI’s performance in the game. If the AI gets
shot, then the performance monitor will provide negative feedback. If the AI consistently beats
its enemies, then feedback will be positive.

Strong supervision is easier to implement and get right, but it is less flexible: it requires
somebody to teach the algorithm what is right and wrong. Weak supervision can learn right and
wrong for itself, but is much more difficult to get right.

Each of the remaining learning algorithms in this chapter works with this kind of model. It
has access to observations, and it returns a single action to take next. It is supervised either weakly
or strongly.

7.4.2 What Should You Learn?

For any realistic size of game, the number of observable items of data will be huge and the range
of actions will normally be fairly restricted. It is possible to learn very complex rules for actions
in very specific circumstances.

This detailed learning is required for characters to perform at a high level of competency. It
is characteristic of human behavior: a small change in our circumstances can dramatically affect
our actions. As an extreme example, it makes a lot of difference if a barricade is made out of solid
steel or cardboard boxes if we are going to use it as cover from incoming fire.

On the other hand, as we are in the process of learning, it will take a long time to learn the
nuances of every specific situation. We would like to lay down some general rules for behavior
fairly quickly. They will often be wrong (and we will need to be more specific), but overall they
will at least look sensible.

Especially for online learning, it is essential to use learning algorithms that work from general
principles to specifics, filling in the broad brush strokes of what is sensible before trying to be too
clever. Often, the “clever” stage is so difficult to learn that AI algorithms never get there. They will
have to rely on the general behaviors.

7.4.3 Four Techniques

We’ll look at four decision learning techniques in the remainder of this chapter. All four have been
used to some extent in games, but their adoption has not been overwhelming. The first technique,
Naive Bayes classification, is what you should always try first. It is simple to implement and
provides a good baseline for any more complicated techniques. For that reason, even academics
who do research into new learning algorithms usually use Naive Bayes as a sanity check. In fact,
much seemingly promising research in machine learning has foundered on the inability to do
much better on a problem than Naive Bayes.

The second technique, decision tree learning, is also very practicable. It also has the important
property than you can look at the output of the learning to see if it makes sense. The final two
techniques, reinforcement learning and neural networks, have some potential for game AI, but
are huge fields that we’ll only be able to overview here.

608 Chapter 7 Learning

There are also obviously many other learning techniques that you can read about in the
literature. Modern machine learning is strongly grounded in Bayesian statistics and probability
theory, so in that regard our introduction to Naive Bayes has the additional benefit of providing
an introduction to the field.

7.5 Naive Bayes Classifiers

The easiest way to explain Naive Bayes classifiers is with an example. Suppose we are writing a
racing game and we want an AI character to learn a player’s style of going around corners. There
are many factors that determine cornering style, but for simplicity let’s look at when the player
decides to slow down based only on their speed and distance to a corner. To get started we can
record some gameplay data to learn from. Here is a table that shows what a small subset of such
data might look like:

brake? distance speed

Y 2.4 11.3

Y 3.2 70.2

N 75.7 72.7

Y 80.6 89.4

N 2.8 15.2

Y 82.1 8.6

Y 3.8 69.4

It is important to make the patterns in the data as obvious as possible; otherwise, the learning
algorithm will require so much time and data that it will be impractical. So the first thing you
need to do when thinking about applying learning to any problem is to look at your data. When
we look at the data in the table we see some clear patterns emerging. Players are either near or
far from the corner and are either going fast or slow. We will codify this by labeling distances
below 20.0 as “near” and “far” otherwise. Similarily, we are going to say that speeds below 10.0
are considered “slow”, otherwise they are “fast”. This gives us the following table of binary discrete
attributes:

brake? distance speed

Y near slow

Y near fast

N far fast

Y far fast

N near slow

Y far slow

Y near fast

7.5 Naive Bayes Classifiers 609

Even for a human it is now easier to see connections between the attribute values and action
choices. This is exactly what we were hoping for as it will make the learning fast and not require
too much data.

In a real example there will obviously be a lot more to consider and the patterns might not be
so obvious. But often knowledge of the game makes it fairly easy to know how to simplify things.
For example, most human players will categorize objects as “in front,” “to the left,” “to the right,”
or “behind.” So a similar categorization, instead of using precise angles, probably makes sense for
the learning, too.

There are also statistical tools that can help. These tools can find clusters and can identify
statistically significant combinations of attributes. But they are no match for common sense and
practice. Making sure the learning has sensible attributes is part of the art of applying machine
learning and getting it wrong is one of the main reasons for failure.

Now we need to specify precisely what it is that we would like to learn. We want to learn the
conditional probablity that a player would decide to brake given their distance and speed to a
corner. The formula for this is

P(brake?|distance, speed).

The next step is to apply Bayes rule:

P(A|B) = P(B|A)P(A)

P(B)
.

The important point about Bayes rule is that it allows us to express the conditional probability
of A given B, in terms of the conditional probability of B given A. We’ll see why this is important
when we try to apply it. But first we’re going to re-state Bayes rule slightly as:

P(A|B) = αP(B|A)P(A).

Where α = 1/P(B). As we’ll explain later, this version turns out to be easier to work with for what
we’re going to use it for.

Here is the re-stated version of Bayes rule applied to our example:

P(brake?|distance, speed) = αP(distance, speed|brake?)P(brake?).

Next we’ll apply a naive assumption of conditional independence to give:

P(distance, speed|brake?) = P(distance|brake?)P(speed|brake?).

If you remember any probability theory, then you’ve probably seen a formula a bit like this one
before (but without the conditioning part) in the definition of independence.

Putting the application of Bayes rule and the naive assumption of conditional independence
altogether gives the following final formula:

P(brake?|distance, speed) = αP(distance|brake?)P(speed|brake?)P(brake?).

610 Chapter 7 Learning

The great thing about this final version is that we can use the table of values we generated
earlier to look up various probabilities. To see how let’s consider the case when we have an AI
character trying to decide whether to brake, or not, in a situation where the distance to a corner
is 79.2 and its speed is 12.1. We want to calculate the conditional probability that a human player
would brake in the same situation and use that to make our decision.

There are only two possibilities, either we brake or we don’t. So we will consider each one in
turn. First, let’s calculate the probability of braking:

P(brake? = Y |distance = 79.2, speed = 12.1).

We begin by discretizing these new values to give:

P(brake? = Y |far, slow).

Now we use the formula we derived above, to give:

P(brake? = Y |far, slow) = αP(far|brake? = Y)P(slow|brake? = Y)P(brake? = Y).

From the table of values we can count that for the 5 cases when people were braking, there are 2
cases when they were far away. So we estimate:

P(far|brake? = Y) = 2

5
.

Similarly, we can count 2 out of 5 cases when people braked while traveling at slow speed to give:

P(slow|brake? = Y) = 2

5
.

Again from the table, in total there were 5 cases out of 7 when people were braking at all, to give:

P(brake? = Y) = 5

7
.

This value is known as the prior since it represents the probability of braking prior to any
knowledge about the current situation. An important point about the prior is that if an event is
inherently unlikely, then the prior will be low. Therefore, the overall probability, given what we
know about the current situation, can still be low. For example, Ebola is (thankfully) a rare disease
so the prior that you have the disease is almost zero. So even if you have one of the symptoms,
multiplying by the prior still makes it very unlikely that you actually have the disease.

Going back to our braking example, we can now put all these calculations together to compute
the conditional probability a human player would brake in the current situation:

P(brake? = Y |far, slow) = α
4

35
.

7.5 Naive Bayes Classifiers 611

But what about the value of α? It turns out not to be important. To see why, let’s now calculate
the probability of not braking:

P(brake? = N |far, slow) = α
1

14
.

The reason we don’t need α is because it cancels out (it has to be positive because probabilities
can never be less than 0):

α
4

35
> α

1

14
= 4

35
>

1

14
.

So the probability of braking is greater than that of not braking. If the AI character wants to
behave like the humans from which we collected the data, then it should also brake.

Pseudo-Code

The simplest implementation of a NaiveBayesClassifier class assumes we only have binary
discrete attributes.

1 class NaiveBayesClassifier:
2

3 # Number of positive examples, none initially
4 examplesCountPositive = 0
5

6 # Number of negative examples, none initially
7 examplesCountNegative = 0
8

9 # Number of times each attribute was true for the
10 # positive examples, initially all zero
11 attributeCountsPositive[NUM_ATTRIBUTES] = zeros(NUM_ATTRIBUTES)
12

13 # Number of times each attribute was true for the
14 # negative examples, initially all zero
15 attributeCountsNegative[NUM_ATTRIBUTES] = zeros(NUM_ATTRIBUTES)
16

17 def update(self, attributes, label):
18 # Check if this is a positive or negative example,
19 # update all the counts accordingly
20 if label:
21 # Using element-wise addition
22 attributeCountsPositive += attributes
23 examplesCountPositive += 1
24 else:
25 attributeCountsNegative += attributes

612 Chapter 7 Learning

26 examplesCountNegative += 1
27

28 def predict(attributes):
29 # Predict must label this example as a positive
30 # or negative example
31

32 x = self.naiveProbabilities(attributes,
33 attributeCountsPositive,
34 float(examplesCountPositive),
35 float(examplesCountNegative))
36 y = self.naiveProbabilities(attributes,
37 attributeCountsNegative,
38 float(examplesCountNegative),
39 float(examplesCountPositive))
40

41 if x >= y:
42 return True
43

44 return False
45

46 def naiveProbabilities(attributes, counts, m, n):
47 # Compute the prior
48 prior = m/(m+n)
49

50 # Naive assumption of conditional independence
51 p = 1.0
52 for i in 0..NUM_ATTRIBUTES
53 p /= m
54 if attributes[i]:
55 p *= counts[i]
56 else:
57 p *= m - counts[i]
58 return prior * p

It’s not hard to extend the algorithm to non-binary discrete labels and non-binary discrete
attributes. We also usually want to optimize the speed of the predict method. This is especially
true in offline learning applications. In such cases you should pre-compute as many probabilities
as possible in the update method.

7.5.1 Implementation Notes

One of the problems with multiplying small numbers together (like probabilities) is that, with the
finite precision of floating point, they very quickly lose precision and eventually become zero. The

7.6 Decision Tree Learning 613

usual way to solve this problem is to represent all probabilities as logarithms and then, instead
of multiplying, we add. That is one of the reasons in the literature that you will often see people
writing about the “log-likelihood.”

7.6 Decision Tree Learning

In Chapter 5 we looked at decision trees: a series of decisions that generate an action to take based
on a set of observations. At each branch of the tree some aspect of the game world was considered
and a different branch was chosen. Eventually, the series of branches lead to an action (Figure 7.9).

Trees with many branch points can be very specific and make decisions based on the intricate
detail of their observations. Shallow trees, with only a few branches, give broad and general
behaviors.

Decision trees can be efficiently learned: constructed dynamically from sets of observations
and actions provided through strong supervision. The constructed trees can then be used in the
normal way to make decisions during gameplay.

There are a range of different decision tree learning algorithms used for classification, predic-
tion, and statistical analysis. Those used in game AI are typically based on Quinlan’s ID3 algorithm,
which we will examine in this section.

7.6.1 ID3

Depending on whom you believe, ID3 stands for“Inductive Decision tree algorithm 3”or“Iterative
Dichotomizer 3.” It is a simple to implement, relatively efficient decision tree learning algorithm.

Is enemy visible?

Is enemy <10 m away?

Yes

Yes

Yes

Is enemy audible?

YesNo

No

No

Creep

Attack

Attack

Move

Is enemy
on flank?

Figure 7.9 A decision tree

614 Chapter 7 Learning

Like any other algorithm it has a whole host of optimizations useful in different situations. It
has been largely replaced in industrial AI use by optimized versions of the algorithm: C4, C4.5,
and C5. In this book we’ll concentrate on the basic ID3 algorithm, which provides the foundation
for these optimizations.

Algorithm

The basic ID3 algorithm uses the set of observation–action examples. Observations in ID3 are
usually called “attributes.” The algorithm starts with a single leaf node in a decision tree and
assigns a set of examples to the leaf node.

It then splits its current node (initially the single start node) so that it divides the examples
into two groups. The division is chosen based on an attribute, and the division chosen is the one
that is likely to produce the most efficient tree. When the division is made, each of the two new
nodes is given the subset of examples that applies to them, and the algorithm repeats for each
of them.

This algorithm is recursive: starting from a single node it replaces them with decisions until
the whole decision tree has been created. At each branch creation it divides up the set of examples
among its daughters, until all the examples agree on the same action. At that point the action can
be carried out; there is no need for further branches.

The split process looks at each attribute in turn (i.e., each possible way to make a decision)
and calculates the information gain for each possible division. The division with the highest
information gain is chosen as the decision for this node. Information gain is a mathematical
property, which we’ll need to look at in a little depth.

Entropy and Information Gain

In order to work out which attribute should be considered at each step, ID3 uses the entropy
of the actions in the set. Entropy is a measure of the information in a set of examples. In
our case, it measures the degree to which the actions in an example set agree with each
other. If all the examples have the same action, the entropy will be 0. If the actions are dis-
tributed evenly, then the entropy will be 1. Information gain is simply the reduction in overall
entropy.

You can think of the information in a set as being the degree to which membership of the set
determines the output. If we have a set of examples with all different actions, then being in the set
doesn’t tell us much about what action to take. Ideally, we want to reach a situation where being
in a set tells us exactly which action to take.

This will be clearly demonstrated with an example. Let’s assume that we have two possible
actions: attack and defend. We have three attributes: health, cover, and ammo. For simplicity, we’ll
assume that we can divide each attribute into true or false: healthy or hurt, in cover or exposed,
and with ammo or an empty gun. We’ll return later to situations with attributes that aren’t simply
true or false.

7.6 Decision Tree Learning 615

Our set of examples might look like the following:

Healthy In Cover With Ammo Attack

Hurt In Cover With Ammo Attack

Healthy In Cover Empty Defend

Hurt In Cover Empty Defend

Hurt Exposed With Ammo Defend

For two possible outcomes, attack and defend, the entropy of a set of actions is given by:

E = −pA log2 pA − pD log2 pD,

where pA is the proportion of attack actions in the example set, and pD is the proportion of defend
actions. In our case, this means that the entropy of the whole set is 0.971.

At the first node the algorithm looks at each possible attribute in turn, divides the example
set, and calculates the entropy associated with each division.

Divided by:

Health Ehealthy = 1.000 Ehurt = 0.918

Cover Ecover = 1.000 Eexposed = 0.000

Ammo Eammo = 0.918 Eempty = 0.000

The information gain for each division is the reduction in entropy from the current example
set (0.971) to the entropies of the daughter sets. It is given by the formula:

G = ES − p ∗ E − p⊥ ∗ E⊥,

where p is the proportion of examples for which the attribute is true, and E is the entropy of
those examples. Similarly, p⊥ and E⊥ refer to the examples for which the attribute is false. The
equation shows that the entropies are multiplied by the proportion of examples in each category.
This biases the search toward balanced branches where a similar number of examples get moved
into each category.

In our example we can now calculate the information gained by dividing by each attribute:

Ghealth = 0.020,

Gcover = 0.171,

Gammo = 0.420.

So, of our three attributes, ammo is by far the best indicator of what action we need to take
(this makes sense, since we cannot possibly attack without ammo). By the principle of learning
the most general stuff first, we use ammo as our first branch in the decision tree.

616 Chapter 7 Learning

Has ammo?

Is in cover?

Yes

YesNo

No

Defend

AttackDefend

Figure 7.10 The decision tree constructed from a simple example

If we continue in this manner, we will build the decision tree shown in Figure 7.10.
Notice that the health of the character doesn’t feature at all in this tree; from the examples we

were given, it simply isn’t relevant to the decision. If we had more examples, then we might find
situations in which it is relevant, and the decision tree would use it.

More than Two Actions

The same process works with more than two actions. In this case the entropy calculation gener-
alizes to:

E = −
∑

i=1...n

pi log2 pi,

where n is the number of actions, and pi is the proportion of each action in the example set.
Most systems don’t have a dedicated base 2 logarithm. The logarithm for a particular base,

logn x , is given by:

logn x = log x

log n
,

where the logarithms can be in any base (typically, base e is fastest, but maybe base 10 if you have
an optimized implementation of that). So simply divide the result of whichever log you use by
log(2) to give the logarithm to base 2.

Non-Binary Discrete Attributes

When there are more than two categories, there will be more than two daughter nodes for a
decision.

7.6 Decision Tree Learning 617

The formula for information gained generalizes to:

G = ES −
∑

i=1...n

|Si |/|S| ∗ ESi ,

where Si is the set of examples for each of the n values of an attribute.
The listing below handles this situation naturally. It makes no assumptions about the number

of values an attribute can have. Unfortunately, as we saw in Chapter 5, the flexibility of having
more than two branches per decision isn’t too useful.

This still does not cover the majority of applications, however. The majority of attributes
in a game either will be continuous or will have so many different possible values that having
a separate branch for each is wasteful. We’ll need to extend the basic algorithm to cope with
continuous attributes. We’ll return to this extension later in the section.

Pseudo-Code

The simplest implementation of makeTree is recursive. It performs a single split of a set of examples
and then applies itself on each of the subsets to form the branches.

1 def makeTree(examples, attributes, decisionNode):
2

3 # Calculate our initial entropy
4 initialEntropy = entropy(examples)
5

6 # If we have no entropy, we can’t divide further
7 if initialEntropy <= 0: return
8

9 # Find the number of examples
10 exampleCount = examples.length()
11

12 # Hold the best found split so far
13 bestInformationGain = 0
14 bestSplitAttribute
15 bestSets
16

17 # Go through each attribute
18 for attribute in attributes:
19

20 # Perform the split
21 sets = splitByAttribute(examples, attribute)
22

23 # Find overall entropy and information gain
24 overallEntropy = entropyOfSets(sets, exampleCount)

618 Chapter 7 Learning

25 informationGain = initialEntropy - overallEntropy
26

27 # Check if we’ve got the best so far
28 if informationGain > bestInformationGain:
29 bestInformationGain = informationGain
30 bestSplitAttribute = attribute
31 bestSets = sets
32

33 # Set the decision node’s test
34 decisionNode.testValue = bestSplitAttribute
35

36 # The list of attributes to pass on down the tree should
37 # have the one we’re using removed
38 newAttributes = copy(attributes)
39 newAttributes -= bestSplitAttribute
40

41 # Fill the daughter nodes
42 for set in bestSets:
43 # Find the value for the attribute in this set
44 attributeValue = set[0].getValue(bestSplitAttribute)
45

46 # Create a daughter node for the tree
47 daughter = new MultiDecision()
48

49 # Add it to the tree
50 decisionNode.daughterNodes[attributeValue] = daughter
51

52 # Recurse the algorithm
53 makeTree(set, newAttributes, daughter)

This pseudo-code relies on three key functions: splitByAttribute takes a list of examples
and an attribute and divides them up into several subsets so that each of the examples in a
subset share the same value for that attribute; entropy returns the entropy of a list of examples;
and entropyOfSets returns the entropy of a list of lists (using the basic entropy function). The
entropyOfSets method has the total number of examples passed to it to avoid having to sum up
the sizes of each list in the list of lists. As we’ll see below, this makes implementation significantly
easier.

Split by Attribute

The splitByAttribute function has the following form:

7.6 Decision Tree Learning 619

1 def splitByAttribute(examples, attribute):
2

3 # We create a set of lists, so we can access each list
4 # by the attribute value
5 sets
6

7 # Loop through each example
8 for example in examples:
9

10 # Assign it to the right set
11 sets[example.getValue(attribute)] += example
12

13 # Return the sets
14 sets

This pseudo-code treats the sets variable as both a dictionary of lists (when it adds examples
based on their value) and a list of lists (when it returns the variable at the end). When it is used
as a dictionary, care needs to be taken to initialize previously unused entries to be an empty list
before trying to add the current example to it.

This duality is not a commonly supported requirement for a data structure, although the need
for it occurs quite regularly. It is fairly easy to implement, however.

Entropy

The entropy function has the following form:

1 def entropy(examples):
2

3 # Get the number of examples
4 exampleCount = examples.length()
5

6 # Check if we only have one: in that case entropy is 0
7 if exampleCount == 0: return 0
8

9 # Otherwise we need to keep a tally of how many of each
10 # different kind of action we have
11 actionTallies
12

13 # Go through each example
14 for example in examples:
15

620 Chapter 7 Learning

16 # Increment the appropriate tally
17 actionTallies[example.action] ++
18

19 # We now have the counts for each action in the set
20 actionCount = actionTallies.length()
21

22 # If we have only one action then we have zero entropy
23 if actionCount == 0: return 0
24

25 # Start with zero entropy
26 entropy = 0
27

28 # Add in the contribution to entropy of each action
29 for actionTally in actionTallies:
30 proportion = actionTally / exampleCount
31 entropy -= proportion * log2(proportion)
32

33 # Return the total entropy
34 return entropy

In this pseudo-code we have used the log2 function which gives the logarithm to base 2. As
we saw earlier, this can be implemented as:

1 def log2(x):
2 return log(x) / log(2)

Although this is strictly correct, it isn’t necessary. We aren’t interested in finding the exact
information gain. We are only interested in finding the greatest information gain. Because loga-
rithms to any positive power retain the same order (i.e., if log2 x > log2 y , then loge x > loge y),
we can simply use the basic log in place of log2 and save on the floating point division.

The actionTallies variable acts both as a dictionary indexed by the action (we increment its
values) and as a list (we iterate through its values). This can be implemented as a basic hash map,
although care needs to be taken to initialize a previously unused entry to zero before trying to
increment it.

Entropy of Sets

Finally, we can implement the function to find the entropy of a list of lists in the following way:

1 def entropyOfSets(sets, exampleCount):
2

3 # Start with zero entropy
4 entropy = 0

7.6 Decision Tree Learning 621

5

6 # Get the entropy contribution of each set
7 for set in sets:
8

9 # Calculate the proportion of the whole in this set
10 proportion = set.length() / exampleCount
11

12 # Calculate the entropy contribution
13 entropy -= proportion * entropy(set)
14

15 # Return the total entropy.
16 return entropy

Data Structures and Interfaces

In addition to the unusual data structures used to accumulate subsets and keep a count of actions
in the functions above, the algorithm only uses simple lists of examples. These do not change size
after they have been created, so they can be implemented as arrays. Additional sets are created as
the examples are divided into smaller groups. In C or C++, it is sensible to have the arrays refer

Library

by pointer to a single set of examples, rather than copying example data around constantly. The
source code on the website demonstrates this approach.

The pseudo-code assumes that examples have the following interface:

1 class Example:
2 action
3 def getValue(attribute)

where getValue returns the value of a given attribute. The ID3 algorithm does not depend on the
number of attributes. action, not surprisingly, holds the action that should be taken given the
attribute values.

Starting the Algorithm

The algorithm begins with a set of examples. Before we can call makeTree, we need to get a list
of attributes and an initial decision tree node. The list of attributes is usually consistent over all
examples and fixed in advance (i.e., we’ll know the attributes we’ll be choosing from); otherwise,
we may need an additional application-dependent algorithm to work out the attributes that
are used.

The initial decision node can simply be created empty. So the call may look something like:

1 makeTree(allExamples, allAttributes, new MultiDecision())

622 Chapter 7 Learning

Performance

The algorithm is O(a logv n) in memory and O(avn logv n) in time, where a is the number of
attributes, v is the number of values for each attribute, and n is the number of examples in the
initial set.

7.6.2 ID3 with Continuous Attributes

ID3-based algorithms cannot operate directly with continuous attributes, and they are impractical
when there are many possible values for each attribute. In either case the attribute values must be
divided into a small number of discrete categories (usually two). This division can be performed
automatically as an independent process, and with the categories in place the rest of the decision
tree learning algorithm remains identical.

Single Splits

Continuous attributes can be used as the basis of binary decisions by selecting a threshold level.
Values below the level are in one category, and values above the level are in another category.
A continuous health value, for example, can be split into healthy and hurt categories with a single
threshold value.

We can dynamically calculate the best threshold value to use with a process similar to that
used to determine which attribute to use in a branch.

We sort the examples using the attribute we are interested in. We place the first element from
the ordered list into category A and the remaining elements into category B. We now have a
division, so we can perform the split and calculate information gained, as before.

We repeat the process by moving the lowest valued example from category B into cate-
gory A and calculating the information gained in the same way. Whichever division gave the
greatest information gained is used as the division. To enable future examples not in the set
to be correctly classified by the resulting tree, we need a numeric threshold value. This is
calculated by finding the average of the highest value in category A and the lowest value in
category B.

This process works by trying every possible position to place the threshold that will give
different daughter sets of examples. It finds the split with the best information gain and uses that.

The final step constructs a threshold value that would have correctly divided the examples into
its daughter sets. This value is required, because when the decision tree is used to make decisions,
we aren’t guaranteed to get the same values as we had in our examples: the threshold is used to
place all possible values into a category.

As an example, consider a situation similar to that in the previous section. We have a health
attribute, which can take any value between 0 and 200. We will ignore other observations and
consider a set of examples with just this attribute.

7.6 Decision Tree Learning 623

50 Defend

25 Defend

39 Attack

17 Defend

We start by ordering the examples, placing them into the two categories, and calculating the
information gained.

Category Attribute Value Action Information Gain

A 17 Defend
– –
B 25 Defend

39 Attack

50 Defend 0.12

Category Attribute Value Action Information Gain

A 17 Defend

25 Defend
– –
B 39 Attack

50 Defend 0.31

Category Attribute Value Action Information Gain

A 17 Defend

25 Defend

39 Attack
– –
B 50 Defend 0.12

We can see that the most information is gained if we put the threshold between 25 and 39.
The midpoint between these values is 32, so 32 becomes our threshold value.

Notice that the threshold value depends on the examples in the set. Because the set of examples
gets smaller at each branch in the tree, we can get different threshold values at different places in
the tree. This means that there is no set dividing line. It depends on the context. As more examples
are available, the threshold value can be fine-tuned and made more accurate.

Determining where to split a continuous attribute can be incorporated into the entropy checks
for determining which attribute to split on. In this form our algorithm is very similar to the C4.5
decision tree algorithm.

Pseudo-Code

We can incorporate this threshold step in the splitByAttribute function from the previous
pseudo-code.

624 Chapter 7 Learning

1 def splitByContinuousAttribute(examples, attribute):
2

3 # We create a set of lists, so we can access each list
4 # by the attribute value
5 bestGain = 0
6 bestSets
7

8 # Make sure the examples are sorted
9 setA = []

10 setB = sortReversed(examples, attribute)
11

12 # Work out the number of examples and initial entropy
13 exampleCount = len(examples)
14 initialEntropy = entropy(examples)
15

16 # Go through each but the last example,
17 # moving it to set A
18 while setB.length() > 1:
19

20 # Move the lowest example from A to B
21 setB.push(setA.pop())
22

23 # Find overall entropy and information gain
24 overallEntropy = entropyOfSets([setA, setB],
25 exampleCount)
26 informationGain = initialEntropy - overallEntropy
27

28 # Check if it is the best
29 if informationGain >= bestGain:
30 bestGain = informationGain
31 bestSets = [setA, setB]
32

33 # Calculate the threshold
34 setA = bestSets[0]
35 setB = bestSets[1]
36 threshold = setA[setA.length()-1].getValue(attribute)
37 threshold += setB[setB.length()-1].getValue(attribute)
38 threshold /= 2
39

40 # Return the sets
41 return bestSets, threshold

7.6 Decision Tree Learning 625

The sortReversed function takes a list of examples and returns a list of examples in order of
decreasing value for the given attribute.

In the framework we used previously for makeTree, there was no facility for using a threshold
value (it wasn’t appropriate if every different attribute value was sent to a different branch). In
this case we would need to extend makeTree so that it receives the calculated threshold value and
creates a decision node for the tree that could use it. In Chapter 5, Section 5.2 we looked at a
FloatDecision class that would be suitable.

Data Structures and Interfaces

We have used the list of examples as a stack in the code above. An object is removed from one
list and added to another list using push and pop. Many collection data structures have these
fundamental operations. If you are implementing your own lists, using a linked list, for example,
this can be simply achieved by moving the “next” pointer from one list to another.

Performance

The attribute splitting algorithm is O(n) in both memory and time, where n is the number of
examples. Note that this is O(n) per attribute. If you are using it within ID3, it will be called once
for each attribute.

On the Website

In this section we’ve looked at building a decision tree using either binary decisions (or at least

Library

those with a small number of branches) or threshold decisions.
In a real game, you are likely to need a combination of both binary decisions and threshold

decisions in the final tree. The makeTree algorithm needs to detect what type best suits each
algorithm and to call the correct version of splitByAttribute. The result can then be compiled
into either a MultiDecision node or a FloatDecision node (or some other kind of decision nodes,
if they are suitable, such as an integer threshold). This selection depends on the attributes you will
be working with in your game.

The source code on the website shows this kind of selection in operation and can form the
basis of a decision tree learning tool for your game.

Multiple Categories

Not every continuous value is best split into two categories based on a single threshold value. For
some attributes there are more than two clear regions that require different decisions. A character
who is only hurt, for example, will behave differently from one who is almost dead.

626 Chapter 7 Learning

Health < 32?

Health > 45?

No

YesNo

Yes

Defend

DefendAttack

Figure 7.11 Two sequential decisions on the same attribute

A similar approach can be used to create more than one threshold value. As the number of
splits increases, there is an exponential increase in the number of different scenarios that must
have their information gains calculated.

There are several algorithms for multi-splitting input data for lowest entropy. In general, the
same thing can also be achieved using any classification algorithm, such as a neural network.

In game applications, however, multi-splits are seldom necessary. As the ID3 algorithm
recurses through the tree, it can create several branching nodes based on the same attribute
value. Because these splits will have different example sets, the thresholds will be placed at dif-
ferent locations. This allows the algorithm to effectively divide the attribute into more than two
categories over two or more branch nodes. The extra branches will slow down the final decision
tree a little, but since running a decision tree is a very fast process, this will not generally be
noticeable.

Figure 7.11 shows the decision tree created when the example data above is run through two
steps of the algorithm. Notice that the second branch is subdivided, splitting the original attribute
into three sections.

7.6.3 Incremental Decision Tree Learning

So far we have looked at learning decision trees in a single process. A complete set of examples is
provided, and the algorithm returns a complete decision tree ready for use. This is fine for offline
learning, where a large number of observation–action examples can be provided in one go. The
learning algorithm can spend a short time processing the example set to generate a decision tree.

When used online, however, new examples will be generated while the game is running,
and the decision tree should change over time to accommodate them. With a small number of
examples, only broad brush sweeps can be seen, and the tree will typically need to be quite flat.
With hundreds or thousands of examples, subtle interactions between attributes and actions can
be detected by the algorithm, and the tree is likely to be more complex.

7.6 Decision Tree Learning 627

The simplest way to support this scaling is to re-run the algorithm each time a new example
is provided. This guarantees that the decision tree will be the best possible at each moment.
Unfortunately, we have seen that decision tree learning is a moderately inefficient process. With
large databases of examples, this can prove very time consuming.

Incremental algorithms update the decision tree based on the new information, without
requiring the whole tree to be rebuilt.

The simplest approach would be to take the new example and use its observations to walk
through the decision tree. When we reach a terminal node of the tree, we compare the action there
with the action in our example. If they match, then no update is required, and the new example
can simply be added to the example set at that node. If the actions do not match, then the node
is converted into a decision node using SPLIT_NODE in the normal way.

This approach is fine, as far as it goes, but it always adds further examples to the end of a tree
and can generate huge trees with many sequential branches. We ideally would like to create trees
that are as flat as possible, where the action to carry out can be determined as quickly as possible.

The Algorithm

The simplest useful incremental algorithm is ID4. As its name suggests, it is related to the basic
ID3 algorithm.

We start with a decision tree, as created by the basic ID3 algorithm. Each node in the decision
tree also keeps a record of all the examples that reach that node. Examples that would have
passed down a different branch of the tree are stored elsewhere in the tree. Figure 7.12 shows the
ID4-ready tree for the example we introduced earlier.

Has ammo?

Is in cover?

Yes

YesNo

No

Defend

AttackDefend

Healthy, In cover, Empty: Defend
Hurt, In cover, Empty: Defend

Hurt, Exposed, With ammo: Defend Healthy, In cover, With ammo: Attack
Hurt, In cover, With ammo: Attack

Healthy, In cover, With ammo: Attack
Hurt, In cover, With ammo: Attack
Healthy, In cover, Empty: Defend
Hurt, In cover, Empty: Defend
Hurt, Exposed, With ammo: Defend

Healthy, In cover, With ammo: Attack
Hurt, In cover, With ammo: Attack
Hurt, Exposed, With ammo: Defend

Figure 7.12 The example tree in ID4 format

628 Chapter 7 Learning

In ID4 we are effectively combining the decision tree with the decision tree learning algorithm.
To support incremental learning, we can ask any node in the tree to update itself given a new
example.

When asked to update itself, one of three things can happen:

1. If the node is a terminal node (i.e., it represents an action), and if the added example also shares
the same action, then the example is added to the list of examples for that node.

2. If the node is a terminal node, but the example’s action does not match, then we make the node
into a decision and use the ID3 algorithm to determine the best split to make.

3. If the node is not a terminal node, then it is already a decision. We determine the best attribute
to make the decision on, adding the new example to the current list. The best attribute is
determined using the information gain metric, as we saw in ID3.

� If the attribute returned is the same as the current attribute for the decision (and it will be
most times), then we determine which of the daughter nodes the new example gets mapped
to, and we update that daughter node with the new example.

� If the attribute returned is different, then it means the new example makes a different decision
optimal. If we change the decision at this point, then all of the tree further down the current
branch will be invalid. So we delete the whole tree from the current decision down and
perform the basic ID3 algorithm using the current decision’s examples plus the new one.

Note that when we reconsider which attribute to make a decision on, several attributes may
provide the same information gain. If one of them is the attribute we are currently using in the
decision, then we favor that one to avoid unnecessary rebuilding of the decision tree.

In summary, at each node in the tree, ID4 checks if the decision still provides the best infor-
mation gain in light of the new example. If it does, then the new example is passed down to the
appropriate daughter node. If it does not, then the whole tree is recalculated from that point on.
This ensures that the tree remains as flat as possible.

In fact, the tree generated by ID4 will always be the same as that generated by ID3 for the same
input examples. At worst, ID4 will have to do the same work as ID3 to update the tree. At best,
it is as efficient as the simple update procedure. In practice, for sensible sets of examples, ID4 is
considerably faster than repeatedly calling ID3 each time and will be faster in the long run than
the simple update procedure (because it is producing flatter trees).

Walk Through

It is difficult to visualize how ID4 works from the algorithm description alone, so let’s work
through an example.

We have seven examples. The first five are similar to those used before:

Healthy Exposed Empty Run

Healthy In Cover With Ammo Attack

Hurt In Cover With Ammo Attack

7.6 Decision Tree Learning 629

Healthy In Cover Empty Defend

Hurt In Cover Empty Defend

We use these to create our initial decision tree. The decision tree looks like that shown in
Figure 7.13.

We now add two new examples, one at a time, using ID4:

Hurt Exposed With Ammo Defend

Healthy Exposed With Ammo Run

The first example enters at the first decision node. ID4 uses the new example, along with the
five existing examples, to determine that ammo is the best attribute to use for the decision. This
matches the current decision, so the example is sent to the appropriate daughter node.

Currently, the daughter node is an action: attack. The action doesn’t match, so we need to
create a new decision here. Using the basic ID3 algorithm, we decide to make the decision based
on cover. Each of the daughters of this new decision have only one example and are therefore
action nodes.

The current decision tree is then as shown in Figure 7.14.
Now we add our second example, again entering at the root node. ID4 determines that this

time ammo can’t be used, so cover is the best attribute to use in this decision.
So we throw away the sub-tree from this point down (which is the whole tree, since we’re at

the first decision) and run an ID3 algorithm with all the examples. The ID3 algorithm runs in the
normal way and leaves the tree complete. It is shown in Figure 7.15.

Problems with ID4

ID4 and similar algorithms can be very effective in creating optimal decision trees. As the first few
examples come in, the tree will be largely rebuilt at each step. As the database of examples grows,
the changes to the tree often decrease in size, keeping the execution speed high.

Has ammo?

Is in cover?

No

YesNo

Yes

Attack

DefendRun

Figure 7.13 Decision tree before ID4

630 Chapter 7 Learning

Has ammo?

Is in cover?

No

YesNo

Yes

DefendRun

Is in cover?

YesNo

AttackDefend

Figure 7.14 Decision tree mid-ID4

Is in cover?

Is healthy?

No

YesNo

Yes

RunDefend

Has ammo?

YesNo

AttackDefend

Figure 7.15 Decision tree after ID4

It is possible, however, to have sets of examples for which the order of attribute tests in the tree
is pathological: the tree continues to be rebuilt at almost every step. This can end up being slower
than simply running ID3 each step. ID4 is sometimes said to be incapable of learning certain
concepts. This doesn’t mean that it generates invalid trees (it generates the same trees as ID3), it
just means that the tree isn’t stable as new examples are provided.

In practice, however, we haven’t suffered from this problem with ID4. Real data do tend to
stabilize quite rapidly, and ID4 ends up significantly faster than rebuilding the tree with ID3
each time.

Other incremental learning algorithms, such as ID5, ITI, and their relatives, all use this kind of
transposition, statistical records at each decision node, or additional tree restructuring operations
to help avoid repeated rebuilding of the tree.

7.7 Reinforcement Learning 631

Heuristic Algorithms

Strictly speaking, ID3 is a heuristic algorithm: the information gain value is a good estimate of
the utility of the branch in the decision tree, but it may not be the best. Other methods have been
used to determine which attributes to use in a branch. One of the most common, the gain-ratio,
was suggested by Quinlan, the original inventor of ID3.

Often, the mathematics is significantly more complex than that in ID3, and, while improve-
ments have been made, the results are often highly domain-specific. Because the cost of running
a decision tree in game AI is so small, it is rarely worth the additional effort. We know of few
developers who have invested in developing anything more than simple optimizations of the ID3
scheme.

More significant speed ups can be achieved in incremental update algorithms when doing
online learning. Heuristics can also be used to improve the speed and efficiency of incremental
algorithms. This approach is used in algorithms such as SITI and other more exotic versions of
decision tree learning.

7.7 Reinforcement Learning

Reinforcement learning is the name given to a range of techniques for learning based on expe-
rience. In its most general form a reinforcement learning algorithm has three components:
an exploration strategy for trying out different actions in the game, a reinforcement func-
tion that gives feedback on how good each action is, and a learning rule that links the two
together. Each element has several different implementations and optimizations, depending on the
application.

Reinforcement learning is a hot topic in game AI, with more than one new AI middleware
vendor using it as a key technology to enable next-generation gameplay.

Later in this section we’ll look briefly at a range of reinforcement learning techniques. In game
applications, however, a good starting point is the Q-learning algorithm. Q-learning is simple to
implement, has been widely tested on non-game applications, and can be tuned without a deep
understanding of its theoretical properties.

7.7.1 The Problem

We would like a game character to select better actions over time. What makes a good action may
be difficult to anticipate by the designers. It may depend on the way the player acts, or it may
depend on the structure of random maps that can’t be designed for.

We would like to be able to give a character free choice of any action in any circumstance and
for it to work out which actions are best for any given situation.

Unfortunately, the quality of an action isn’t normally clear at the time the action is made.
It is relatively easy to write an algorithm that gives good feedback when the character collects a

632 Chapter 7 Learning

power-up or kills an enemy. But the actual killing action may have been only 1 out of 100 actions
that led to the result, each one of which needed to be correctly placed in series.

Therefore, we would like to be able to give very patchy information: to be able to give feedback
only when something significant happens. The character should learn that all the actions leading
up to the event are also good things to do, even though no feedback was given while it was
doing them.

7.7.2 The Algorithm

Q-learning relies on having the problem represented in a particular way. With this representation
in place, it can store and update relevant information as it explores the possible actions it can take.
We’ll look at the representation first.

Q-Learning’s Representation of the World

Q-learning treats the game world as a state machine. At any point in time, the algorithm is in
some state. The state should encode all the relevant details about the character’s environment and
internal data.

So if the health of the character is significant to learning, and if the character finds itself in two
identical situations with two different health levels, then it will consider them to be different states.
Anything not included in the state cannot be learned. If we didn’t include the health value as part of
the state, then we couldn’t possibly learn to take health into consideration in the decision making.

In a game the states are made up of many factors: position, proximity of the enemy, health
level, and so on. Q-learning doesn’t need to understand the components of a state. As far as the
algorithm is concerned they can just be an integer value: the state number.

The game, on the other hand, needs to be able to translate the current state of the game into
a single state number for the learning algorithm to use. Fortunately, the algorithm never requires
the opposite: we don’t have to translate the state number back into game terms (as we did in the
pathfinding algorithm, for example).

Q-learning is known as a model-free algorithm because it doesn’t try to build a model of how
the world works. It simply treats everything as states. Algorithms that are not model free try to
reconstruct what is happening in the game from the states that it visits. Model-free algorithms,
such as Q-learning, tend to be significantly easier to implement.

For each state, the algorithm needs to understand the actions that are available to it. In many
games all actions are available at all times. For more complex environments, however, some actions
may only be available when the character is in a particular place (e.g., pulling a lever), when they
have a particular object (e.g., unlocking a door with a key), or when other actions have been
properly carried out before (e.g., walking through the unlocked door).

After the character carries out one action in the current state, the reinforcement function
should give it feedback. Feedback can be positive or negative and is often zero if there is no clear
indication as to how good the action was. Although there are no limits on the values that the
function can return, it is common to assume they will be in the range [−1, 1].

7.7 Reinforcement Learning 633

There is no requirement for the reinforcement value to be the same every time an action is
carried out in a particular state. There may be other contextual information not used to create
the algorithm’s state. As we saw previously, the algorithm cannot learn to take advantage of that
context if it isn’t part of its state, but it will tolerate its effects and learn about the overall success
of an action, rather than its success on just one attempt.

After carrying out an action, the character is likely to enter a new state. Carrying out the same
action in exactly the same state may not always lead to the same state of the game. Other characters
and the player are also influencing the state of the game.

For example, a character in an FPS is trying to find a health pack and avoid getting into a fight.
The character is ducking behind a pillar. On the other side of the room, an enemy character is
standing in the doorway looking around. So the current state of the character may correspond to
in-room1, hidden, enemy-near, near-death. It chose the “hide” action to continue ducking. The
enemy stays put, so the “hide” action leads back to the same state. So it chooses the same action
again. This time the enemy leaves, so the “hide” action now leads to another state, corresponding
to in-room1, hidden, no-enemy, near-death.

One of the powerful features of the Q-learning algorithm (and most other reinforcement
algorithms) is that it can cope with this kind of uncertainty.

These four elements—the start state, the action taken, the reinforcement value, and the result-
ing state—are called the experience tuple, often written as 〈s,a, r, s ′〉.

Doing Learning

Q-learning is named for the set of quality information (Q-values) it holds about each possible
state and action. The algorithm keeps a value for every state and action it has tried. The Q-value
represents how good it thinks that action is to take when in that state.

The experience tuple is split into two sections. The first two elements (the state and action)
are used to look up a Q-value in the store. The second two elements (the reinforcement value and
the new state) are used to update the Q-value based on how good the action was and how good
it will be in the next state.

The update is handled by the Q-learning rule:

Q(s,a) = (1 − α)Q(s,a) + α
(
r + γ max

(
Q(s ′,a′)

))
,

where α is the learning rate, and γ is the discount rate. Both are parameters of the algorithm. The
rule is sometimes written in a slightly different form, with the (1 − α) multiplied out.

How It Works

The Q-learning rule blends together two components using the learning rate parameter to control
the linear blend. The learning rate parameter, used to control the blend, is in the range [0,1].

The first component Q(s,a) is simply the current Q-value for the state and action. Keeping
part of the current value in this way means we never throw away information we have previously
discovered.

634 Chapter 7 Learning

The second component has two elements of its own. The r value is the new reinforcement
from the experience tuple. If the reinforcement rule was

Q(s,a) = (1 − α)Q(s,a) + αr,

then it would be blending the old Q-value with the new feedback on the action.
The second element,γ max(Q(s ′,a′)), looks at the new state from the experience tuple. It looks

at all possible actions that could be taken from that state and chooses the highest corresponding
Q-value. This helps bring the success (i.e., the Q-value) of a later action back to earlier actions: if
the next state is a good one, then this state should share some of its glory.

The discount parameter controls how much the Q-value of the current state and action
depends on the Q-value of the state it leads to. A very high discount will be a large attraction to
good states, and a very low discount will only give value to states that are near to success. Discount
rates should be in the range [0,1]. A value greater than 1 can lead to ever-growing Q-values, and
the learning algorithm will never converge on the best solution.

So, in summary, the Q-value is a blend between its current value and a new value, which
combines the reinforcement for the action and the quality of the state the action led to.

Exploration Strategy

So far we’ve covered the reinforcement function, the learning rule, and the internal structure of
the algorithm. We know how to update the learning from experience tuples and how to generate
those experience tuples from states and actions. Reinforcement learning systems also require an
exploration strategy: a policy for selecting which actions to take in any given state. It is often
simply called the policy.

The exploration strategy isn’t strictly part of the Q-learning algorithm. Although the strategy
outlined below is very commonly used in Q-learning, there are others with their own strengths
and weaknesses. In a game, a powerful alternative technique is to incorporate the actions of a
player, generating experience tuples based on their play. We’ll return to this idea later in the
section.

The basic Q-learning exploration strategy is partially random. Most of the time, the algorithm
will select the action with the highest Q-value from the current state. The remainder, the algorithm
will select a random action. The degree of randomness can be controlled by a parameter.

Convergence and Ending

If the problem always stays the same, and rewards are consistent (which they often aren’t if they
rely on random events in the game), then the Q-values will eventually converge. Further running
of the learning algorithm will not change any of the Q-values. At this point the algorithm has
learned the problem completely.

For very small toy problems this is achievable in a few thousand iterations, but in real problems
it can take a vast number of iterations. In a practical application of Q-learning, there won’t be

7.7 Reinforcement Learning 635

nearly enough time to reach convergence, so the Q-values will be used before they have settled
down. It is common to begin acting under the influence of the learned values before learning is
complete.

On the Website

To clarify how Q-learning works, it is worth looking at the algorithm in operation. The Simple

Program

Q-Learning program on the website lets you step through Q-learning,providing the reinforcement
values and allowing you to watch the Q-values change at each step.

There are only four states in this sample, and each has only two actions available to it. At each
iteration the algorithm will select an action and ask you to provide a reinforcement value and
a destination state to end in. Alternatively, you can allow the program to run on its own using
pre-determined (but partially random) feedback.

As you run the code, you will see that high Q-values are propagated back gradually, so whole
chains of actions receive increasing Q-values, leading to the larger goal.

7.7.3 Pseudo-Code

A general Q-learning system has the following structure:

1 # Holds the store for Q-values, we use this to make
2 # decisions based on the learning
3 store = new QValueStore()
4

5 # Updates the store by investigating the problem
6 def QLearning(problem, iterations, alpha, gamma, rho, nu):
7

8 # Get a starting state
9 state = problem.getRandomState()

10

11 # Repeat a number of times
12 for i in 0..iterations:
13

14 # Pick a new state every once in a while
15 if random() < nu: state = problem.getRandomState()
16

17 # Get the list of available actions
18 actions = problem.getAvailableActions(state)
19

20 # Should we use a random action this time?
21 if random() < rho:
22 action = oneOf(actions)

636 Chapter 7 Learning

23

24 # Otherwise pick the best action
25 else:
26 action = store.getBestAction(state)
27

28 # Carry out the action and retrieve the reward and
29 # new state
30 reward, newState = problem.takeAction(state, action)
31

32 # Get the current q from the store
33 Q = store.getQValue(state, action)
34

35 # Get the q of the best action from the new state
36 maxQ = store.getQValue(newState,
37 store.getBestAction(newState))
38

39 # Perform the q learning
40 Q = (1 - alpha) * Q + alpha * (reward + gamma * maxQ)
41

42 # Store the new Q-value
43 store.storeQValue(state, action, Q)
44

45 # And update the state
46 state = newState

We assume that the random function returns a floating point number between zero and one.
The oneOf function picks an item from a list at random.

7.7.4 Data Structures and Interfaces

The algorithm needs to understand the problem—what state it is in, what actions it can take—and
after taking an action it needs to access the appropriate experience tuple. The code above does
this through an interface of the following form:

1 class ReinforcementProblem:
2 # Choose a random starting state for the problem
3 def getRandomState()
4

5 # Gets the available actions for the given state
6 def getAvailableActions(state)
7

8 # Takes the given action and state, and returns

7.7 Reinforcement Learning 637

9 # a pair consisting of the reward and the new state.
10 def takeAction(state, action)

In addition, the Q-values are stored in a data structure that is indexed by both state and
action. This has the following form in our example:

1 class QValueStore:
2 def getQValue(state, action)
3 def getBestAction(state)
4 def storeQValue(state, action, value)

The getBestAction function returns the action with the highest Q-value for the given state.
The highest Q-value (needed in the learning rule) can be found by calling getQValue with the
result from getBestAction.

7.7.5 Implementation Notes

If the Q-learning system is designed to operate online, then the Q-learning function should be
rewritten so that it only performs one iteration at a time and keeps track of its current state and
Q-values in a data structure.

The store can be implemented as a hash table indexed by an action–state pair. Only action-
state pairs that have been stored with a value are contained in the data structure. All other indices
have an implicit value of zero. So getQValue will return zero if the given action–state pair is not
in the hash. This is a simple implementation that can be useful for doing brief bouts of learning.
It suffers from the problem that getBestAction will not always return the best action. If all the
visited actions from the given state have negative Q-values and not all actions have been visited,
then it will pick the highest negative value, rather than the zero value from one of the non-visited
actions in that state.

Q-learning is designed to run through all possible states and actions, probably several times
(we’ll come back to the practicality of this below). In this case, the hash table will be a waste of
time (literally). A better solution is an array indexed by the state. Each element in this array is an
array of Q-values, indexed by action. All the arrays are initialized to have zero Q-values. Q-values
can now be looked up immediately, as they are all stored.

7.7.6 Performance

The algorithm’s performance scales based on the number of states and actions, and the number
of iterations of the algorithm. It is preferable to run the algorithm so that it visits all of the states
and actions several times. In this case it is O(i) in time, where i is the number of iterations of
learning. It is O(as) in memory, where a is the number of actions, and s is the number of states
per action. We are assuming that arrays are used to store Q-values in this case.

638 Chapter 7 Learning

If O(i) is very much less than O(as), then it might be more efficient to use a hash table;
however, this has corresponding increases in the expected execution time.

7.7.7 Tailoring Parameters

The algorithm has four parameters with the variable names alpha, gamma, rho, and nu in the
pseudo-code above. The first two correspond to the α and γ parameters in the Q-learning rule.
Each has a different effect on the outcome of the algorithm and is worth looking at in detail.

Alpha: The Learning Rate

The learning rate controls how much influence the current feedback value has over the stored
Q-value. It is in the range [0,1].

A value of zero would give an algorithm that does not learn: the Q-values stored are fixed
and no new information can alter them. A value of one would give no credence to any previous
experience. Any time an experience tuple is generated that alone is used to update the Q-value.

From our experience and experimentation, we have found that a value of 0.3 is a sensible
initial guess, although tuning is needed. In general, a high degree of randomness in your state
transitions (i.e., if the reward or end state reached by taking an action is dramatically different
each time) requires a lower alpha value. On the other hand, the fewer iterations the algorithm will
be allowed to perform, the higher the alpha value will be.

Learning rate parameters in many machine learning algorithms benefit from being changed
over time. Initially, the learning rate parameter can be relatively high (0.7, say). Over time, the
value can be gradually reduced until it reaches a lower than normal value (0.1, for example). This
allows the learning to rapidly change Q-values when there is little information stored in them,
but protects hard-won learning later on.

Gamma: The Discount Rate

The discount rate controls how much an action’s Q-value depends on the Q-value at the state (or
states) it leads to. It is in the range [0,1].

A value of zero would rate every action only in terms of the reward it directly provides. The
algorithm would learn no long-term strategies involving a sequence of actions. A value of one
would rate the reward for the current action as equally important as the quality of the state it
leads to.

Higher values favor longer sequences of actions, but take correspondingly longer to learn.
Lower values stabilize faster, but usually support relatively short sequences. It is possible to select
the way rewards are provided to increase the sequence length (see the later section on reward
values), but again this makes learning take longer.

A value of 0.75 is a good initial value to try, again based on our experience and experimentation.
With this value, an action with a reward of 1 will contribute 0.05 to the Q-value of an action ten
steps earlier in the sequence.

7.7 Reinforcement Learning 639

Rho: Randomness for Exploration

This parameter controls how often the algorithm will take a random action, rather than the best
action it knows so far. It is in the range [0,1].

A value of zero would give a pure exploitation strategy: the algorithm would exploit its current
learning, reinforcing what it already knows. A value of one would give a pure exploration strategy:
the algorithm would always be trying new things, never benefiting from its existing knowledge.

This is a classic trade-off in learning algorithms: to what extent should we try to learn new
things (which may be much worse than the things we know are good), and to what extent should
we exploit the knowledge we have gained. The biggest factor in selecting a value is whether the
learning is performed online or offline.

If learning is being performed online, then the player will want to see some kind of intelligent
behavior. The learning algorithm should be exploiting its knowledge. If a value of one was used,
then the algorithm would never use its learned knowledge and would always appear to be making
decisions at random (it is doing so, in fact). Online learning demands a low value (0.1 or less
should be fine).

For offline learning, however, we simply want to learn as much as possible. Although a higher
value is preferred, there is still a trade-off to be made.

Often, if one state and action are excellent (have a high Q-value), then other similar states
and actions will also be good. If we have learned a high Q-value for killing an enemy character,
for example, we will probably have high Q-values for bringing the character close to death. So
heading toward known high Q-values is often a good strategy for finding other action–state pairs
with good Q-values.

If you run the Simple Q Learning program on the website, you will see that it takes several

Program

iterations for a high Q-value to propagate back along the sequence of actions. To distribute
Q-values so that there is a sequence of actions to follow, there needs to be several iterations of the
algorithm in the same region.

Following actions known to be good helps both of these issues. A good starting point for
this parameter, in offline learning, is 0.2. This value is once again our favorite initial guess from
previous experience.

Nu: The Length of Walk

The length of walk controls the number of iterations that will be carried out in a sequence of
connected actions. It is in the range [0,1].

A value of zero would mean the algorithm always uses the state it reached in the previous
iteration as the starting state for the next iteration. This has the benefit of the algorithm seeing
through sequences of actions that might eventually lead to success. It has the disadvantage of
allowing the algorithm to get caught in a relatively small number of states from which there is no
escape or an escape only by a sequence of actions with low Q-values (which are therefore unlikely
to be selected).

A value of one would mean that every iteration starts from a random state. If all states and
all actions are equally likely, then this is the optimal strategy: it covers the widest possible range

640 Chapter 7 Learning

of states and actions in the smallest possible time. In reality, however, some states and actions
are far more prevalent. Some states act as attractors, to which a large number of different action
sequences lead. These states should be explored in preference to others, and allowing the algorithm
to wander along sequences of actions accomplishes this.

Many exploration policies used in reinforcement learning do not have this parameter and
assume that it has the value zero. They always wander in a connected sequence of actions.
In online learning, the state used by the algorithm is directly controlled by the state of the
game, so it is impossible to move to a new random state. In this case a value of zero is
enforced.

In our experimentation with reinforcement learning, especially in applications where only
a limited number of iterations are possible, values of around 0.1 are suitable. This produces
sequences of about nine actions in a row, on average.

Choosing Rewards

Reinforcement learning algorithms are very sensitive to the reward values used to guide them. It
is important to take into account how the reward values will be used when you use the algorithm.

Typically, rewards are provided for two reasons: for reaching the goal and for performing some
other beneficial action. Similarly, negative reinforcement values are given for “losing” the game
(e.g., dying) or for taking some undesired action. This may seem a contrived distinction. After
all, reaching the goal is just a (very) beneficial action, and a character should find its own death
undesirable.

Much of the literature on reinforcement learning assumes that the problem has a solution and
that reaching the goal state is a well-defined action. In games (and several other applications) this
isn’t the case. There may be many different solutions, of different qualities, and there may be no
final solutions at all but instead hundreds or thousands of different actions that are beneficial or
problematic.

In a reinforcement learning algorithm with a single solution, we can give a large reward (let’s
say 1) to the action that leads to the solution and no reward to any other action. After enough
iterations, there will be a trail of Q-values that leads to the solution. Figure 7.16 shows Q-values
labeled on a small problem (represented as a state machine diagram). The Q-learning algorithm
has been run a huge number of times, so the Q-values have converged and will not change with
additional execution.

Starting at node A, we can simply follow the trail of increasing Q-values to get to the solution.
In the language of search (described earlier), we are hill climbing. Far from the solution the
Q-values are quite small, but this is not an issue because the largest of these values still points in
the right direction.

If we add additional rewards, the situation may change. Figure 7.17 shows the results of
another learning exercise.

If we start at state A, we will get to state B, whereupon we can get a small reward from the
action that leads to C. At C, however, we are far enough from the solution that the best action to
take is to go back to B and get the small reward again. Hill climbing in this situation leads us to a
sub-optimal strategy: constantly taking the small reward rather than heading for the solution. The

7.7 Reinforcement Learning 641

A E

G

F

B

D

C

0.56 0.56

0.56

0.42

0.42

0.32

0.42

0.42

0.32

0.75
0.75

Reward = 1
1.00

Figure 7.16 A learned state machine

A E

G

F

B

D

C

0.60 0.56

0.60

0.45

Reward = 0.35
0.80

0.34

0.45

0.45

0.34

0.75

0.75

Reward = 1
1.00

Figure 7.17 A learned machine with additional rewards

problem is said to be unimodal if there is only one hill and multi-modal if there are multiple hills.
Hill climbing algorithms don’t do well on multi-modal problems, and Q-learning is no exception.

The situation is made worse with multiple solutions or lots of reward points. Although adding
rewards can speed up learning (you can guide the learning toward the solution by rewarding it
along the way), it often causes learning to fail completely. There is a fine balance to achieve. Using
very small values for non-solution rewards helps, but cannot completely eliminate the problem.

As a rule of thumb, try to simplify the learning task so that there is only one solution and so
you don’t give any non-solution rewards. Add in other solutions and small rewards only if the
learning takes too long or gives poor results.

7.7.8 Weaknesses and Realistic Applications

Reinforcement learning has not been widely used in game development. It is one of a new batch
of promising techniques that is receiving significant interest. Several companies have invested

642 Chapter 7 Learning

in researching reinforcement learning, and at least one major developer has built a production
system based on the technology.

Like many of these new technologies, the practicality doesn’t match some of the hype. Game
development websites and articles written by those outside the industry can appear effusive. It is
worth taking a dispassionate look at their real applicability.

Limits of the Algorithm

Q-learning requires the game to be represented as a set of states linked by actions. The algorithm
is very sensitive in its memory requirements to the number of states and actions. The state of a
game is typically very complex. If the position of characters is represented as a three-dimensional
(3D) vector, then there is an effectively infinite number of states. Clearly, we need to group sets of
states together to send to the Q-learning algorithm.

Just like for pathfinding, we can divide up areas of the game level. We can also quantize health
values, ammo levels, and other bits of state so that they can be represented with a handful of
different discrete values. Similarly, we can represent flexible actions (such as movement in two
dimensions) with discrete approximations.

The game state consists of a combination of all these elements, however, producing a huge
problem. If there are 100 locations in the game and 20 characters, each with 4 possible health
levels, 5 possible weapons, and 4 possible ammo levels, then there will be (100 ∗ 4 ∗ 4 ∗ 5)10 states,
roughly 1050. Clearly, no algorithm that is O(as) in memory will be viable.

Even if we dramatically slash the number of states so that they can be fit in memory, we have
an additional problem. The algorithm needs to run long enough so that it tries out each action at
each state several times. In fact, the quality of the algorithm can only be proved in convergence:
it will eventually end up learning the right thing. But eventually could entail many hundreds of
visits to each state.

In reality, we can often get by with tweaking the learning rate parameter, using additional
rewards to guide learning and applying dramatically fewer iterations.

After a bit of experimentation, we estimate that the technique is practically limited to around
100,000 states, with 10 actions per state. We can run around 5,000,000 iterations of the algorithm
to get workable (but not great) results, and this can be done in reasonable time scales (a few
minutes) and with reasonable memory (about 10Mb). Obviously, solving a problem once offline
with a dedicated or mainframe machine could increase the size somewhat, but it will still only
buy us an extra order of magnitude or so.

Online learning should probably be limited to problems with less than 100 states, given that
the rate that states can be explored is so limited.

Applications

Reinforcement learning is most suitable for offline learning. It works well for problems with lots
of different interacting components, such as optimizing the behavior of a group of characters or
finding sequences of order-dependent actions. Its main strength is its ability to seamlessly handle

7.7 Reinforcement Learning 643

uncertainty. This allows us to simplify the states exposed to it; we don’t have to tell the algorithm
everything.

It is not suitable for problems where there is an easy way to see how close a solution is (we can
use some kind of planning here), where there are too many states, or where the strategies that are
successful change over time (i.e., it requires a good degree of stability to work).

It can be applied to choosing tactics based on knowledge of enemy actions (see below), for
bootstrapping a whole character AI for a simple character (we simply give it a goal and a range
of actions), for limited control over character or vehicle movement, for learning how to interact
socially in multi-player games, for determining how and when to apply one specific behavior
(such as learning to jump accurately or learning to fire a weapon), and for many other real-time
applications.

It has proven particularly strong in board game AI, evaluating the benefit of a board position.
By extension, it has a strong role to play in strategy setting in turn-based games and other slow-
moving strategic titles.

It can be used to learn the way a player plays and to mimic the player’s style, making it one
choice for implementing a dynamic demo mode.

Case Study: Choosing Tactical Defense Locations

Suppose we have a level in which a sentry team of three characters is defending the entrance to a
military facility. There are a range of defensive locations that the team can occupy (15 in all). Each
character can move to any empty location at will, although we will try to avoid everyone moving
at the same time. We would like to determine the best strategy for character movement to avoid
the player getting to the entrance safely.

The state of the problem can be represented by the defensive location occupied by each
character (or no location if it is in motion), whether each character is still alive, and a flag to
say if any of the characters can see the player. We therefore have 17 possible positional states per
character (15 + in motion + dead) and 2 sighting states (player is either visible or not). Thus,
there are 34 states per player, for a total of 40,000 states overall.

At each state, if no character is in motion, then one may change location. In this case there are
56 possible actions, and there are no possible actions when any character is in motion.

A reward function is provided if the player dies (characters are assumed to shoot on sight).
A negative reward is given if any character is killed or if the player makes it to the entrance. Notice
we aren’t representing where the player is when seen. Although it matters a great deal where the
player is, the negative reward when the player makes it through means the strategy should learn
that a sighting close to the entrance is more risky.

The reinforcement learning algorithm can be run on this problem. The game models a simple
player behavior (random routes to the entrance, for example) and creates states for the algorithm
based on the current game situation.

With no graphics to render, a single run of the scenario can be performed quickly.
We use the 0.3 alpha, 0.7 gamma, and 0.3 rho values suggested previously. Because the state is

linked to an active game state, nu will be 0 (we can’t restart from a random state, and we’ll always
restart from the same state and only when the player is dead or has reached the entrance).

644 Chapter 7 Learning

On the Website

The Full Q-Learning program on the website shows this scenario in operation. You can run

Program

anynumber of fast iterations without display or select to display an iteration. Run enough iterations
(20,000 or so should do) and you should see noticeably competent tactics.

The guard characters move to appropriate defensive locations. Initially, they take up positions
farther from the entrance but fall back when the player is sighted.

7.7.9 Other Ideas in Reinforcement Learning

Reinforcement learning is a big topic, and one that we couldn’t possibly exhaust here. Because
there has been such minor use of reinforcement learning in games, it is difficult to say what the
most significant variations will be.

Q-learning is a well-established standard in reinforcement learning and has been applied to
a huge range of problems. The remainder of this section provides a quick overview of other
algorithms and applications.

TD

Q-learning is one of a family of reinforcement learning techniques called Temporal Difference
algorithms (TD for short). TD algorithms have learning rules that update their value based on
the reinforcement signal and on previous experience at the same state.

The basic TD algorithm stores values on a per-state basis, rather than using action–state
pairs. They can therefore be significantly lighter on memory use, if there are many actions per
state.

Because we are not storing actions as well as states, the algorithm is more reliant on actions
leading to a definite next state. Q-learning can handle a much greater degree of randomness in
the transition between states than vanilla TD.

Aside from these features, TD is very similar to Q-learning. It has a very similar learning rule,
has both alpha and beta parameters, and responds similarly to their adjustment.

Off-Policy and On-Policy Algorithms

Q-learning is an off-policy algorithm. The policy for selecting the action to take isn’t a core part
of the algorithm. Alternative strategies can be used, and as long as they eventually visit all possible
states the algorithm is still valid.

On-policy algorithms have their exploration strategy as part of their learning. If a different
policy is used, the algorithm might not reach a reasonable solution. Original versions of TD had
this property. Their policy (choose the action that is most likely to head to a state with a high
value) is intrinsically linked to their operation.

7.7 Reinforcement Learning 645

TD in Board Game AI

A simplified version of TD was used in Samuel’s Checkers-playing program, one of the most
famous programs in AI history. Although it omitted some of the later advances in reinforcement
learning that make up a regular TD algorithm, it had the same approach.

Another modified version of the TD was used in the famous Backgammon-playing pro-
gram devised by Gerry Tesauro. It succeeded in reaching international-level play and contributed
insights to Backgammon theory used by expert players. Tesauro combined the reinforcement
learning algorithm with a neural network.

Neural Networks for Storage

As we have seen, memory is a significant limiting factor for the size of reinforcement learning
problems that can be tackled. It is possible to use a neural network to act as a storage medium for
Q-values (or state values, called V , in the regular TD algorithm).

Neural networks (as we will see in the next section) also have the ability to generalize and find
patterns in data. Previously, we mentioned that reinforcement learning cannot generalize from
its experience: if it works out that shooting a guard in one situation is a good thing, it will not
immediately assume that shooting a guard in another situation is good. Using neural networks
can allow the reinforcement learning algorithm to perform this kind of generalization. If the
neural network is told that shooting an enemy in several situations has a high Q-value, it is likely
to generalize and assume that shooting an enemy in other situations is also a good thing to do.

On the downside, neural networks are unlikely to return the same Q-value that was given to
them. The Q-value for a action–state pair will fluctuate over the course of learning, even when
it is not being updated (particularly if it is not, in fact). The Q-learning algorithm is therefore
not guaranteed to come to a sensible result. The neural network tends to make the problem
more multi-modal. As we saw in the previous section, multi-modal problems tend to produce
sub-optimal character behavior.

So far we are not aware of any developers who have used this combination successfully,
although its success in the TD Backgammon program suggests that its complexities can be tamed.

Actor–Critic

The actor–critic algorithm keeps two separate data structures: one of values used in the learning
rule (Q-values, or V -values, depending on the flavor of learning) and another set that is used in
the policy.

The eponymous actor is the exploration strategy; the policy that controls which actions are
selected. This policy receives its own set of feedback from the critic, which is the usual learning
algorithm. So as rewards are given to the algorithm, they are used to guide learning in the critic,
which then passes on a signal (called a critique) to the actor, which uses it to guide a simpler form
of learning.

646 Chapter 7 Learning

The actor can be implemented in more than one way. There are strong candidates for policies
that support criticism. The critic is usually implemented using the basic TD algorithm, although
Q-learning is also suitable.

Actor–critic methods have been suggested for use in games by several developers. Their sep-
aration of learning and action theoretically provides greater control over decision making. In
practice, we feel that the benefit is marginal at best. But we wait to be proved wrong by a developer
with a particularly successful implementation.

7.8 Artificial Neural Networks

Artificial neural networks (ANNs, or just neural networks for short) were at the vanguard of the
new “biologically inspired” computing techniques of the 1970s. They are a widely used technique
suitable for a good range of applications.

Like many biologically inspired techniques, collectively called Natural Computing (NC), they
have been the subject of a great deal of unreasonable hype. In games, they attract a vocal following
of pundits, particularly on websites and forums, who see them as a kind of panacea for the
problems in AI.

Developers who have experimented with neural networks for large-scale behavior control have
been left with no doubt about the approach’s weaknesses. The combined hype and disappointment
have clouded the issue. AI-savvy hobbyists can’t understand why the industry isn’t using them
more widely, and developers often see them as being useless and a dead end.

Personally, we’ve never used a neural network in a game. We have built neural network
prototypes for a couple of AI projects, but none made it through to playable code. We can see,
however, that they are a useful technique in the developer’s armory. In particular, we would
strongly consider using them as a classification technique, which is their primary strength.

In this section we can’t possibly hope to cover more than the basics of neural networks. It is a
huge subject, full of different kinds of network and learning algorithms specialized for very small
sets of tasks. Very little neural network theory is applicable to games, however. So we’ll stick to
the basic technique with the widest usefulness. The references in Appendix A.1 give a good list of
introductory texts for neural networks.

Neural Network Zoology

There is a bewildering array of different neural networks. They have evolved for specialized use,
giving a branching family tree of intimidating depth. Practically everything we can think of to say
about neural networks has exceptions. There are few things you can say about a neural network
that is true of all of them.

So we’re going to steer a sensible course. We’re going to focus on a particular neural net-
work in more detail: the multi-layer perceptron. We’ll describe one particular learning rule: the
backpropagation algorithm (backprop for short). We’ll describe other techniques in passing.

It is an open question as to whether multi-player perceptrons are the most suited to game appli-
cations. They are the most common form of ANN, however. Until developers find an application

7.8 Artificial Neural Networks 647

that is obviously a “killer app” for neural networks, we think it is probably best to start with the
most widespread technique.

7.8.1 Overview

Neural networks consist of a large number of relatively simple nodes, each running the same
algorithm. These nodes are the artificial neurons, originally intended to simulate the operation of
a single brain cell. Each neuron communicates with a subset of the other artificial neurons in the
network. They are connected in patterns characteristic of the neural network type. This pattern
is the neural network’s architecture or topology.

Architecture

Figure 7.18 shows a typical architecture for a multi-layer perceptron (MLP) network. Perceptrons
(the specific type of artificial neuron used) are arranged in layers, where each perceptron is
connected to all those in the layers immediately in front of and behind it.

The architecture on the right shows a different type of neural network: a Hopfield network.
Here the neurons are arranged in a grid, and connections are made between neighboring points
in the grid.

Feedforward and Recurrence

In many types of neural networks, some connections are specifically inputs and the others are
outputs. The multi-layer perceptron takes inputs from all the nodes in the preceding layer and
sends its single output value to all the nodes in the next layer. It is known as a feedforward network
for this reason. The leftmost layer (called the input layer) is provided input by the programmer,

Figure 7.18 ANN architectures (MLP and Hopfield)

648 Chapter 7 Learning

and the output from the rightmost layer (called the output layer) is the output finally used to do
something useful.

Feedforward networks can have loops: connections that lead from a later layer back to earlier
layers. This architecture is known as a recurrent network. Recurrent networks can have very
complex and unstable behavior and are typically much more difficult to control.

Other neural networks have no specific input and output. Each connection is both input and
output at the same time.

Neuron Algorithm

As well as architecture, neural networks specify an algorithm. At any time the neuron has some
state; you can think of it as an output value from the neuron (it is normally represented as a
floating point number).

The algorithm controls how a neuron should generate its state based on its inputs. In a multi-
layer perceptron network, the state is passed as an output to the next layer. In networks without
specific inputs and outputs, the algorithm generates a state based on the states of connected
neurons.

The algorithm is run by each neuron in parallel. For game machines that don’t have parallel
capabilities (at least not of the right kind), the parallelism is simulated by getting each neuron to
carry out the algorithm in turn. It is possible, but not common, to make different neurons have
completely different algorithms.

We can treat each neuron as an individual entity running its algorithm. The perceptron
algorithm is shown figuratively in Figure 7.19.

Each input has an associated weight. The input values (we’re assuming that they’re zero or
one here) are multiplied by the corresponding weight. An additional bias weight is added (it is
equivalent to another input whose input value is always one). The final sum is then passed through
a threshold function. If the sum is less than zero, then the neuron will be off (have a value of zero);
otherwise, it will be on (have a value of one).

One or zero
input from
other
perceptrons

One or zero
output

Threshold result

1

Sum inputs

w1

w0

w2

w3

w4

Figure 7.19 Perceptron algorithm

7.8 Artificial Neural Networks 649

The threshold function turns an input weight sum into an output value. We’ve used a hard
step function (i.e., it jumps right from output = 0 to output = 1), but there are a large number of
different functions in use. In order to make learning possible, the multi-layer perceptron algorithm
uses slightly smoother functions, where values close to the step get mapped to intermediate output
values. We’ll return to this in the next section.

Learning Rule

So far we haven’t talked about learning. Neural networks differ in the way they implement learning.
For some networks learning is so closely entwined with the neuron algorithm that they can’t be
separated. In most cases, however, the two are quite separate.

Multi-layer perceptrons can operate in two modes. The normal perceptron algorithm,
described in the previous section, is used to put the network to use. The network is provided
with input in its input layer; each of the neurons does its stuff, and then the output is read from
the output layer. This is typically a very fast process and involves no learning. The same input
will always give the same output (this isn’t the case for recurrent networks, but we’ll ignore these
for now).

To learn, the multi-layer perceptron network is put in a specific learning mode. Here another
algorithm applies: the learning rule. Although the learning rule uses the original perceptron algo-
rithm, it is more complex. The most common algorithm used in multi-layer perceptron networks
is backpropagation. Where the network normally feeds forward, with each layer generating its out-
put from the previous layer, backpropagation works in the opposite direction, working backward
from the output.

At the end of this section, we’ll look at Hebbian learning, a completely different learning rule
that may be useful in games. For now, we’ll stick with backpropagation and work through the
multi-layer perceptron algorithm.

7.8.2 The Problem

We’d like to group a set of input values (such as distances to enemies, health values for friendly
units, or ammo levels) together so that we can act differently for each group. For example, we
might have a group of “safe” situations, where health and ammo are high and enemies are a long
way off. Our AI can go looking for power-ups or lay a trap in this situation. Another group might
represent life-threatening situations where ammo is spent, health is perilously low, and enemies
are bearing down. This might be a good time to run away in blind panic. So far, this is simple (and
a decision tree would suffice). But say we also wanted a “fight-valiantly” group. If the character
was healthy, with ammo and enemies nearby, it would naturally do its stuff. But it might do the
same if it was on the verge of death, but had ammo, and it might do the same even in improbable
odds to altruistically allow a squad member to escape. It may be a last stand, but the results are
the same.

As these situations become more complex, and the interactions get more involved, it can
become difficult to create the rules for a decision tree or fuzzy state machine.

650 Chapter 7 Learning

We would like a method that learns from example (just like decision tree learning), allowing
us to give a few tens of examples. The algorithm should generalize from examples to cover all
eventualities. It should also allow us to add new examples during the game so that we can learn
from mistakes.

What about Decision Tree Learning?

We could use decision tree learning to solve this problem: the output values correspond to the
leaves of the decision tree, and the input values are used in the decision tree tests. If we used an
incremental algorithm (such as ID4), we would also be able to learn from our mistakes during the
game. For classification problems like this, decision tree learning and neural networks are viable
alternatives.

Decision trees are accurate. They give a tree that correctly classifies from the given examples.
To do this, they make hard and fast decisions. When they see a situation that wasn’t represented
in their examples, they will make a decision based on it. Because their decision making is so
hard and fast, they aren’t so good at generalizing by extrapolating into gray areas beyond the
examples. Neural networks are not so accurate. They may even give the wrong responses for the
examples provided. They are better, however, at extrapolating (sometimes sensibly) into those gray
areas.

This trade-off between accuracy and generalization is the basis of the decision you must make
when considering which technique to use. In our work, we’ve come down on the side of accuracy,
but every application has its own peculiarities.

7.8.3 The Algorithm

As an example for the algorithm, we will use a variation of the tactical situation we looked at
previously. An AI-controlled character makes use of 19 input values: the distance to the near-
est 5 enemies, the distance to the nearest 4 friends along with their health and ammo values,
and the health and ammo of the AI. We will assume that there are five different output behav-
iors: run-away, fight-valiantly, heal-friend, hunt-enemy, and find-power-up. We assume that we
have an initial set of 20 to 100 scenarios, each one a set of inputs with the output we’d like
to see.

We use a network with three layers: input layer and output layer, as previously discussed,
plus an intermediate (hidden) layer. The input layer has the same number of nodes as there
are values in our problem: 19. The output layer has the same number of nodes as there are
possible outputs: 5. Hidden layers are typically at least as large as the input layer and often
much larger. The structure is shown in Figure 7.20, with some of the nodes omitted for
clarity.

Each perceptron has a set of weights for each of the neurons in the previous layer. It also
holds a bias weight. Input layer neurons do not have any weights. Their value is simply set by the
corresponding values in the game.

7.8 Artificial Neural Networks 651

Input
layer

Hidden layer

Output layer

Many more
hidden nodes

Distance to enemies Distance to friends Health of friends Ammo of friends

O
ur

 h
ea

lth
O

ur
 a

m
m

o

R
un

-a
w

ay

F
ig

ht
-v

al
ia

nt
ly

H
ea

l-f
rie

nd
H

un
t-

en
em

y
F

in
d-

po
w

er
-u

p

Figure 7.20 Multi-layer perceptron architecture

We split our scenarios into two groups: a training set (used to do the learning) and a testing
set (used to check on how learning is going). Ten training and ten testing examples would be an
absolute minimum for this problem. Fifty of each would be much better.

Initial Setup and Framework

We start by initializing all the weights in the network to small random values.
We perform a number of iterations of the learning algorithm (typically hundreds or thou-

sands). For each iteration we select an example scenario from the training set. Usually, the examples
are chosen in turn, looping back to the first example after all of them have been used.

At each iteration we perform two steps. Feedforward takes the inputs and guesses an output,
and backpropagation modifies the network based on the real output and the guess.

After the iterations are complete, and the network has learned, we can test if the learning
was successful. We do this by running the feedforward process on the test set of examples. If the
guessed output matches the output we were looking for, then it is a good sign that the neural
network has learned properly. If it hasn’t, then we can run some more algorithms.

652 Chapter 7 Learning

If the network continually gets the test set wrong, then it is an indication that there aren’t
enough examples in the training set or that they aren’t similar enough to the test examples. We
should give it more varied training examples.

Feedforward

First, we need to generate an output from the input values in the normal feedforward manner. We
set the states of the input layer neurons directly. Then for each neuron in the hidden layer, we get
it to perform its neuron algorithm: summing the weighted inputs, applying a threshold function,
and generating its output. We can then do the same thing for each of the output layer neurons.

We need to use a slightly different threshold function from that described in the introduction.
It is called the sigmoid function, and it is shown in Figure 7.21. For input values far from zero, it
acts just like the step function. For input values near to zero, it is smoother, giving us intermediate
values. We’ll use this property to perform learning. The equation of the function is

f (x) = 1

1 + e−hx
,

where h is a tweakable parameter that controls the shape of the function. The larger the value
of h, the nearer to the step function this becomes. The best value of h depends on the number
of neurons per layer and the size of the weights in the network. Both factors tend to lower the h
value. Many texts recommend you try a value of one, although we tend to find that higher values
(even as high as 10) are okay for the small networks used in games.

Backpropagation

To learn, we compare the state of the output nodes with the current pattern. The desired output is
zero for all output nodes, except the one corresponding to our desired action. We work backward,
a layer at a time, from the output layer, updating all the weights.

Output

0

1

Input

Figure 7.21 The sigmoid threshold function

7.8 Artificial Neural Networks 653

Let the set of neuron states be oj , where j is the neuron, and wij is the weight between neurons
i and j . The equation for the updated weight value is

w′
ij = wij + ηδj oi,

where η is a gain term, and δj is an error term (both of which we’ll discuss below).
The equation says that we calculate the error in the current output for a neuron, and we

update its weights based on which neurons affected it. So if a neuron comes up with a bad result
(i.e., we have a negative error term), we go back and look at all its inputs. For those inputs that
contributed to the bad output, we tone down the weights. On the other hand, if the result was very
good (positive error term), we go back and strengthen weights from neurons that helped it. If the
error term is somewhere in the middle (around zero), we make very little change to the weight.

The Error Term

The error term, δj , is calculated slightly differently depending on whether we are considering an
output node (for which our pattern gives the output we want) and hidden nodes (where we have
to deduce the error).

For the output nodes, the error term is given by:

δj = oj(1 − oj)(tj − oj),

where tj is the target output for node j . For hidden nodes, the error term relates the errors at the
next layer up:

δj = oj(1 − oj)
∑

k

wjkδk,

where k is the set of nodes in the next layer up. This formula says that the error for a neuron is
equal to the total error it contributes to the next layer. The error contributed to another node is
wkjδk , the weight of that node multiplied by the error of that node.

For example, let’s say that neuron A is on. It contributes strongly to neuron B, which is also
on. We find that neuron B has a high error, so neuron A has to take responsibility for influencing
B to make that error. The weight between A and B is therefore weakened.

The Gain

The gain term,η, controls how fast learning progresses. If it is close to zero, then the new weight will
be very similar to the old weight. If weights are changing slowly, then learning is correspondingly
slow. If η is a larger value (it is rarely greater than one, although it could be), then weights are
changed at a greater rate.

Low-gain terms produce relatively stable learning. In the long run they produce better results.
The network won’t be so twitchy when learning and won’t make major adjustments in reaction to
a single example. Over many iterations the network will adjust to errors it sees many times. Single
error values have only a minor effect.

654 Chapter 7 Learning

A high-gain term gives you faster learning and can be perfectly useable. It has the risk of
continually making large changes to weights based on a single input–output example.

An initial gain of 0.3 serves as a starting point.
Another good compromise is to use a high gain initially (0.7, say) to get weights into the right

vicinity. Gradually, the gain is reduced (down to 0.1, for example) to provide fine tuning and
stability.

7.8.4 Pseudo-Code

We can implement a backpropagation algorithm for multi-layer perceptrons in the following
form:

1 class MLPNetwork:
2

3 # Holds input perceptrons
4 inputPerceptrons
5

6 # Holds hidden layer perceptrons
7 hiddenPerceptrons
8

9 # Holds output layer perceptrons
10 outputPerceptrons
11

12 # Learns to generate the given output for the
13 # given input
14 def learnPattern(input, output):
15

16 # Generate the unlearned output
17 generateOutput(input)
18

19 # Perform the backpropagation
20 backprop(output)
21

22 # Generates outputs for the given set of inputs
23 def generateOutput(input):
24

25 # Go through each input perceptron and set its state.
26 for index in 0..inputPerceptrons.length():
27 inputPerceptrons[index].setState(input[index])
28

29 # Go through each hidden perceptron and feedforward
30 for perceptron in hiddenPerceptrons:
31 perceptron.feedforward()
32

7.8 Artificial Neural Networks 655

33 # And do the same for output perceptrons
34 for perceptron in outputPerceptrons:
35 perceptron.feedforward()
36

37 # Runs the backpropagation learning algorithm. We
38 # assume that the inputs have already been presented
39 # and the feedforward step is complete.
40 def backprop(output):
41

42 # Go through each output perceptron
43 for index in 0..outputPerceptrons.length():
44

45 # Find its generated state
46 perceptron = outputPerceptrons[index]
47 state = perceptron.getState()
48

49 # Calculate its error term
50 error = state * (1-state) * (output[index]-state)
51

52 # Get the perceptron to adjust its weights
53 perceptron.adjustWeights(error)
54

55 # Go through each hidden perceptron
56 for index in 0..hiddenPerceptrons.length():
57

58 # Find its generated state
59 perceptron = outputPerceptrons[index]
60 state = perceptron.getState()
61

62 # Calculate its error term
63 sum = 0
64 for output in outputs:
65 sum += output.getIncomingWeight(perceptron) *
66 output.getError()
67 error = state * (1-state) * sum
68

69 # Get the perceptron to adjust its weights
70 perceptron.adjustWeights(error)

7.8.5 Data Structures and Interfaces

The code above wraps the operation of a single neuron into a Perceptron class and gets the
perceptron to update its own data. The class can be implemented in the following way:

656 Chapter 7 Learning

1 class Perceptron:
2

3 # Each input into the perceptron requires two bits of
4 # data, held in this structure
5 struct Input:
6

7 # The perceptron that the input arrived from
8 inputPerceptron
9

10 # The input weight, initialized to a small random
11 # value
12 weight
13

14 # Holds a list of inputs for the perceptron
15 inputs
16

17 # Holds the current output state of the perceptron
18 state
19

20 # Holds the current error in the perceptron’s output
21 error
22

23 # Performs the feedforward algorithm
24 def feedforward():
25

26 # Go through each input and sum its contribution
27 sum = 0
28 for input in inputs:
29 sum += input.inputPerceptron.getState() *
30 input.weight
31

32 # Apply the thresholding function
33 self.state = threshold(sum)
34

35 # Performs the update in the backpropagation algorithm
36 def adjustWeights(currentError):
37

38 # Go through each input
39 for input in inputs:
40

41 # Find the change in weight required
42 deltaWeight = gain * currentError *
43 input.inputPerceptron.getState()

7.8 Artificial Neural Networks 657

44

45 # Apply it
46 input.weight += deltaWeight
47

48 # Store the error, perceptrons in preceding layers
49 # will need it
50 error = currentError
51

52 # Finds the weight of the input that arrived from the
53 # given perceptron. This is used in hidden layers to
54 # calculate the outgoing error contribution.
55 def getIncomingWeight(perceptron):
56

57 # Find the first matching perceptron in the inputs
58 for input in inputs:
59 if input.inputPerceptron == perceptron:
60 return input.weight
61

62 # Otherwise we have no weight
63 return 0
64

65 # Gets and sets the current state and gets the error
66 def getState(): return state
67 def setState(newState): state = newState
68 def getError(): return error

In this code we’ve assumed the existence of a threshold() function that can perform the
thresholding. This can be a simple sigmoid function, implemented as:

1 def threshold(input):
2 return 1.0 / (1.0 + pow(e, -width, x))

where width is the degree to which the threshold is sharp, as discussed previously. To support
other kinds of thresholding (such as the radial basis function described later), we can replace this
with a different formula.

The code also makes reference to a gain variable, which is the global gain term for the
network.

7.8.6 Implementation Caveats

In a production system, it would be inadvisable to implement getIncomingWeight as a sequential
search through each input. Most times connection weights are arranged in a data array. Neurons

658 Chapter 7 Learning

are numbered, and weights can be directly accessed from the array by index. This is the approach

Library

used on the website. However, the direct array accessing makes the overall flow of the algorithm
more complex. The pseudo-code illustrates what is happening at each stage. The pseudo-code
also doesn’t assume any particular architecture. Each perceptron makes no requirements of which
perceptrons form its inputs.

Beyond optimizing the data structures, neural networks are intended to be parallel. We can
make huge time savings by changing our implementation style. By representing the neuron states
and weights in separate arrays, we can write both the feedforward and backpropagation steps using
single instruction multiple data (SIMD) operations. Not only are we working on four neurons at
a time, but we are also making sure that the relevant data are stored in a cache. In experiments,
we get almost an order of magnitude speed up on larger networks.

On the Website

The code on the website provides a generic multi-layer perceptron implementation suitable for

Program

experimenting with. There are a handful of optimizations, such as the use of SIMD, that we would
use in production code but which reduce the flexibility of the implementation for general use.

The Neural Network program on the website allows you to see learning in progress for a small
network. You can add new training examples and give it test input.

7.8.7 Performance

The algorithm is O(nw) in memory, where n is the number of perceptrons, and w is the
number of inputs per perceptron. In time, the performance is also O(nw) for both feedforward
(generateOutputs()) and backpropagation (backprop()). We have ignored the use of a search in
the getIncomingWeights method of the perceptron class, as given in the pseudo-code. As we saw
in the implementation caveats, this chunk of the code will normally be optimized out.

7.8.8 Other Approaches

We could fill a sizeable book with neural network theory, but most of it would be of only marginal
use to games. By way of a round up and pointers to other fields, we think it is worth talking about
three other techniques: radial basis functions, weakly supervised learning, and Hebbian learning.
The first two we’ve used in practice, and the third is a beloved technique of a former colleague
of ours.

Radial Basis Function

The threshold function we used earlier is called the sigmoid basis function. A basis function is
simply a function used as the basis of an artificial neuron’s behavior.

7.8 Artificial Neural Networks 659

The action of a sigmoid basis function is to split its input into two categories. High values are
given a high output, and low values are given a low output. The dividing line between the two
categories is always at zero. The function is performing a simple categorization. It distinguishes
high from low values.

So far we’ve included the bias weight as part of the sum before thresholding. This is sensible
from an implementation point of view. But we can also view the bias as changing where the
dividing line is situated. For example, let’s take a single perceptron with a single input. Figure 7.22
(left) shows the output from the perceptron when the bias is zero. Figure 7.22 (right) shows the
same output from the same perceptron when the bias is one. Because the bias is always added to
the weighted inputs, it skews the results.

This is deliberate, of course. You can think of each neuron as something like a decision node
in a decision tree: it looks at an input and decides which of two categories the input is in. It makes
no sense, then, to always split the decision at zero. We might want 0.5 to be in one category and
0.9 in another. The bias allows us to divide the input at any point.

But categorizations can’t always be made at a single point. Often, it is a range of inputs that
we need to treat differently. Only values within the range should have an output of one; higher
or lower values should get zero output. A big enough neural network can always cope with this
situation. One neuron acts as the low bound, and another neuron acts as the high bound. But it
does mean you need all those extra neurons.

Radial basis functions address this issue by using the basis function shown in Figure 7.23.

0

1

Input

Output

0

1

Input

Output

Figure 7.22 Bias and the sigmoid basis function

0

1

Input

Output

Figure 7.23 The radial basis function

660 Chapter 7 Learning

Here the range is explicit. The neuron controls the range, as before, using the bias weight.
The spread (the distance between the minimum and maximum input for which the output is
>0.5) is controlled by the overall size of the weights. If the input weights are all high, then
the range will be squashed. If the weights are low, then the range will be widened. By alter-
ing the weights alone (including the bias weight), any minimum and maximum values can be
learned.

Radial basis functions are more complex than the sigmoid basis function. Rather than a single
function, you use a family of them, with an additional weighting parameter for each. Refer to the
references in Appendix A.1 for a complete treatment of radial basis networks.

Weakly Supervised Learning

The algorithm above relies on having a set of examples. The examples can be hand built or
generated from experience during the game.

Examples are used in the backpropagation step to generate the error term. The error term then
controls the learning process. This is called supervised learning : we are providing correct answers
for the algorithm.

An alternative approach used in online learning is weakly supervised learning (sometimes
called unsupervised learning, although strictly that is something else). Weakly supervised learning
doesn’t require a set of examples. It replaces them with an algorithm that directly calculates the
error term for the output layer.

For instance, consider the tactical neural network example again. The character is moving
around the level, making decisions based on its nearby friends and enemies. Sometimes the
decisions it makes will be poor: it might be trying to heal a friend when suddenly an enemy attack
is launched, or it might try to find pick-ups and wander right into an ambush. A supervised
learning approach would try to calculate what the character should have done in each situation
and then would update the network by learning this example, along with all previous examples.

A weakly supervised learning approach recognizes that it isn’t easy to say what the character
should have done, but it is easy to say that what the character did do was wrong. Rather than come
up with a solution, it calculates an error term based on how badly the AI was punished. If the AI
and all its friends are killed, for example, the error will be very high. If it only suffered a couple of
hits, then the error will be small. We can do the same thing for successes, giving positive feedback
for successful choices.

The learning algorithm works the same way as before, but uses the generated error term for
the output layer rather than one calculated from examples. The error terms for hidden layers
remain the same as before.

We have used weakly supervised learning to control characters in a game prototype (aimed
at simulation for military training). It proved to be a simple way to bootstrap character behavior
and get some interesting variations without needing to write a large library of behaviors.

Weakly supervised learning has the potential to learn things that the developer doesn’t know.
This potential is exciting admittedly, but it has an evil twin. The neural network can easily learn
things that the developer doesn’t want it to know—things that the developer can plainly see are
wrong. In particular, it can learn to play in a boring and predictable way. Earlier we mentioned

7.8 Artificial Neural Networks 661

the prospect of a character making a last stand when the odds were poor for its survival. This is
an enjoyable AI to play against, one with personality. If the character was learning solely based on
results, however, it would never learn to do this; it would run away. In this case (as with the vast
majority of others), the game designer knows best.

Hebbian Learning

Hebbian learning is an unsupervised technique. It requires neither examples nor any generated
error values. It tries to categorize its inputs based only on patterns it sees.

Although it can be used in any network, Hebbian learning is most commonly used with a grid
architecture, where each node is connected to its neighbors (see Figure 7.24).

Neurons have the same non-learning algorithm as previously. They sum a set of weighted
inputs and decide their state based on a threshold function. In this case, they are taking input
from their neighbors rather than from the neurons in the preceding layer.

Hebb’s learning rule says that if a node tends to have the same state as a neighbor, then the
weight between those two nodes should be increased. If it tends to have a different state, then the
weight should be decreased.

The logic is simple. If two neighboring nodes are often having the same states (either both
on or both off), then it stands to reason that they are correlated. If one neuron is on, we should
increase the chance that the other is on also by increasing the weight. If there is no correlation,
then the neurons will have the same state about as often as not, and their connection weight will
be increased about as often as it is decreased. There will be no overall strengthening or weakening
of the connection.

Donald Hebb suggested his learning rule based on the study of real neural activity (well before
ANNs were invented), and it is considered one of the most biologically plausible neural network
techniques.

Hebbian learning is used to find patterns and correlations in data, rather than to generate
output. It can be used to regenerate gaps in data.

For example, Figure 7.25 shows a side in an RTS with a patchy understanding of the structure
of enemy forces (because of fog-of-war). We can use a grid-based neural network with Hebbian

Figure 7.24 Grid architecture for Hebbian learning

662 Chapter 7 Learning

Network after settlingInput to networkTactical situation

?

? ?

? ?

? ?

?

?

?

?

Mountains
block sight

Enemy units Area with
unknown
occupants

Clamped
nodes

Nodes free
to change

Figure 7.25 Influence mapping with Hebbian learning

learning. The grid represents the game map. If the game is tile based, it might use 1, 4, or 9 tiles
per node.

The state of each neuron indicates whether the corresponding location in the game is safe or
not. With full knowledge of many games, the network can be trained by giving a complete set of
safe and dangerous tiles each turn (generated by influence mapping, for example—see Chapter 6,
Tactical and Strategic AI).

After a large number of games, the network can be used to predict the pattern of safety. The
AI sets the safety of the tiles it can see as state values in the grid of neurons. These values are
clamped and are not allowed to change. The rest of the network is then allowed to follow its
normal sum-and-threshold algorithm. This may take a while to settle down to a stable pattern,
but the result indicates which of the non-visible areas are likely to be safe and which should be
avoided.

Exercises

1. In Chapter 3, Section 3.5, we discussed aiming and shooting. How might we use hill climbing
to determine a firing solution?

2. Implement a hill climbing approach to determining a firing solution for some simple problems.

3. In terms of both speed and accuracy, compare the results you obtain from your implementa-
tion for question 2 to solutions obtained analytically from the equations given in Chapter 3.Program ming

Use your results to explain why, for many problems, it might not make sense to use hill
climbing or any other learning technique to discover a firing solution?

4. Suppose an AI character in a game can direct artillery fire onto a battlefield. The character
wants to cause explosions that maximize enemy losses and minimize the risk to friendly units.
An explosion is modeled as a circle with a fixed deadly blast radius r . Assuming the location

Exercises 663

of all enemy and friendly units is known, write down a function that calculates the expected
reward of an explosion at a 2D location (x, y).

5. If you didn’t already, modify the function you wrote down for question 4 to take into account
the potential impact on morale of friendly fire incidents.

6. Explain why simple hill climbing might not find the global optimum for the function you
wrote down for question 4. What techniques might you use instead?

7. Many fighting games generate special moves by pressing buttons in a particular order (i.e.,
“combos”). For example,“BA” might generate a “grab and throw” and “BAAB” might generate
a “flying kick.” How could you use an N -Gram to predict the player’s next button press?
Why would using this approach to create opponent AI probably be a waste of time? What
applications might make sense?

8. In some fighting games a combo performed when the character being controlled is in a
crouching position will have a different effect than when the character is standing. Does the
approach outlined in question 7 address this point? If not, how could it be fixed?

9. Suppose you have written a game that includes a speech recognizer for the following set
words: “go,” “stop,” “jump,” and “turn.” Before the game ships, during play testing, you count
the frequencies with which each word is spoken by the testers to give the following table:

Word Frequency

“go” 100

“stop” 125

“jump” 25

“turn” 50

Use these data to construct a prior for P(word).

10. Carrying on from question 9, further suppose that, during play testing, you timed how long it
took players to say each word and you discovered that the time taken was a good indicator of
which word was spoken. For example, here are the conditional probabilities, given the word
the player spoke, that it took them more than half a second:

Word P(length(signal) > 0.5|word)

“go” 0.1

“stop” 0.05

“jump” 0.2

“turn” 0.1

Now suppose that, during gameplay, we time how long it takes a player to utter a word. What is
the most likely word the player spoke, given that it took 0.9 seconds to say it? What is its prob-
ability? (Hint: Apply Bayes rule P(A|B) = αP(B|A)P(A), where α is a normalizing constant,
then use the prior you constructed in question 9 and the given conditional probabilities.)

664 Chapter 7 Learning

11. Suppose we are trying to learn different styles of playing a game based on when a player
decides to shoot. Assume the table below represents data that we have gathered on a particular
player:

shoot? distanceToTarget weaponType

Y 2.4 pistol

Y 3.2 rifle

N 75.7 rifle

Y 80.6 rifle

N 2.8 pistol

Y 82.1 pistol

Y 3.8 rifle

Using a suitable discretization/quantization of distanceToTarget, fill out a new table of data
that will be easier to learn from:

shoot? distanceToTargetDiscrete weaponType

Y pistol

Y rifle

N rifle

Y rifle

N pistol

Y pistol

Y rifle

12. Using the new table of data you filled out in question 11 assume we want to construct a Naive
Bayes classifier to decide whether an NPC should shoot or not in any given situation. That is,
we want to calculate:

P(shoot?|distanceToTargetDiscrete,weaponType),

(for shoot? = Y and shoot? = N) and pick the one that corresponds to the larger probability.

13. In question 12 you only had to calculate the relative condiitonal probabilities of shooting
versus not shooting, but what are the actual conditional probabilities? (Hint: Remember that
probabilities have to sum to 1.)

14. In question 12 we made the assumption that, given the shoot action, the distance to the
target and the weapon type are conditionally independent. Do you think the assumption is
reasonable? Explain your answer.

15. Re-implement the Naive Bayes classifier class given in Section 7.5 using logarithms to avoid
floating-point underflow problems.Program ming

Exercises 665

16. Suppose we have a set of examples that look like the following:

Healthy Exposed With Ammo In Group Close Attack

Healthy In Cover With Ammo In Group Close Attack

Healthy In Cover With Ammo Alone Far Away Attack

Healthy In Cover With Ammo Alone Close Defend

Healthy In Cover Empty Alone Close Defend

Healthy Exposed With Ammo Alone Close Defend

Use information gain to build a decision tree from the examples.

17. Write down a simple rule that corresponds to the decision tree you built for question 16. Does
it make any sense?

18. Use the obstacle avoidance code on the website to generate some data. The data should
record relevant information about the environment and the character’s corresponding steering
choices.Program ming

19. Take a look at the data you generated from working on question 18. How easy do you think
the data are to learn from? How could you represent the data to make the learning problem
as tractable as possible?

20. Use the data you generated from working on question 18 to attempt to learn obstacle avoidance
with a neural network. The problem is probably harder than you imagine, so if it fails to work
try re-visiting question 19. Remember that you need to test on setups that you didn’t train on
to be sure it’s really working.

21. Obstacle avoidance naturally lends itself to creating an error term based on the number of
collisions that occur. Instead of the supervised approach to learning obstacle avoidance that
you tried in question 20, attempt a weakly supervised approach.

22. Instead of the weakly supervised approach to learning obstacle avoidance that you tried in
question 21, try a completely unsupervised reinforcement learning approach. The reward
function should reward action choices that result in collision free movement. Remember that
you always need to test on setups that you didn’t use for training.

23. Given that reliable obstacle avoidance behavior is probably far easier to obtain by hand coding,
is trying to use machine learning misguided? Discuss the pros and cons.

This page intentionally left blank

8
Board Games

he earliest application of AI to computer games was as opponents in simulated versions ofTcommon board games. In the West, Chess is the archetypal board game, and the last 40 years
have seen a dramatic increase in the capabilities of Chess-playing computers.

In the same time frame, other games such as Tic-Tac-Toe, Connect Four, Reversi (Othello),
and Go have been studied, and AI of various qualities has been created.

The AI techniques needed to make a computer play board games are very different than the
others in this book. For the real-time games that dominate the charts, this kind of AI only has
limited applicability. It is occasionally used as a strategic layer, making long-term decisions in
war games.

The best AI opponents for Chess, Draughts, Backgammon, and Reversi all use dedicated
hardware, algorithms, or optimizations devised specifically for the nuances of their strategy. They
can compete successfully with the best players in the world.

The basic underlying algorithms are shared in common, however, and can find applica-
tion in any board game. In this chapter we will look at the minimax family of algorithms, the
most popular board game AI techniques. Recently, a new family of algorithms has proven to
be superior in many applications: the memory-enhanced test driver (MTD) algorithms. Both
minimax and MTD are tree-search algorithms: they require a special tree representation of
the game.

These algorithms are perfect for implementing the AI in board games. The final part of
this chapter looks at why commercial turn-based strategy games are often too complex to take
advantage of this AI; they require other techniques from the rest of this book.

If you’re not interested in board game AI, you can safely skip this chapter.

Copyright © 2009 by Elsevier Inc. All rights reserved. 667

668 Chapter 8 Board Games

8.1 Game Theory

Game theory is a mathematical discipline concerned with the study of abstracted, idealized games.
It has only a very weak application to real-time computer games, but the terminology used in
turn-based games is derived from it. This section will introduce enough game theory to allow
you to understand and implement a turn-based AI, without getting bogged down in the finer
mathematical points.

8.1.1 Types of Games

Game theory classifies games according to the number of players, the kinds of goal those players
have, and the information each player has about the game.

Number of Players

The board games that inspired turn-based AI algorithms almost all have two players. Most of
the popular algorithms are therefore limited to two players in their most basic form. They can
be adapted for use with larger numbers, but it is rare to find descriptions of the algorithms for
anything other than two players.

In addition, most of the optimizations for these algorithms assume that there are only
two players. While the basic algorithms are adaptable, most of the optimizations can’t be used
as easily.

Plies, Moves, and Turns

It is common in game theory to refer to one player’s turn as a “ply” of the game. One round of all
the players’ turns is called a “move.”

This originates in Chess, where one move consists of each player taking one turn. Because
most turn-based AI is based on Chess-playing programs, the word “move” is often used in this
context.

There are many more games, however, that treat each player’s turn as a separate move, and
this is the terminology normally used in turn-based strategy games. This chapter uses the words
“turn” and “move” interchangeably and doesn’t use “ply” at all. You may need to watch for the
usage in other books or papers.

The Goal of the Game

In most strategy games the aim is to win. As a player, you win if all your opponents lose. This is
known as a zero-sum game: your win is your opponent’s loss. If you scored 1 point for winning,
then it would be equivalent to scoring −1 for losing. This wouldn’t be the case, for example, in a
casino game, when you might all come out worse off.

8.1 Game Theory 669

In a zero-sum game it doesn’t matter if you try to win or if you try to make your opponent
lose; the outcome is the same. For a non-zero-sum game, where you could all win or all lose, you’d
want to focus on your own winning, rather than your opponent losing (unless you are very selfish,
that is).

For games with more than two players, things are more complex. Even in a zero-sum game,
the best strategy is not always to make each opponent lose. It may be better to gang up on the
strongest opponent, benefiting the weaker opponents and hoping to pick them off later.

Information

In games like Chess, Draughts, Go, and Reversi, both players know everything there is to know
about the state of the game. They know what the result of every move will be and what the options
will be for the next move. They know all this from the start of the game. This kind of game is
called “perfect information.” Although you don’t know which move your opponent will choose
to make, you have complete knowledge of every move your opponent could possibly make and
the effects it would have.

In a game such as Backgammon, there is a random element. You don’t know in advance of
your dice roll what moves you will be allowed to make. Similarly, you can’t know what moves
your opponent can play, because you can’t predict your opponent’s dice roll. This kind of game is
called “imperfect information.”

Most turn-based strategy games are imperfect information; there is some random element to
carrying out actions (a skill check or randomness in combat, for example). Perfect information
games are often easier to analyze, however. Many of the algorithms and techniques for turn-based
AI assume that there is perfect information. They can be adapted for other types of game, but
they often perform more poorly as a result.

Applying Algorithms

The best known and most advanced algorithms for turn-based games are designed to work with
two-player, zero-sum, perfect information games.

If you are writing a Chess-playing AI, then this is exactly the implementation you need. But
many turn-based computer games are more complicated, involving more players and imperfect
information.

This chapter introduces algorithms in their most common form: for two-player, perfect infor-
mation games. As we’ll see, they will need to be adapted for other kinds of games.

8.1.2 The Game Tree

Any turn-based game can be represented as a game tree. Figure 8.1 shows part of the tree for a game
of Tic-Tac-Toe. Each node in the tree represents a board position, and each branch represents one
possible move. Moves lead from one board position to another.

670 Chapter 8 Board Games

Indicates that
other unshown
options exist

...

.........

Figure 8.1 Tic-Tac-Toe game tree

Each player gets to move at alternating levels of the tree. Because the game is turn based, the
board only changes when one player makes a move.

The number of branches from each board is equal to the number of possible moves that the
player can make. In Tic-Tac-Toe this number is nine on the first player’s turn, then eight, and
so on. In many games there can be hundreds or even thousands of possible moves each player
can make.

Some board positions don’t have any possible moves. These are called terminal positions, and
they represent the end of the game. For each terminal position, a final score is given to each player.
This can be as simple as +1 for a win and −1 for a loss, or it can reflect the size of the win.
Draws are also allowed, scoring 0. In a zero-sum game, the final scores for each player will add
up to zero. In a non-zero-sum game, the scores will reflect the size of each player’s personal win
or loss.

Most commonly, the game tree is represented in the abstract without board diagrams, but
showing the final scores. Figure 8.2 assumes the game is zero sum, so it only shows scores for
player one.

Branching Factor and Depth

The number of branches at each branching point in the tree is called the branching factor, and it
is a good indicator of how difficult a computer will find it to play the game.

Different games also have different depths of tree: a different maximum number of turns. In
Tic-Tac-Toe each player takes turns to add their symbol to the board. There are nine spaces on the
board, so there are a maximum of nine turns. The same thing happens in Reversi, which is played
on an eight-by-eight board. In Reversi, four pieces are on the board at the start of the game, so
there can be a maximum of 60 turns. Games like Chess can have an almost infinite number of
turns (the 50-move rule in competition Chess limits this). The game tree for a game such as this
would be immensely deep, even if the branching factor was relatively small.

8.2 Minimaxing 671

Player 1

Player 2

Player 1

Player 2

Terminal
Position

Figure 8.2 Abstract game tree showing terminal and players’ moves

Computers find it easier to play games with a small branching factor and deep tree than games
with a shallow tree but a huge branching factor.

Transposition

In many games it is possible to arrive at the same board position several times in a game. In many
more games it is possible to arrive at the same position by different combinations of moves.

Having the same board position from different sequences of moves is called transposition.
This means that in most games the game tree isn’t a tree at all; branches can merge as well as split.

Split-Nim, a variation of the Chinese game of Nim, starts with a single pile of coins. At each
turn, alternating players have to split one pile of coins into two non-equal piles. The last player to
be able to make a move wins. Figure 8.3 shows a complete game tree for the game of 7-Split-Nim
(starting with 7 coins in the pile). You can see that there is a large number of different merging
branches.

Minimax-based algorithms (those we’ll look at in the next section) are designed to work with
pure trees. They can work with merging branches, but they duplicate their work for each merging
branch. They need to be extended with transition tables to avoid duplicating work when branches
merge. The second set of key algorithms in this chapter, MTD, is designed with transposition
in mind.

8.2 Minimaxing

A computer plays a turn-based game by looking at the actions available to it this move and
selecting one of them. In order to select one of the moves, it needs to know what moves are better
than others. This knowledge is provided to the computer by the programmer using a heuristic
called the static evaluation function.

672 Chapter 8 Board Games

Figure 8.3 The game tree of 7-Split-Nim

8.2.1 The Static Evaluation Function

In a turn-based game, the job of the static evaluation function is to look at the current state of the
board and score it from the point of view of one player.

If the board is a terminal position in the tree, then this score will be the final score for the game.
So if the board is showing checkmate to black, then its score will be +1 to black (or whatever the
winning score is set to be), while white’s score will be −1. It is easy to score a winning position:
one side will have the highest possible score and the other side will have the lowest possible
score.

In the middle of the game, it is much harder to score. The score should reflect how likely a
player is to win the game from that board position. So if the board is showing an overwhelming
advantage to one player, then that player should receive a score very close to the winning score. In
most cases the balance of winning or losing may not be clear.

In the game of Reversi, for example, the player ending up with the most counters of their
color wins. But, midway through the game, the best strategy is often to have the least number of
counters, because that gives you control of the initiative in the game.

This is where knowledge of how to play the game is important. The game-playing algo-
rithms we will look at do not take into account any strategy. All the strategic information, in
the form of what kinds of positions to prefer, needs to be included in the static evaluation
function.

In Reversi, for example, if we want to prefer positions with fewer counters in the middle-game,
then the static evaluation function should return a higher score for this kind of situation.

8.2 Minimaxing 673

Range of the Function

In principle, the evaluation function can return any kind of number of any size. In most imple-
mentations, however, it returns a signed integer. Several of the most common algorithms in this
chapter rely on the evaluation function being an integer. In addition, integer arithmetic is faster
than floating point arithmetic on most machines.

The range of possible values isn’t too important. Some algorithms work better when the range
of values is small (−100 to +100, for example), while some prefer larger ranges. Much of the work
on turn-based AI has resulted from Chess programs. The scores in Chess are often given in terms
of the “value” of a pawn. A common scale is ±1000 for a win or loss, based on 10 points for the
value of a pawn. This allows strategic scoring to the level of one tenth the value of a pawn.

The range of scores returned should be less than the scores for winning or losing. If a static
evaluation function returns +1000 for a position that is very close to winning, but only +100
for a win, then the AI will try not to win the game because being close seems much more
attractive.

Combining Scoring Functions

There can be any number of different scoring mechanisms all working at the same time. Each
can look for different strategic features of the game. One scoring mechanism may look at the
number of units each side controls, another may look at patterns for territory control, and yet
another might look for specific traps and danger areas. There can be tens of scoring mechanisms
in complex games.

Each separate scoring mechanism is then combined into one overall score. This can be as
simple as adding the scores together with a fixed weight for each. Samuel’s Checkers program, a
famous milestone in AI, used a weighted sum to combine its scoring mechanisms and then added
a simple learning algorithm that could change the weights based on its experience. Many games
use different combinations of scores at different stages of the game. It is customary in Chess, for
example, to pay more attention to the number of squares controlled at the start of the game than
at the end of the game.

In this sense, scoring functions are like the tactical analyses in Chapter 6: primitive tactics are
combined into a more sophisticated view of the quality of the situation.

Simple Move Choice

With a good static evaluation function, the computer can select a move by scoring the positions
that will result after making each possible move and choosing the highest score. Figure 8.4 shows
the possible moves for a player, scored with an evaluation function. It is clear that making the
second move will give the best board position, so this is the move to be chosen.

Given a perfect evaluation function, this is all that the AI would need to do: look at the result of
each possible move and pick the highest score. Unfortunately, a perfect evaluation function is pure
fantasy; even the best real evaluation functions play poorly when used this way. The computer

674 Chapter 8 Board Games

1 7 3

Figure 8.4 A one-move decision making process

needs to search, looking at the other player’s possible responses, responses to those responses,
and so on.

This is the same process that human players carry out when they lookahead one or more
moves. Unlike human players, who have an intuitive sense of who is winning, computer heuristics
are usually fairly narrow, limited, and poor. The computer, therefore, needs to lookahead many
more moves than a person can.

The most famous search algorithm for games is minimax. In various forms it dominated
turn-based AI up to the last decade or so.

8.2.2 Minimaxing

If we choose a move, we are likely to choose a move that produces a good position. We can assume
that we will choose the move that leads to the best position available to us. In other words, on our
moves we are trying to maximize our score (Figure 8.5).

When our opponent moves, however, we assume they will choose the move that leaves us in
the worst available position. Our opponent is trying to minimize our score (Figure 8.6).

When we search for our opponent’s responses to our responses, we need to remember that we
are maximizing our score, while our opponent is minimizing our score. This changing between
maximizing and minimizing, as we search the game tree, is called minimaxing.

The game trees in Figures 8.5 and 8.6 are only one move deep. In order to work out what our
best possible move is, we also need to consider our opponent’s responses.

In Figure 8.7, the scores for each board position are shown after two moves. If we make move
one, we are at a situation where we could end up with a board scoring 10. But we have to assume
that our opponent won’t let us have that and will make the move that leaves us with 2. So the
score of move one for us is 2; it is all we can expect to end up with if we make that move. On the
other hand, if we made move two, we’d have no hope of scoring 10. But regardless of what our
opponent does, we’d end up with at least 4. So we can expect to get 4 from move two. Move two
is therefore better than move one but still not as good as move three, which is our best option.

Starting from the bottom of the tree, scores are bubbled up according to the minimax rule: on
our turn, we bubble up the highest score; on our opponent’s turn, we bubble up the lowest score.
Eventually, we have accurate scores for the results of each available move, and we simply choose
the best of these.

This process of bubbling scores up the tree is what the minimaxing algorithm does. To
determine how good a move is, it searches for responses, and responses to those responses, until

8.2 Minimaxing 675

1 7 3

Figure 8.5 One-move tree, our move

4 8 1

Figure 8.6 One-move tree, opponent’s move

10 2 4 4

2

4 5

4

6 5 9

5

4

Figure 8.7 The two-move game tree

it can search no further. At that point it relies on the static evaluation function. It then bubbles
these scores back up to get a score for the each of its available moves. Even for searches that only
lookahead a couple of moves, minimaxing provides much better results than just relying on a
heuristic alone.

8.2.3 The Minimaxing Algorithm

The minimax algorithm we’ll look at here is recursive. At each recursion it tries to calculate the
correct value of the current board position.

It does this by looking at each possible move from the current board position. For each move
it calculates the resulting board position and recurses to find the value of that position.

676 Chapter 8 Board Games

To stop the search from going on forever (in the case where the tree is very deep), the algorithm
has a maximum search depth. If the current board position is at the maximum depth, then it calls
the static evaluation function and returns the result.

If the algorithm is considering a position where the current player is to move, then it returns the
highest value it has seen; otherwise, it returns the lowest. This alternates between the minimization
and maximization steps.

If the search depth is zero, then it also stores the best move found. This will be the move to
make.

Pseudo-Code

We can implement the minimax algorithm in the following way:

1 def minimax(board, player, maxDepth, currentDepth):
2

3 # Check if we’re done recursing
4 if board.isGameOver() or currentDepth == maxDepth:
5 return board.evaluate(player), None
6

7 # Otherwise bubble up values from below
8

9 bestMove = None
10 if board.currentPlayer() == player: bestScore = -INFINITY
11 else: bestScore = INFINITY
12

13 # Go through each move
14 for move in board.getMoves():
15

16 newBoard = board.makeMove(move)
17

18 # Recurse
19 currentScore, currentMove = minimax(newBoard, player,
20 maxDepth, currentDepth+1)
21

22 # Update the best score
23 if board.currentPlayer() == player:
24 if currentScore > bestScore:
25 bestScore = currentScore
26 bestMove = move
27 else:
28 if currentScore < bestScore:
29 bestScore = currentScore
30 bestMove = move

8.2 Minimaxing 677

31

32 # Return the score and the best move
33 return bestScore, bestMove

In this code we’ve assumed that the minimax function can return two things: a best move and
its score. For languages that can only return a single item, the move can be passed back through a
pointer or by returning a structure.

The INFINITY constant should be larger than anything returned by the board.evaluate func-
tion. It is used to make sure that there will always be a best move found, no matter how poor it
might be.

The minimax function can be driven from a simpler function that just returns the best move:

1 def getBestMove(board, player, maxDepth):
2

3 # Get the result of a minimax run and return the move
4 score, move = minimax(board, player, maxDepth, 0)
5 return move

Data Structures and Interfaces

The code above gets the board to do the work of calculating allowable moves and applying them.
An instance of the Board class represents one position in the game. The class should have the
following form:

1 class Board:
2 def getMoves()
3 def makeMove(move)
4 def evaluate(player)
5 def currentPlayer()
6 def isGameOver()

where getMoves returns a list of move objects (which can have any format, it isn’t important for the
algorithm) that correspond to the moves that can be made from the board position. The makeMove
method takes one move instance and returns a completely new board object that represents the
position after the move is made. evaluate is the static evaluation function. It returns the score for
the current position from the point of view of the given player. currentPlayer returns the player
whose turn it is to play on the current board. This may be different from the player whose best
move we are trying to work out. Finally, isGameOver returns true if the position of the board is
terminal.

This structure applies to any two-player perfect information games, from Tic-Tac-Toe to
Chess.

678 Chapter 8 Board Games

More than Two Players

We can extend the same algorithm to handle three or more players. Rather than alternating
minimization and maximization, we perform a minimization at any move when we’re not a
player and a maximization on our move. The code above handles this normally. If there are three
players, then:

1 board.currentPlayer() == player

will be true one step in three, so we will get one maximization step followed by two minimization
steps.

Performance

The algorithm is O(d) in memory, where d is the maximum depth of the search (or the maximum
depth of the tree if that is smaller).

It is O(nd) in time, where n is the number of possible moves at each board position. With
a wide and deep tree, this can be incredibly inefficient. Throughout the rest of this section we’ll
look at ways to optimize its performance.

8.2.4 Negamaxing

The minimax routine consistently scores moves based on one player’s point of view. It involves
special code to track whose move it is and whether the scores should therefore be maximized or
minimized to bubble up. For some kinds of games this flexibility is needed, but in certain cases
we can improve things.

For games that are two player and zero sum, we know that one player’s gain is the other player’s
loss. If one player scores a board at −1, then the opponent should score it at +1. We can use this
fact to simplify the minimax algorithm.

At each stage of bubbling up, rather than choosing either the smallest or largest, all the scores
from the previous level have their signs changed. The scores are then correct for the player at that
move (i.e., they no longer represent the correct scores for the player doing the search). Because
each player will try to maximize his score, the largest of these values can be chosen each time.

Because at each bubbling up we invert the scores and choose the maximum, the algorithm
is known as “negamax.” It gives the same results as the minimax algorithm, but each level of
bubbling is identical. There is no need to track whose move it is and act differently.

Figure 8.8 shows the bubbling up at each level in a game tree. Notice that at each stage the
value of the inverted scores is largest at the next level down.

Negamax and the Static Evaluation Function

The static evaluation function scores a board according to one player’s point of view. At each
level of the basic minimax algorithm, the same point of view is used to calculate scores. To

8.2 Minimaxing 679

2 3 2 4

3

3 2

2

6 5 2

5

2

Figure 8.8 Negamax values bubbled up a tree

implement this, the scoring function needs to accept a player whose point of view is to be
considered.

Because negamax alternates viewpoints between players at each turn, the evaluation function
always needs to score from the point of view of the player whose move it is on that board. So the
point of view alternates between players at each move. To implement this, the evaluation function
no longer needs to accept a point of view as input. It can simply look at whose turn it is to play.

Pseudo-Code

The modified algorithm for negamaxing looks like the following:

1 def negamax(board, maxDepth, currentDepth):
2

3 # Check if we’re done recursing
4 if board.isGameOver() or currentDepth == maxDepth:
5 return board.evaluate(), None
6

7 # Otherwise bubble up values from below
8

9 bestMove = None
10 bestScore = -INFINITY
11

12 # Go through each move
13 for move in board.getMoves():
14

15 newBoard = board.makeMove(move)
16

17 # Recurse
18 recursedScore, currentMove = negamax(newBoard,
19 maxDepth, currentDepth+1)
20 currentScore = -recursedScore
21

680 Chapter 8 Board Games

22 # Update the best score
23 if currentScore > bestScore:
24 bestScore = currentScore
25 bestMove = move
26

27 # Return the score and the best move
28 return bestScore, bestMove

Note that, because we no longer have to pass it to the evaluate method, we don’t need the
player parameter at all.

Data Structures and Interfaces

Because we don’t have to pass the player into the Board.evaluate method, the Board interface
now looks like the following:

1 class Board:
2 def getMoves()
3 def makeMove(move)
4 def evaluate()
5 def currentPlayer()
6 def isGameOver()

Performance

The negamax algorithm is identical to the minimax algorithm for performance characteristics. It
is also O(d) in memory, where d is the maximum depth of the search, and O(nd) in time, where
n is the number of moves at each board position.

Despite being simpler to implement and faster to execute, it scales in the same way with
large trees.

Implementation Notes

Most of the optimizations that can be applied to negamaxing can be made to work with a strict
minimaxing approach. The optimizations in this chapter will be introduced in terms of negamax,
since that is much more widely used in practice.

When developers talk about minimaxing, they often use a negamax-based algorithm in
practice. Minimax is often used as a generic term to include a whole raft of optimizations. In
particular, if you read “minimax” in a book describing a game-playing AI, it is mostly likely
to refer to a negamax optimization called “alpha–beta (AB) negamax.” We’ll look at the AB
optimization next.

8.2 Minimaxing 681

8.2.5 AB Pruning

The negamaxing algorithm is efficient but examines more board positions than necessary. AB
pruning allows the algorithm to ignore sections of the tree that cannot possibly contain the best
move. It is made up of two kinds of pruning: alpha and beta.

Alpha Pruning

Figure 8.9 shows a game tree before any bubbling up has been done. To more easily see how the
scores are being processed, we’ll use the minimax algorithm for this illustration.

We start the bubbling up process in the same way as before. If player one makes move A, then
his opponent will respond with move C, giving the player a score of 5. So we bubble up the 5. Now
the algorithm looks at move B. It sees the first response to B is E, which scores 4. It doesn’t matter
what the value of F is now, because the opponent can always force a value of 4. Even without
considering F, player one knows that making move B is wrong; he can get 5 from move A and a
maximum of 4 from move B, possibly even less.

To prune in this way, we need to keep track of the best score we know we can achieve. In fact,
this value forms a lower limit on the score we can achieve. We might find a better sequence of
moves later in the search, but we’ll never accept a sequence of moves that gives us a lower score.
This lower bound is called the alpha value (sometimes, but rarely, written as the Greek letter α),
and the pruning is called alpha pruning.

By keeping track of the alpha value, we can avoid considering any move where the opponent
has the opportunity to make it worse. We don’t need to worry about how much worse the opponent
could make it; we already know that we won’t be giving him the opportunity.

Beta Pruning

Beta pruning works in the same way. The beta value (again, rarely written β) keeps track of an
upper limit on what we can hope to score. We update the beta value when we find a sequence of
moves that the opponent can force us into.

5 9

5

5

4 ?

4

Move A

Move C Move E
Move F
(pruned)Move D

Move B

Figure 8.9 An optimizable branch

682 Chapter 8 Board Games

At that point we know there is no way to score more than the beta value, but there may be
more sequences yet to find that the opponent can use to limit us even further. If we find a sequence
of moves that scores greater than the beta value, then we can disregard it, because we know we’ll
never be given the opportunity to make them.

Together alpha and beta values provide a window of possible scores. We will never choose to
make moves that score less than alpha, and our opponent will never let us make moves scoring
more than beta. The score we finally achieve must lie between the two. As the tree is searched, the
alpha and beta values are updated. If a branch of the tree is found that is outside these values,
then the branch can be pruned.

Because of the alternation between minimizing and maximizing for each player, only one
value needs to be checked at each board position. At a board position where it is the opponent’s
turn to play, we minimize the scores, so only the minimum score can change and we only need to
check against alpha. If it is our turn to play, we are maximizing the scores, and so only the beta
check is required.

AB Negamax

Although it is simpler to see the difference between alpha and beta prunes in the minimax
algorithm, they are most commonly used with negamax. Rather than alternating checks against
alpha and beta at each successive turn, the AB negamax swaps and inverts the alpha and beta
values (in the same way that it inverts the scores from the next level). It checks and prunes against
just the beta value.

Using AB pruning with negamaxing, we have the simplest practical board game AI algorithm.
It will form the basis for all further optimizations in this section.

Figure 8.10 shows the alpha and beta parameters passed to the negamax algorithm at each
node in a game tree and the result that the algorithm produces. You can see that as the algorithm

Figure 8.10 AB negamax calls on a game tree

8.2 Minimaxing 683

searches from left to right in the tree, the alpha and beta values get closer together, limiting the
search. You can also see the way in which the alpha and beta values change signs and swap places
at each level of the tree.

Pseudo-Code

The AB negamax algorithm is structured like the following:

1 def abNegamax(board, maxDepth, currentDepth, alpha, beta):
2

3 # Check if we’re done recursing
4 if board.isGameOver() or currentDepth == maxDepth:
5 return board.evaluate(player), None
6

7 # Otherwise bubble up values from below
8

9 bestMove = None
10 bestScore = -INFINITY
11

12 # Go through each move
13 for move in board.getMoves():
14

15 newBoard = board.makeMove(move)
16

17 # Recurse
18 recursedScore, currentMove = abNegamax(newBoard,
19 maxDepth,
20 currentDepth+1
21 -beta,
22 -max(alpha, bestScore))
23 currentScore = -recursedScore
24

25 # Update the best score
26 if currentScore > bestScore:
27 bestScore = currentScore
28 bestMove = move
29

30 # If we’re outside the bounds, then prune: exit immediately
31 if bestScore >= beta:
32 return bestScore, bestMove
33

34 return bestScore, bestMove

684 Chapter 8 Board Games

This can be driven from a function of the form:

1 def getBestMove(board, maxDepth):
2

3 # Get the result of a minimax run and return the move
4 score, move = abNegamax(board, maxDepth, 0, -INFINITY, INFINITY)
5 return move

Data Structures and Interfaces

This implementation relies on the same game board class as for regular negamax.

Performance

Once again, the algorithm is O(d) in memory, where d is the maximum depth of the search, and
order O(nd) in time, where n is the number of possible moves at each board position.

So why the optimization if we get the same performance?
The order of the performance may be the same, but AB negamax will outperform regular

negamax in almost all cases. The only situation in which it will not is if the moves are ordered so
that no pruning is possible. In this case the algorithm will have an extra comparison that is never
true and therefore will be slower.

This situation would only be likely to occur if the moves were ordered deliberately to exploit
it. In the vast majority of cases the performance is very much better than the basic algorithm.

8.2.6 The AB Search Window

The interval between the alpha and beta values in an AB algorithm is called the search window.
Only new move sequences with scores in this window are considered. All others are pruned.

The smaller the search window, the more likely a branch is to be pruned. Initially, AB algo-
rithms are called with an infinitely large search window: (−∞,+∞). As they work, the search
window is contracted. Anything that can make the search window smaller, as fast as possible, will
increase the number of prunes and speed up the algorithm.

Move Order

If the most likely moves are considered first, then the search window will contract more quickly.
The less likely moves will be considered later and are more likely to be pruned.

Determining which moves are better, of course, is the whole point of the AI. If we knew the
best moves, then we wouldn’t need to run the algorithm. So there is a trade-off between being
able to do less search (by knowing in advance which moves are best) and having to possess less
knowledge (and having to search more).

8.2 Minimaxing 685

In the simplest case it is possible to use the static evaluation function on the moves to determine
the correct order. Because the evaluation function gives an approximate indication of how good
a board position is, it can be effective in reducing the size of the search through AB pruning. It
is often the case, however, that repeatedly calling the evaluation function in this way slows down
the algorithm.

An even more effective ordering technique, however, is to use the results of previous minimax
searches. It can be the results from searches at previous depths when using an iterative deepening
algorithm, or it can be the results from minimax searches on previous turns.

The memory-enhanced test family of algorithms explicitly uses this approach to order moves
before they are considered. Some form of move ordering can also be added to any AB minimax
algorithm.

Even without any form of move ordering, the performance of the AB algorithm can be 10
times better than minimax alone. With excellent move ordering, it can be more than 10 times
faster again, which is 100 times faster than regular minimax. This is often the difference between
searching the tree to a couple of extra turns in depth.

Aspiration Search

Having a small search window is such a massive speed up that it can be worthwhile artificially
limiting the window. Instead of calling the algorithm with a range of (−∞,+∞), it can be called
with an estimated range. This range is called an aspiration, and the AB algorithm called in this
way is sometimes called aspiration search.

This smaller range will cause many more branches to be pruned, speeding up the algorithm.
On the other hand, there may be no suitable move sequences within the given range of values. In
this case the algorithm will return with failure: no best move will be found. The search can then
be repeated with a wider window.

The aspiration for the search is often based on the results of a previous search. If during a
previous search a board is scored at 5, then when the player finds itself at that board, it will perform
an aspiration search using (5 − window size, 5 + window size). The window size depends on the
range of scores that can be returned by the evaluation function.

A simple driver function that can perform the aspiration search would look like the following:

1 def aspiration(board, maxDepth, previous):
2 alpha = previous - WINDOW_SIZE
3 beta = previous + WINDOW_SIZE
4

5 while True:
6

7 result, move = abNegamax(board, maxDepth, 0, alpha, beta);
8 if (result <= alpha) alpha = -NEAR_INFINITY;
9 else if (result >= beta) beta = NEAR_INFINITY;

10 else return move;

686 Chapter 8 Board Games

8.2.7 Negascout

Narrowing the search window can be taken to the extreme, having a search window with a zero
width. This search will prune almost all the branches from the tree, making for a very fast search.
Unfortunately, it will prune all the useful branches along with the useless ones. So unless you start
the algorithm with the correct result, it will fail. A zero window size can be seen as a test. It tests
if the actual score is equal to the guess. Unsurprisingly, in this form it is called “Test.”

The version of AB negamax we have considered so far is sometimes called the “fail-soft”
version. If it fails, then it returns the best result it had so far. The most basic version of AB
negamax will only return either alpha or beta as its score if it fails (depending on whether it fails
high or fails low). The extra information in the fail-soft version can help find a solution. It allows
us to move our initial guess and repeat the search with a more sensible window. Without fail-soft,
you would have no idea how far to move your guess.

The original scout algorithm combined a minimax search (with AB pruning) with calls to
the zero-width test. Because it relies on a minimax search, it is not widely used. The negascout
algorithm uses the AB negamax algorithm to drive the test.

Negascout works by doing a full examination of the first move from each board position.
This is done with a wide search window so that the algorithm doesn’t fail. Successive moves are
examined using a scout pass with a window based on the score from the first move. If this pass
fails, then it is repeated with a full-width window (the same as regular AB negamax).

The initial wide-window search from the first move establishes a good approximation for the
scout test. This avoids too many failures and takes advantage of the fact that the scout test prunes
a large number of branches.

Pseudo-Code

Combining the aspiration search driver with the negascout algorithm produces a powerful game-
playing AI. Aspiration negascout is the algorithm at the heart of much of the best game-playing
software in the world, including Chess, Checkers, and Reversi programs that can beat champion
players. The aspiration driver is the same as was implemented previously:

1 def abNegascout(board, maxDepth, currentDepth, alpha, beta):
2

3 # Check if we’re done recursing
4 if board.isGameOver() or currentDepth == maxDepth:
5 return board.evaluate(player), None
6

7 # Otherwise bubble up values from below
8

9 bestMove = None
10 bestScore = -INFINITY
11

12 # Keep track of the Test window value.

8.2 Minimaxing 687

13 adaptiveBeta = beta
14

15 # Go through each move
16 for move in board.getMoves():
17

18 newBoard = board.makeMove(move)
19

20 # Recurse
21 recursedScore,
22 currentMove = abNegamax(newBoard,
23 maxDepth,
24 currentDepth+1,
25 -adaptiveBeta,
26 -max(alpha, bestScore))
27 currentScore = -recursedScore
28

29 # Update the best score
30 if currentScore > bestScore:
31

32 # If we are in ‘narrow-mode’ then widen and
33 # do a regular AB negamax search
34 if adaptiveBeta == beta || currentDepth >= maxDepth-2:
35 bestScore = currentScore
36 bestMove = move
37

38 # Otherwise we can do a Test
39 else:
40 negativeBestScore,
41 bestMove = abNegascout(newBoard,
42 maxDepth,
43 currentDepth,
44 -beta,
45 -currentMoveScore)
46 bestScore = -negativeBestScore
47

48 # If we’re outside the bounds, then prune: exit immediately
49 if bestScore >= beta:
50 return bestScore, bestMove
51

52 # Otherwise update the window location
53 adaptiveBeta = max(alpha, bestScore) + 1;
54

55 return bestScore, bestMove

688 Chapter 8 Board Games

Data Structures and Interfaces

This listing uses the same game Board interface as previously and can be applied to any game.

Performance

Predictably, the algorithm is again O(d) in memory, where d is the maximum depth of the search,
and order O(nd) in time, where n is the number of possible moves at each board position.

Figure 8.11 shows the game tree used to introduce AB negamax. The alpha and beta values
appear to jump around more than for negamax, but following the negascout algorithm eliminates
an extra branch from the search. In general, negascout dominates AB negamax; it always examines
the same or fewer boards.

Until recently, aspiration negascout was the undisputed champion of game algorithms.
A handful of new algorithms based on the memory-enhanced test (MT) approach have since
proved to be better in many cases. Neither is theoretically better, but significant speed ups
have been reported with the MT approach. The MT algorithms are described later in this
chapter.

Move Ordering and Negascout

Negascout relies on the score of the first move from each board position to guide the scout pass.
For this reason it has even better speed ups than AB negamax when the moves are ordered. If the
best sequence of moves is first, then the initial wide-window pass will be very accurate, and the
scout pass will fail less often.

Figure 8.11 The game tree with negascout calls

8.3 Transposition Tables and Memory 689

In addition, because of the need to re-search parts of the game tree, the negascout algorithm
benefits greatly from a memory system (see the next section) that can recall the results of previous
searches.

Principal Variation Search

Negascout is closely related to an algorithm called Principal Variation Search (PVS). When negas-
cout fails on its scout pass, it repeats the search by calling itself with a wider window. PVS uses an
AB negamax call in this situation. PVS also has a number of more minor differences to negamax,
but by and large negascout performs better in real applications. Often, the name PVS is incorrectly
used to refer to the negascout algorithm.

8.3 Transposition Tables and Memory

So far the algorithms we have looked at assume that each move leads to a unique board position.
As we saw previously, the same board position can occur as a result of different combinations
of moves. In many games the same board position can even occur multiple times within the
same game.

To avoid doing extra work searching the same board position several times, algorithms can
make use of a transposition table.

Although the transposition table was designed to avoid duplicate work on transpositions, it
has additional benefits. Several algorithms rely on the transposition table as a working memory
of board positions that have been considered. Techniques such as the memory-enhanced test,
iterative deepening, and thinking on your opponent’s turn all use the same transposition table
(and all are introduced in this chapter).

The transposition table keeps a record of board positions and the results of a search from that
position. When an algorithm is given a board position, it first checks if the board is in the memory
and uses the stored value if it is.

Comparing complete game states is an expensive procedure, since a game state may contain
tens or hundreds of items of information. Comparing these against stored states in memory would
take a long time. To speed up transposition table checks, a hash value is used.

8.3.1 Hashing Game States

Although in principle any hash algorithm will work, there are particular peculiarities of hashing a
game state for transposition tables. Most possible states of the board in a board game are unlikely
to ever occur. They represent the result of illegal or bizarre sequences of moves. A good hashing
scheme will spread the likely positions as widely as possible through the range of the hash value.
In addition, because in most games the board changes very little from move to move, it is useful to
have hash values that change widely when only a small change is made to the board. This reduces
the likelihood of two board positions clashing when they occur in the same search.

690 Chapter 8 Board Games

Zobrist Keys

There is a common algorithm for transition table hashing called Zobrist keys. A Zobrist key is a
set of fixed-length random bit patterns stored for each possible state of each possible location on
the board. Chess has 64 squares, and each square can be empty or have 1 of 6 different pieces on
it, each of two possible colors. The Zobrist key for a game of Chess needs to be 64 × 2 × 6 = 768
entries long.

For each non-empty square, the Zobrist key is looked up and XORed with a running hash
total.

There may be additional Zobrist keys for different elements of the game state. The state of the
doubling-die in Backgammon, for example, would need a six-element Zobrist key. A number of
other Zobrist keys are required in Chess to represent the triple repetition rule, the 50-move rule,
and other subtleties. Some implementations omit these additional keys on the expectation that
they are needed so rarely that the software will suffer the ambiguity between the occasional states
for faster hashing in the vast majority of cases. This and other issues with transposition tables are
discussed later.

Additional Zobrist keys are used in the same way: their values are looked up and XORed with
the running hash value. Eventually, a final hash value will be produced.

For implementation, the length of the hash value in the Zobrist key will depend on the number
of different states for the board. Chess games can make do with 32 bits, but are best with a 64-
bit key. Checkers works comfortably with 32 bits, where a more complex turn-based game may
require 128 bits.

The Zobrist keys need to be initialized with random bit-strings of the appropriate size.
There are known issues with the C language rand function (which is often exposed as the

random function in many languages), and some developers have reported problems when using
it to initialize Zobrist keys. Other developers have reported using rand successfully. Because
problems with the quality of random number generation are difficult to debug (they tend to give
a reduction in performance that is difficult to track down), it would probably be safer to use one
of the many freely available random number generators with better reliability than rand.

Hash Implementation

This implementation shows a trivial case of a Zobrist hash for Tic-Tac-Toe. Each of the nine
squares can be empty or have one of two pieces in it; therefore, there are 9×2=18 elements in
the array.

1 # The Zobrist key.
2 zobristKey[9*2]
3

4 # Initialize the key.
5 def initZobristKey():
6 for i in 0..9*2:
7 zobristKey[i] = rand32()

8.3 Transposition Tables and Memory 691

On a 32-bit machine, this implementation uses 32-bit keys (16 bits would be plenty big enough
for Tic-Tac-Toe, but 32-bit arithmetic is usually faster). It relies on a function rand32which returns
a random 32-bit value.

Once the key is set up, boards can be hashed. This implementation of the hash function uses
a board data structure containing a nine-element array representing the contents of each square
on the board:

1 # Calculate a hash value.
2 def hash(ticTacToeBoard):
3 # Start with a clear bitstring
4 result = 0
5

6 # XOR each occupied location in turn
7 for i in 0..9:
8 # Find what piece we have
9 piece = board.getPieceAtLocation(i)

10

11 # If its unoccupied, lookup the hash value and xor it
12 if piece != UNOCCUPIED:
13 result = result xor zobristKey[i*2+piece]
14

15 return result

Incremental Zobrist Hashing

One particularly nice feature of Zobrist keys is that they can be incrementally updated. Because
each element is XORed together, adding an element is as simple as XORing another value. In the
example above, adding a new piece is as simple as XORing the Zobrist key for that new piece.

In a game such as Chess, where a move consists of removing a piece from one location and
adding it to another, the reversible nature of the XOR operator means the update can still be
incremental. The Zobrist key for the piece and the old square is XORed with the hash value,
followed by the key for the piece and the new square.

Incrementally hashing in this way can be much faster than calculating the hash from first
principles, especially in games with many tens or hundreds of pieces in play at once.

The Game Class, Revisited

To support hashing, and in particular incremental Zobrist hashing, the Board class we have been
using can be extended to provide a general hash method:

1 class Board:
2 # Holds the current hash value for this board. This saves it

692 Chapter 8 Board Games

3 # being recalculated each time it is needed.
4 hashCache
5

6 def getMoves()
7 def makeMove(move)
8 def evaluate()
9 def currentPlayer()

10 def isGameOver()
11 def hashValue()

The hash value can now be stored in the class instance. When a move is carried out (in the move
method), the hash value can be incrementally updated without the need for a full recalculation.

8.3.2 What to Store in the Table

The hash table stores the value associated with a board position, so it does not need to be
recalculated. Because of the way the scores are bubbled up the tree in negamax algorithms, we
also know the best move from each board position (it is the one whose resulting board has the
highest inverse score). This move can also be stored, so we can make the move directly if required.

The point of searching is to improve the accuracy of the static evaluation function. A minimax
value for a board will depend on the depth of search. If we are searching to a depth of ten moves,
then we will not be interested in a table entry that holds a value calculated by searching only three
moves ahead: it would not be accurate enough. Along with the value for a table entry, we store the
depth used to calculate that value.

When searching using AB pruning, we are not interested in calculating the exact score for each
board position. If the score is outside the search window, it is ignored. When we store values in
the transposition table we may be storing an accurate value, or we may be storing “fail-soft” values
that result from a branch being pruned. It is important to record whether the value is accurate, is
a fail-low value (alpha pruned), or is a fail-high value (beta pruned). This can be accomplished
with a simple flag.

Each entry in the hash table looks something like the following:

1 struct TableEntry:
2

3 enum ScoreType:
4 ACCURATE
5 FAIL_LOW
6 FAIL_HIGH
7

8

9 # Holds the hash value for this entry
10 hashValue
11

8.3 Transposition Tables and Memory 693

12 # Holds the type of score stored
13 scoreType
14

15 # Holds the score value
16 score
17

18 # Holds the best move to make (as found on a previous
19 # calculation)
20 bestMove
21

22 # Holds the depth of calculation at which the score
23 # was found
24 depth

8.3.3 Hash Table Implementation

For speed, the hash table implementation used is often a hash array.
A general hash table has an array of lists; the arrays are often called“buckets.”When an element

is hashed, the hash value looks up the correct bucket. Each item in the bucket is then examined
to see if it matches the hash value. There are almost always fewer buckets than there are possible
keys. The key undergoes a modular multiplication by the number of buckets, and the new value
is the index of the bucket to examine.

Although a much more efficient hash table implementation can be found in any C++ standard
library, it has the general form:

1 struct Bucket:
2

3 # The table entry at this location
4 TableEntry entry;
5

6 # The next item in the bucket
7 Bucket *next;
8

9 # Returns a matching entry from this bucket, even
10 # if it comes further down the list
11 def getElement(hashValue):
12 if entry.hashValue == hashValue: return entry;
13 if next: return next->getElement(hashValue);
14 return None
15

16 class HashTable:
17 # Holds the contents of the table

694 Chapter 8 Board Games

18 buckets[MAX_BUCKETS]
19

20 # Finds the bucket in which the value is stored
21 def getBucket(hashValue):
22 return buckets[hashValue \% MAX_BUCKETS]
23

24 # Retrieves an entry from the table
25 def getEntry(hashValue):
26 return getBucket(hashValue).getElement(hashValue)

The aim is to have as many buckets as possible with exactly one entry in them. If the buckets
are too full, then it will slow down the lookup and indicate that more buckets are needed. If the
buckets are too empty, then there is room to spare, and fewer buckets can be used.

In searching for moves, it is more important that the hash lookup is fast, rather than guaran-
teeing that the contents of the hash table are permanent. There is no point in storing positions in
the hash table that are unlikely to ever be visited again.

For this reason a hash array implementation is used, where each bucket has a size of one. This
can be implemented as an array of records directly and simplifies the above code to:

1 class HashArray:
2 # Holds the entries
3 entries[MAX_BUCKETS]
4

5 # Retrieves an entry from the table
6 def getEntry(hashValue):
7 entry = entries[hashValue \% MAX_BUCKETS];
8 if entry.hashValue == hashValue: return entry
9 else: return None

8.3.4 Replacement Strategies

Since there can be only one stored entry for each bucket, there needs to be some mechanism for
deciding how and when to replace a stored value when a clash occurs.

The simplest technique is to always overwrite. The contents of a table entry are replaced
whenever a clashing entry wants to be stored. This is easy to implement and is often perfectly
sufficient.

Another common heuristic is to replace whenever the clashing node is for a later move. So if
a board at move 6 clashes with a board at move 10, the board at move 10 is used. This is based on
the assumption that the board at move 10 will be useful for longer than the board at move 6.

There are many more complex replacement strategies, but there is no general agreement as
to which is the best. It seems likely that different strategies will be optimal for different games.

8.3 Transposition Tables and Memory 695

Experimentation is probably required. Several programs have had success by keeping multiple
transposition tables using a range of strategies. Each transposition table is checked in turn for a
match. This seems to offset the weakness of each approach against others.

8.3.5 A Complete Transposition Table

The pseudo-code for a complete transposition table looks like the following:

1 class TranspositionTable:
2

3 tableSize
4 entries[tableSize]
5

6 def getEntry(hashValue):
7 entry = entries[hashValue \% tableSize];
8 if entry.hashValue == hashValue: return entry
9 else: return None

10

11 def storeEntry(entry):
12 # Always replace the current entry
13 entries[entry.hashValue \% tableSize] = entry

Performance

The getEntry method and storeEntry method of the implementation above are O(1) in both
time and memory. In addition, the table itself is O(n) in memory, where n is the num-
ber of entries in the table. This should be related to the branching factor of the game and
the maximum search depth being used. A large number of checked board positions requires
a large table.

Implementation Notes

If you implement this algorithm, we strongly recommend that you add some debug data to it
that measures the number of buckets used at any point in time, the number of times something
is overwritten, and the number of misses when getting an entry that has previously been added.
This will allow you to understand how well the transposition table is performing.

If you rarely find a useful entry in the table, then the table may be badly parameterized (the
number of buckets may be too small, or the replacement strategy may be unsuitable, for example).
In our experience this kind of debugging information is invaluable when your AI isn’t playing as
well as you’d hoped.

696 Chapter 8 Board Games

8.3.6 Transposition Table Issues

Transposition tables are an important tool in getting useable speed from a turn-based AI. They
are not a panacea, however, and can introduce their own problems.

Path Dependency

Some games need to have scores that depend on the sequence of moves. Repeating the same set of
board positions three times in Chess, for example, results in a draw. The score of a board position
will depend on whether it is the first or last time round such a sequence. Holding transposition
tables will mean that such repetitions will always be scored identically. This can mean that the AI
mistakenly throws away a winning position by repeating the sequence.

In this instance the problem can be solved by incorporating a Zobrist key for “number of
repeats” in the hash function. In this way successive repeats have different hash values and are
recorded separately.

In general, however, games that require sequence-dependent scoring need to have either more
complex hashing or special code in the search algorithm to detect this situation.

Instability

A more difficult problem is instability when the stored values fluctuate during the same search.
Because each table entry may be overwritten at different times, there is no guarantee that the same
value will be returned each time a position is looked up.

For example, the first time a node is considered in a search, it is found in the transposition
table, and its value is looked up. Later in the same search that location in the table is overwritten
by a new board position. Even later in the search the board position is returned to (by a different
sequence of moves or by re-searching in the negascout algorithm). This time the value cannot be
found in the table, and it is calculated by searching. The value returned from this search could be
different from the looked-up value.

Although it is very rare, it is possible to have a situation where the score for a board oscillates
between two values, causing some versions of a re-searching algorithm (although not the basic
negascout) to loop infinitely.

8.3.7 Using Opponent’s Thinking Time

A transposition table can be used to allow the AI to improve its searches while the human player
is thinking.

On the player’s turn, the computer can search for the move it would make if it were playing.
As results of this search are processed, they are stored in the transposition table. When the AI
comes to take its turn, its searches will be faster because a lot of the board positions will already
be considered and stored.

8.4 Memory-Enhanced Test Algorithms 697

Most commercial board game programs use the opponent’s thinking time to do additional
searching and store results in memory.

8.4 Memory-Enhanced Test Algorithms

Memory-enhanced test (MT) algorithms rely on the existence of an efficient transposition table
to act as the algorithms’ memory.

The MT is simply a zero-width AB negamax, using a transposition table to avoid duplicate
work. The existence of the memory allows the algorithm to jump around the search tree looking
at the most promising moves first. The recursive nature of the negamax algorithm means that it
cannot jump; it must bubble up and recurse down.

8.4.1 Implementing Test

Because the window size for Test is always zero, the test is often rewritten to accept only one input
value (the A and B values are the same). We’ll call this value “gamma.”

The same test was used in the negamax algorithm, but in that case the negamax algorithm
was calling itself as a test and as a regular negamax, so separate alpha and beta parameters were
needed.

Added to the simplified negamax algorithm is the transposition table access code. In fact, a
sizeable proportion of this code is simply memory access.

Pseudo-Code

The test function can be implemented in the following way:

1 int test(board, maxDepth, currentDepth, gamma):
2

3 if currentDepth > lowestDepth: lowestDepth = currentDepth
4

5 # Lookup the entry from the transposition table
6 entry = table.getEntry(board.hashValue())
7 if entry and entry.depth > maxDepth - currentDepth:
8

9 # Early outs for stored positions
10 if entry.minScore > gamma:
11 return entry.minScore, entry.bestMove
12 if entry.maxScore < gamma:
13 return entry.maxScore, entry.bestMove
14

698 Chapter 8 Board Games

15 else:
16

17 # We need to create the entry
18 entry.hashValue = board.hashValue()
19 entry.depth = maxDepth - currentDepth
20 entry.minScore = -INFINITY
21 entry.maxScore = INFINITY
22

23 # Now we have the entry, we can get on with the text
24

25

26 # Check if we’re done recursing
27 if board.isGameOver() or currentDepth == maxDepth:
28 entry.minScore = entry.maxScore = board.evaluate()
29 table.storeEntry(entry)
30 return entry.minScore, None
31

32 # Now go into bubbling up mode
33 bestMove = None
34 bestScore = -INFINITY
35

36 for move in board.getMoves():
37

38 newBoard = board.makeMove(move)
39

40 # Recurse
41 recursedScore, currentMove = test(newBoard,
42 maxDepth,
43 currentDepth+1,
44 -gamma)
45 currentScore = -recursedScore
46

47 # Update the best score
48 if currentScore > bestScore:
49

50 # Track the current best move
51 entry.bestMove = move
52

53 bestScore = currentScore
54 bestMove = move
55

56 # If we pruned, then we have a min score, otherwise
57 # we have a max score.
58 if bestScore < gamma: entry.maxScore = bestScore

8.4 Memory-Enhanced Test Algorithms 699

59 else: entry.minScore = bestScore
60

61 # Store the entry and return the best score and move.
62 table.storeEntry(entry)
63 return bestScore, bestMove

Transposition Table

This version of test needs to use a slightly different table entry data structure. Recall that in
a negamax framework the score of a table entry might be accurate, or it may be a result of a
“fail-soft” search. Because all searches in MT have a zero-width window, we are unlikely to get an
accurate score, but we may build up an idea of the possible range of scores over several searches.
The transposition table records both minimum and maximum scores. These act in a similar way
to alpha and beta values in the AB pruning algorithm.

Because only these two values need to be stored, there is no need to store the score type. The
new table entry structure looks like the following:

1 struct TableEntry:
2 hashValue
3 minScore
4 maxScore
5 bestMove
6 depth

8.4.2 The MTD Algorithm

The MT routine is called repeatedly from a driver routine. It is a driver routine that is responsible
for repeatedly using MT to zoom in on a correct minimax value and work out the next move in
the process. Algorithms of this type are called memory-enhanced test drivers, or MTDs.

The first MTD algorithms were structured very differently, using complex sets of special case
code and search ordering logic. SSS* and DUAL*, the most famous, were both shown to simplify
to special cases of the MTD algorithm. The simplification process also resolved some outstanding
issues with the original algorithms.

The common MTD algorithm looks like the following:

1. Keep track of an upper bound on the score value. Call this gamma (to avoid confusion with
alpha and beta).

2. Let gamma be a first guess as to the score. This can be any fixed value, or it can be derived from
a previous run through the algorithm.

3. Calculate another guess by calling Test on the current board position, the maximum depth,
zero for the current depth, and the gamma value. (A value slightly less than the gamma value

700 Chapter 8 Board Games

is used normally: gamma − ε, where ε is smaller than the smallest increment of the evaluation
function. This allows the test routine to avoid using the == operator, which causes asymmetries
when the point of view is flipped along with the signs of the scores during recursion.)

4. If the guess isn’t the same as the gamma value, then go back to 3 again. This confirms that the
guess is now accurate. Occasionally, numerical instabilities can cause this to never become true,
and usually a limit is placed on the number of iterations.

5. Return the guess as the score; it is accurate.

MTD algorithms take a guess parameter. This is a first guess as to the minimax value expected
from the algorithm. The more accurate this guess is, the faster the MTD algorithm will run.

MTD Variations

The SSS* algorithm was shown to be related to MTD starting with a guess of infinity (known as
MT-SSS or MTD+∞). Similarly, the DUAL* algorithm can be emulated by using minus infinity
as an initial guess (MTD−∞). The most powerful general MTD algorithm, MTD-f , uses a guess
based on the results of a previous search.

There is an MTD variant, MTD-best, which doesn’t calculate accurate scores for each board
position, but can return the best move. It is marginally faster than MTD-f , but considerably more
complex, and does not determine how good moves are. In most turn-based games, it is important
to know how good moves are, so MTD-best is not as commonly used.

Memory Size

MTD relies on having a large memory. Its performance degrades badly when collisions occur in
the transposition table and different board positions are mapped to the same table entry. In the
worst case, the algorithm can be incapable of returning a result if the storage it needs keeps being
overwritten.

The size of table required depends on the branching factor, the search depth, and the quality
of the hashing scheme. For Chess-playing AI with deep search, tables of the order of tens of
megabytes are common (a few million table entries). Smaller searches, or simpler games, may
require a couple of orders of magnitude less.

As with all memory issues, care needs to be taken not to fall foul of memory performance
issues common with large data structures. It is difficult to properly manage cache performance
for a 32-bit PC using data structures over a megabyte in size.

8.4.3 Pseudo-Code

The pseudo-code for an MTD implementation that can be used with the test code given previously
looks like the following:

8.5 Opening Books and Other Set Plays 701

1 def mtd(board, maxDepth, guess):
2 for i in 0..MAX_ITERATIONS:
3

4 gamma = guess
5 guess, move = text(board, maxDepth, 0, gamma-1)
6

7 # If there’s no more improvement, stop looking
8 if gamma == guess: break
9

10 return move

In this form, an MTD can be called with infinity as a first guess (MT-SSS), or it can be run as
MTD-f with a guess based on a previous search. For this, the static move evaluation can be used,
or it can be driven as part of an iterative deepening algorithm that keeps track of the guesses from
search to search. Iterative deepening is discussed more fully in Section 8.6.

Performance

The order of performance of this algorithm is still the same as previously for time (O(nd), where
n is the number of moves per board, and d is the depth of the tree). In memory it is O(s), where
s is the number of entries in the transposition table.

MTD-f rivals aspiration negascout as the fastest game tree search. Tests show that MTD-f is
often significantly faster, but there is still debate as to whether each algorithm can be optimized
further to improve its performance. Although many of the top board game-playing programs use
negascout, most modern AI now relies on an MTD core.

As with all performance issues in AI, the only sure way to tell which will be faster in your game
is to try both and profile them. Fortunately, neither algorithm is complex, and both can use the
same underlying code (transposition tables, the AB negamax function, and the game class).

8.5 Opening Books and Other Set Plays

In many games, over many years, expert players have built up a body of experience about which
moves are better than others at the start of the game. Nowhere is this more obvious than in
the opening book of Chess. Expert players study huge databases of fixed opening combinations,
learning the best responses to moves. It is not uncommon for the first 20 to 30 moves of a
Grandmaster Chess game to be planned in advance.

An opening book is a list of move sequences, along with some indication of how good the
average outcome will be using those sequences. Using these sets of rules, the computer does not
need to search using minimaxing to work out what the best move is to play. It can simply choose
the next move from the sequence, as long as the end point of the sequence is beneficial to it.

702 Chapter 8 Board Games

Opening book databases can be downloaded for several different games, and for prominent
games such as Chess commercial databases are available for licencing into a new game. For an
original turn-based game, an opening book (if it is useful) needs to be generated manually.

8.5.1 Implementing an Opening Book

Often, opening books are implemented as a hash table very similar to a transposition table. Lists
of move sequences can be imported into the software and converted so that each intermediate
position has an indication of the opening line it belongs to and the strength of each line.

Notice that, unlike a regular transposition table, there may be more than one recommended
move from each board position. Board positions can often belong to many different opening lines,
and openings, like the rest of the game, branch out in the form of a tree.

This implementation handles transpositions automatically: the AI looks up the current board
position in the opening book and finds a set of possible moves to make.

Opening Book in the Evaluation Function

In addition to using the opening book as a special tool, it can be incorporated into a general
purpose search algorithm. The opening book is often implemented as one of the elements of the
static evaluation function. If the current board position is part of a recorded opening, then the
static evaluation function weights its advice heavily. When the game has progressed beyond the
opening book, it is ignored, and other elements of the function are used.

8.5.2 Learning for Opening Books

Some programs use an initial opening book library and add a learning layer. The learning layer
updates the scores assigned to each opening sequence so that better openings can be selected.

This can be done in one of two ways. The most basic learning technique is to keep a statistical
record of the success a program has with each opening. If the opening is listed as being good, but
the program consistently loses with it, then it can change the scoring so that it avoids that opening
in the future.

A lot of processing, experience, and analysis go into the scores assigned to each opening
line in a commercial database. Much of this scoring is based on long histories of international
expert games. These are unlikely to be wrong, over all players. But each game-playing AI will have
different characteristics. An opening listed in a database as good might end in a tight strategic
situation that a human can play well but that causes the computer to suffer lots of horizon effects.
Including a statistical learning layer allows the computer to play to its unique strengths.

Some games also learn the sequences themselves. Over many games (typically many thou-
sands) certain opening lines will occur over and over again. Initially, the computer may have to rely
on its search to score them, but over time these scores can be averaged (along with information
about their statistical likelihood of winning) and recorded.

8.6 Further Optimizations 703

The larger Chess opening databases, and most opening databases for less popular games, are
generated in this way: a strong computer plays itself and records the opening lines that are most
favorable.

8.5.3 Set Play Books

Although set move sequences are most common at the start of a game, they can also apply later.
Many games have set combinations of moves that occur during the game and especially at the end
of the game.

For almost all games, however, the range of possible board positions in the game is staggering.
It is unlikely that any particular board position will be exactly the same as one in the database.
More sophisticated pattern matching is required: looking for particular patterns among the overall
board structure.

The most common application of this type of database is for subsections of the board. In
Reversi, for example, strong play along each edge of the board is key. Many Reversi programs have
comprehensive databases of edge configurations, along with scores as to how strong they are. The
four edge configurations of a board can be easily extracted and the database entry looked up. In the
middle-game, these edge scorings are weighted highly in the static evaluation function. Later in
the game they are less useful (most Reversi programs can completely search the last 10–15 moves
or so of a game, so no evaluation function is needed).

Several programs have experimented with sophisticated pattern recognition to use set plays,
particularly in the games of Go and Chess. So far no dominant methods have emerged for general
use in all board games.

Ending Database

Very late in some games (like Chess, Backgammon, or Checkers) the board simplifies down. Often,
it is possible to pick up an opening book-style lookup at this stage.

There are several commercial ending databases (often called tablebases) for Chess, covering
the best way to force mate with different combinations of material. These are rarely required
in expert games, however, when a player will resign when they are heading for a known losing
ending.

8.6 Further Optimizations

Although the basic game-playing algorithms are each relatively simple, they have a bewildering
array of different optimizations. Some of these optimizations, like AB pruning and transposition
tables, are essential for good performance. Other optimizations are useful for extracting every last
bit of performance.

This section looks at several other optimizations used for turn-based AI. There is not enough
room to cover implementation details for most of them. The Appendix gives pointers to further

704 Chapter 8 Board Games

information on implementing them. In addition, specific optimizations used only in a relatively
small number of board games are not included. Chess, in particular, has a whole raft of specific
optimizations that are only useful in a small number of other scenarios.

8.6.1 Iterative Deepening

The quality of the play from a search algorithm depends on the number of moves it can lookahead.
For games with a large branching factor, it can take a very long time to look even a few moves
ahead. Pruning cuts down a lot of the search, but most board positions still need to be considered.

For most games the computer does not have the luxury of being able to think for as long as
it wants. Board games such as Chess use timing mechanisms, and modern computer games may
allow players to play at their own speed. Because the minimaxing algorithms search to a fixed
depth, there is no guarantee that the search will be complete by the time the computer needs to
make its move.

To avoid being caught without a move, a technique called iterative deepening can be used.
Iterative deepening minimax search performs a regular minimax with gradually increasing depths.
Initially, the algorithm searches one move ahead, then if it has time it searches two moves ahead,
and so on until its time runs out.

If time runs out before a search has been completed, it uses the result of the search from the
previous depth.

MTD Implementation

The MTD algorithm with iterative deepening, MTD-f , appears to be the fastest general purpose
algorithm for game search. The MTD implementation discussed previously can be called from
the following iterative deepening framework:

1 def mtdf(board, maxDepth):
2 guess = 0
3

4 # Iteratively deepen the search
5 for depth in 2..maxDepth:
6

7 guess, move = mtd(b, depth, guess)
8

9 # Check if we need a result
10 if (outOfTime()) break
11

12 return guess, move

The initial depth for the iterative deepening is two. An initial one level deep search often
has no speed advantage; there is little useful information at this level. In some games with large

8.6 Further Optimizations 705

branching factors or when time is short, however, the one level deep search should be included.
The function outOfTime returns true if the search should not be continued.

History Heuristic

In algorithms that use transposition tables or other memory, iterative deepening can be a positive
advantage to an algorithm. Algorithms such as negascout and AB negamax can be dramatically
improved by considering the best moves first. Iterative deepening with memory allows a move
to be quickly analyzed at a shallow level and later returned to in more depth. The results of the
shallow search can be used to order the moves for the deeper search. This increases the number
of prunes that can be made and speeds up the algorithm.

Using the results of a previous iteration to order moves is called the history heuristic. It is
a heuristic because it relies on the rule of thumb that a previous iteration will produce a good
estimate as to the best move.

8.6.2 Variable Depth Approaches

AB pruning is an example of a variable depth algorithm. Not all branches are searched to the same
depth. Some branches are pruned if the computer decides it no longer needs to consider them.

In general, however, the searches are fixed depth. A condition in the search checks if the
maximum depth has been reached and terminates that part of the algorithm.

The algorithms can be altered to allow variable depth searches on any number of grounds, and
different techniques for pruning the search have different names. They are not new algorithms,
but simply guidelines for when to stop searching a branch.

Extensions

The major weakness of computer players for turn-based games is the horizon effect. The horizon
effect occurs when a fixed sequence of moves ends up with what appears to be an excellent position,
but one additional move will show that that position is, in fact, terrible.

In Chess, for example, the computer may find a series of moves that allow it to capture an
enemy queen. Unfortunately, immediately after this capture the opposing player can immediately
give checkmate. If the computer had searched at a slightly greater depth, it would have seen this
result and not selected the fatal move.

Regardless of how deep the computer looks, this effect may still be present. If the search is
very deep, however, the computer will have enough time to select a better move when the trouble
is eventually seen.

If the search cannot continue to a great depth because of high branching, and if the horizon
effect is noticeable, then the minimax algorithm can use a technique called extensions.

Extensions are a variable depth technique, where the few most promising move sequences are
searched to a much greater depth. By only selecting the most likely moves to consider at each turn,

706 Chapter 8 Board Games

the extension can be many levels deep. It is not uncommon for extensions of 10 to 20 moves to
be considered on a basic search depth of 8 or 9 moves.

Extensions are often searched using an iterative deepening approach, where only the most
promising moves from the previous iteration are extended further. While this can often solve
horizon effect problems, it relies heavily on the static evaluation function, and poor evaluation
can lead the computer to extend along a useless set of options.

Quiescence Pruning

There are many games where the player who appears to be winning can change very rapidly, even
with each turn. In these games the horizon effect is very pronounced and can make implementing
a turn-based AI very difficult. Often, these frantic changes of leadership are temporary and
eventually give rise to stable board positions with a clear leader.

When a period of relative calm occurs, searching deeper often provides no additional infor-
mation. It may be better to use the computer time to search another area of the tree or to search
for extensions on the most promising lines. Pruning the search based on the board’s stability is
called quiescence pruning.

A branch will be pruned if its heuristic value does not change much over successive depths
of search. This probably means that the heuristic value is accurate, and there is little point in
continuing to search there. Combined with extensions, quiescent pruning allows most of the
search effort to be focused on the areas of the tree that are the most critical for good play. This
produces a better computer opponent.

8.7 Turn-Based Strategy Games

This chapter has focused on board game AI. On the face of it, board game AI has many similarities
to turn-based strategy games. Commercial strategy games rarely use the tree-search techniques in
this chapter as their main AI tool, however. The complexity of these games means that the search
algorithms are bogged down before they are able to make any sensible decisions.

Most tree-search techniques are designed for two-player, zero-sum, perfect information games,
and many of the best optimizations cannot be adapted for use in general strategy games.

Some simple turn-based strategy games can benefit directly from the tree-search algorithms in
this chapter, however. Research and building construction, troop movement, and military action
can all form part of the set of possible moves. The board position remains static during a turn. The
game interface given above can, in theory, be implemented to reflect the most complex turn-based
game. This implemented interface can then be used with the regular tree-search algorithms.

8.7.1 Impossible Tree Size

Unfortunately, for complex games the size of the tree becomes too huge.

8.7 Turn-Based Strategy Games 707

For example, in a world-building strategy game imagine the player has 5 cities and 30 units of
troops. Each city can change a handful of economic properties to a large range of values (let’s say
there are 5 properties, each of which can be set to 100 values; that’s 500 different options per city,
or 2,500 in total). Each troop can move up to 5 or 6 spaces (around 500 possible moves each, for
15,000 different moves). Finally, there is a set of possible moves for the whole side, such as what
to research next, nationwide tax levels, whether to change government, and so on. There may be
20,000 different possible moves.

But that’s only the start. In one turn a player may choose any combination of moves for
different units and cities. While not all of the 20,000 moves can be taken at the same time, our
back of the envelope calculation suggests that there would be around 1090 different possible move
combinations at each turn.

No computer will ever get near looking at even a single turn’s possibilities using the normal
minimax algorithm.

Divide and Conquer

Some progress can be made by grouping sets of possible moves together to reduce the number of
options at each turn.

General strategies can be considered in place of individual moves. A player might, for example,
choose to attack a neighboring nation. In this case the board game AI is acting as the top level in
a multi-tier AI.

To achieve the top-level action, a lower level AI may need to take 20 different atomic actions;
the high-level strategy dictates which moves it will make.

In this case the minimaxing algorithm works at the level of a strategy game tree shown in
Figure 8.12.

This approach is equally applicable to real-time games, by abstracting away from the particular
moves and looking at the ebb and flow of the game from an overview.

Attack

AttackRegroupRetreat

Counterattack

Research

Research

Figure 8.12 A game tree showing strategies

708 Chapter 8 Board Games

Heuristics

Even with aggressive divide and conquer, the problem remains huge. The strategy game AI has
to be heavily based on heuristics, so much so that developers often abandon using minimax to
lookahead at all and just use the heuristics to guide the process.

Heuristics used might include territory controlled, the proximity to enemy forces, technolog-
ical superiority, population contentedness, and so on.

8.7.2 Real-Time AI in a Turn-Based Game

It most cases turn-based strategy games have AI very similar to their RTS counterparts (see
Chapter 6 for more details).

Most of the algorithms in the RTS chapter are directly applicable to turn-based games. In
particular, systems like terrain analysis, influence mapping, strategy scripts, and high-level plan-
ning are all applicable to turn-based games. Influence mapping was originally used in turn-based
games.

Exercises

1. Devise a scoring function for Tic-Tac-Toe.

2. Show how minimax values are bubbled up on this tree:

6 46 27 48 33 10 25 22 1 14 6 2 12 24 4817

3. Show how negamax values are bubbled up on the tree in question 2.

4. Show how AB minimax values are bubbled up on the tree in question 2.

5. Show how AB negamax values are bubbled up on the tree in question 2.

Exercises 709

6. Show how aspirational search values are bubbled up the tree in question 2 using the range
(5,20). Comment on your result.

7. Show how the negascout algorithm operates on the tree in question 2.

8. Devise a Zobrist hash scheme for the game Connect Four (you’ll have to look it up if you’ve
never heard of it). (Hint: A board position can be described by specifiying whether each of the
locations contains a red disc, a yellow disc, or is empty.)

9. Implement an MTD algorithm for a simple game such as Connect Four.Program ming

This page intentionally left blank

Part III

Supporting Technologies

This page intentionally left blank

9
Execution

Management

here are only limited processor resources available to a game. Traditionally, most of theseThave been used to create great graphics: the primary driving force in mass market games.
The processor budget given to AI developers is growing steadily as most of the graphics get passed
on to the graphics card. It is not unheard of for AI to have more than 50% of the processor time,
although 5 to 25% is a more common range.

Even with more execution time available, processor time can easily get eaten up by pathfinding,
complex decision making, and tactical analysis. AI is also inherently inconsistent. Sometimes you
need lots of time to make a decision (planning a route, for example), and sometimes a tiny budget
is enough (moving along the route). All your characters may need to pathfind at the same time,
or you may have hundreds of frames where nothing much is happening to the AI.

A good AI system needs facilities that can make the best use of the limited processing time
available. There are three main elements to this: dividing up the execution time among the AI
that needs it, having algorithms that can work a bit at a time over several frames, and, when
resources are scarce, giving preferential treatment to important characters. This chapter looks at
these performance management issues to build up a comprehensive AI scheduling tool.

The solution is motivated by AI, and without complex AI it is rarely needed. But developers
with a good AI scheduling system tend to use it for many other purposes, too. We have seen
a range of applications for the AI scheduling system: incremental loading of new areas of the
level, texture management, game logic, audio scheduling, and physics updates all controlled by
scheduling systems originally designed for AI.

Copyright © 2009 by Elsevier Inc. All rights reserved. 713

714 Chapter 9 Execution Management

9.1 Scheduling

Lots of elements of a game change rapidly and have to be processed every frame. Characters
on-screen are usually animated, requiring the geometry to be updated to display each frame.
The position and motion of objects in the world are processed by the physics system. This needs
frequent updating to move objects correctly through space and have them bounce and interact
properly. For smooth gameplay, the user’s inputs need to be processed quickly and feedback
provided on-screen.

In contrast, the AI controlling some of the characters changes much less often. If a military
unit is moving across the whole game map, its route can be calculated once and then the path
followed until the goal is reached. In a dogfight, an AI plane may have to always make complex
motion calculations to stay in touch with its quarry. But once the plane has decided who to go
after, it doesn’t need to think tactically and strategically as often.

A scheduling system manages which tasks get to run when. It copes with different execution
frequencies and different task durations. It should help smooth the execution profile of the game
so that no big processing peaks occur. The scheduling system we build in this section will be
general enough for most game applications, AI and otherwise.

A key feature for the design of the scheduler is speed. We don’t want to spend a lot of time
processing the scheduler code, especially as it is being constantly run, doing tens if not hundreds
or thousands of management tasks every frame.

9.1.1 The Scheduler

Schedulers work by assigning a pot of execution time among a variety of tasks, based on which
ones need the time.

Different AI tasks can and should be run at different frequencies. We can simply schedule
some tasks to run every few frames and other tasks to run more frequently. We are slicing up the
overall AI and distributing it over time. It is a powerful technique for making sure that the game
doesn’t take too much AI time overall and that more complex tasks can be run infrequently. It is
shown diagrammatically in Figure 9.1.

This conforms to what we’d generally expect of intelligent characters. We make simple
split-second decisions all the time, such as basic movement control. We take a little longer to
process sensory information (to react to an incoming projectile, for example), but this processing
takes a little longer to complete. Similarly, we only make large-scale tactical and strategic decisions
infrequently: every few seconds at the most. These large-scale decisions are typically the most
time consuming.

When there are lots of characters, each with its own AI, we can use the same slicing
technique to execute only a few of the characters on each frame. If 100 characters have to
update their state every 30 frames (once a second), then we can process 3 characters on each
frame.

9.1 Scheduling 715

Character 1
Pathfinding

Character 1
Motion

Character 1
Process line of sight

Character 2
Process line of sight

Character 2
MotionFrame 2

Character 1
Motion

Character 2
MotionFrame 1

Team
Influence mapping and strategy

Character 1
Motion

Character 2
MotionFrame 3

Character 2
Pathfinding

Character 1
Motion

Character 2
MotionFrame 4

Total AI time budget

Figure 9.1 AI slicing

Frequencies

The scheduler takes tasks, each one having an associated frequency that determines when it should
be run.

On each time frame, the scheduler is called to manage the whole AI budget. It decides which
behaviors need to be run and calls them.

This is done by keeping count of the number of frames passed. This is incremented each time
the scheduler is called. It is easy to test if each behavior should be run by checking if the frame
count is evenly divisible by the frequency. The modular division operation on integers (%) is very
fast on all current-generation gaming hardware, providing a simple and efficient solution.

On its own, this approach suffers from clumping: some frames with no tasks being run, and
other frames with several tasks sharing the budget.

In Figure 9.2 we see a problem with this, however. There are three behaviors with frequencies
of 2, 4, and 8. Whenever behavior B runs, A is always running. Similarly, whenever behavior C
runs, both B and A are running. If the aim is to spread out the load, then this is a poor solution.

In this case the frequencies clash because they have a common divisor (a divisor is a number
that can be divided into another a whole number of times). So 1, 2, and 3 are the only divisors
of 6. A common divisor is one that divides into a set of numbers. So 8 and 12 have three common
divisors: 1, 2, and 4. All numbers have 1 as a divisor, but that is irrelevant here. It’s the higher
numbers that cause the problems.

A first step to solving the problem is to try picking frequencies that are relatively prime: those
that do not have a number that divides into all of them (except 1, of course).

In Figure 9.3 we’ve made both behaviors B and C more frequent, but we get fewer clashing
problems because they are relatively prime.

716 Chapter 9 Execution Management

1 2
A

3 4 5 6 7 8 9 10 11 12 13 14 15 16Frame:
A
B

A

C
B

A A A
B

A

C
B

A

Figure 9.2 Behaviors in phase

1 2 3 4 5 6 7 8 9 17 18 1910 11 12 13 14 15 16 20Frame:
A B A C A

B
A
B

A
B

A
C

A B A
C

A B A
C

Figure 9.3 Relatively prime

Phase

Even relatively prime frequencies still clash, however. The example shows three behaviors at
frequencies of 2, 3, and 5. Every 6 frames, behaviors A and B clash, and every 30 frames, all of
them clash.

Making frequencies relatively prime makes the clash points less frequent but doesn’t eliminate
them.

To solve the problem, we add an additional parameter to each behavior. This parameter, called
phase, doesn’t change the frequency but offsets when the behavior will be called. Imagine three
behaviors all with a frequency of 3. Under the original scheduler, they will all run at the same
time—every three frames. If we could offset these, they could run on consecutive frames, so each
frame would have one behavior running, but all behaviors would run every three frames.

Pseudo-Code

We can implement a basic scheduler in the following way:

1 class FrequencyScheduler:
2

3 # Holds the data per behavior to schedule
4 struct BehaviorRecord:
5 thingToRun
6 frequency
7 phase

9.1 Scheduling 717

8

9 # Holds the list of behavior records
10 behaviors
11

12 # Holds the current frame number
13 frame
14

15 # Adds a behavior to the list
16 def addBehavior(function, frequency, phase):
17

18 # Compile the record
19 record = new Record()
20 record.functionToCall = function
21 record.frequency = frequency
22 record.phase = phase
23

24 # Add it to the list
25 behaviors.append(record)
26

27 # Called once per frame
28 def run():
29

30 # Increment the frame number
31 frame += 1
32

33 # Go through each behavior
34 for behavior in behaviors:
35

36 # If it is due, run it
37 if behavior.frequency % (frame + behavior.phase):
38 behavior.thingToRun()

Implementation Notes

The phase value is added to the time value immediately before the modular division is performed.
This is the most efficient way of incorporating phase. It may seem clearer to check something like
the following:

1 time % frequency == phase

Having a phase added, however, allows us to use phase values greater than the frequency. If
you need to schedule 100 agents to run every 10 frames, then you can do the following:

718 Chapter 9 Execution Management

1 for i in 1..100:
2 behavior[i].frequency = 10
3 behavior[i].phase = i

This is less error prone; if the developer changes the frequency but not the phase, the behavior
won’t suddenly stop being executed.

Performance

The scheduler is O(1) in memory and O(n) in time, where n is the number of behaviors being
managed.

Direct Access

This algorithm is suitable for situations where there are a reasonable number of behaviors (tens or
hundreds) and when frequencies are fairly small. Checking is needed to make sure each behavior
needs to be run. It may be that several behaviors always run together (as in the 100 agents
example in the previous implementation notes). In this case, checking each of the 100 is probably
wasteful.

If your game has only a fixed number of characters and they all have the same frequency, then
you can simply set up an array with all the behaviors that will be run together stored in a list in
one element of the array. With a fixed frequency, the element can be accessed directly, and all the
behaviors run. This will then be O(m) in time, where m is the number of behaviors to be run.

Pseudo-Code

This might look like the following:

1 class DirectAccessFrequencyScheduler:
2

3 # Holds the data for a set of behaviors with one
4 # frequency
5 struct BehaviorSet:
6 functionLists
7 frequency
8

9 # Holds the multiple sets, one for each frequency needed
10 sets
11

12 # Holds the current frame number

9.1 Scheduling 719

13 frame
14

15 # Adds a behavior to the list
16 def addBehavior(function, frequency, phase):
17

18 # Find the correct set
19 set = sets[frequency]
20

21 # Add the function to the list
22 set.functionLists[phase].append(function)
23

24 # Called once per frame
25 def run():
26

27 # Increment the frame number
28 frame += 1
29

30 # Go through each frequency set
31 for set in sets:
32

33 # Calculate the phase for this frequency
34 phase = set.frequency % frame
35

36 # Run the behaviors in the appropriate location
37 # of the array
38 for entry in functionLists[phase]:
39 entry()

Data Structures and Interfaces

The set’s data member holds instances of BehaviorSet. In the original implementation we used
the“for ... in ...” operation to get the elements of the set, in any order. In this implementation
we also use the set as a hash table, looking up an entry by its frequency value.

If there is a complete set of frequencies up to the maximum (e.g., if there is a maximum
frequency of 5, and there are BehaviorSet instances for frequencies of 4, 3, and 2), then we can
use an array lookup by frequency, rather than a hash table.

Performance

This is O(fp) in time, where f is the number of different frequencies, and p is the number
of behaviors per phase value. If all the array elements have some content (i.e., all phases have
corresponding behaviors) then this will be equal to O(m), as promised.

Storage is O(fFp), where F is the average frequency used.

720 Chapter 9 Execution Management

For a fixed number of behaviors, this may be a good solution, but it is memory hungry and
doesn’t provide a good performance increase when there are lots of different frequencies and
phase values being used.

In this case, the original implementation, with some kind of hierarchical scheduling (discussed
later in the section), is probably optimal.

Phase Quality

Calculating good phase values to avoid spikes can be difficult. It is not intuitively clear whether
a particular set of frequency and phase values will lead to a regular spike or not. It is naive to
expect the developer who integrates the components of the game to be able to set optimal phase
values. The developer will generally have a better idea of what the relative frequencies need to be,
however.

We can create a metric that measures the amount of clumping that will occur in a frequency
and phase implementation. This gives feedback as to the expected quality of the scheduler.

We simply sample a large number of different random time values and accumulate statistics
for the number of behaviors that are being run. It will take only a couple of seconds to sample
millions of frames’ worth of scheduling for tens of tasks. We get minimum, maximum, average,
and distribution statistics. Optimal scheduling will have a small distribution, with minimum and
maximum values close to the average.

Automatic Phasing

Even with good-quality feedback, changing phase values is not intuitive. It would be better to take
the burden of setting phases from the developer.

It is possible to calculate a good set of phases for a set of tasks with different frequencies. This
allows the scheduler to expose the original implementation, taking a frequency only for each task.

Wright’s Method

Ian Wright, the first person to write about scheduling in some depth (although it had been widely
used by many developers in much the same form), provided a simple and powerful phasing
algorithm.

When a new behavior is added to the scheduler, with a frequency of f , we perform a dry run
of the scheduler for a fixed number of frames into the future. Rather than executing behaviors
in this dry run, we simply count how many would be executed. We find the frame with the least
number of running behaviors. The phase value for the behavior is set to the number of frames
ahead at which this minimum occurs.

The fixed number of frames is normally a manually set figure found by experimentation.
Ideally, it would be the least common multiple (LCM) of all the frequency values used in the
scheduler. Typically, however, this is a large number and would slow the algorithm unnecessarily
(for frequencies of 2, 3, 5, 7, and 11, for example, we have an LCM of 2310).

9.1 Scheduling 721

1 2 3 4 5 6 7 8 9 10Frame:

2 behaviors total

Figure 9.4 Wright’s phasing algorithm

Figure 9.4 shows this in operation. The behavior is added with a frequency of 5 frames. We
can see that over the next 10 frames (including the current one) frames 3 and 8 have the least
number of combined behaviors. We can therefore use a phase value of 3.

This approach is excellent in practice. It has a theoretical chance that it will still produce heavy
spikes, if the lookahead isn’t at least as large as the size of the LCM.

These problems can be alleviated by using an analytic method, although it produces very little
benefit in practice.

Analytic Method

There is source code on the website that calculates near-optimum phase values as behaviors are

Library

added incrementally. It is based on code we wrote for a custom phased scheduling system. As in
Wright’s method, it never changes the phase of already added behaviors, so the complete set is not
optimum, but it is good enough in most cases.

It works by decomposing frequency values into their prime factors and checking how many
behaviors will clash on each. Unfortunately, the algorithm is complex, and because it is not widely
used we’ve left it as a curiosity on the website. In practice, it performs only marginally better than
Wright’s algorithm for most problems but can be significantly better when the frequencies in the
algorithm have a very large LCM.

Single Task Spikes

Using relatively prime frequencies and calculated phase offsets, you can minimize the number of
frames that have spikes in AI time by distributing the hard work.

For most cases this approach is sufficient to schedule AI, and it can be very useful for other
elements of the game that only have to be performed occasionally. In some circumstances, however,
a piece of code is so expensive to run that it will cause a spike all on its own if it is run within a
frame.

More advanced schedulers need to allow processes to be run across multiple frames. These are
interruptible processes.

722 Chapter 9 Execution Management

9.1.2 Interruptible Processes

An interruptible process is one that can be paused and resumed when needed. Complex algorithms
such as pathfinding should ideally be run for just a short time on each frame. After enough total
time, a result will be available for use, but it won’t finish on the same frame as it started. For many
algorithms, the total time that the algorithm uses is far too large for one frame, but in small bites
it doesn’t jeopardize the budget.

Threads

There is already a general programming tool to implement any kind of interruptible process.
Threads are available on all game machines (with the exception of some varieties of embedded
processors with such limited capabilities it would be unlikely you’d be able to run complex AI in
any case). Threads allow chunks of code to be paused and returned to at a later time.

Most threading systems switch between threads automatically using a mechanism called pre-
emptive multitasking. This is a mechanism where the code is paused, regardless of what it is doing.
All of its settings are saved, and then another code is loaded into the processor in its place. This
facility is implemented at a hardware level and is often managed by the operating system.

We could take advantage of threads by putting the time-consuming tasks in their own thread.
This way we would avoid using a special scheduling system. Unfortunately, despite being simple
to implement, this is not often a sensible solution.

Switching between threads involves unloading all the data for the exiting thread and reloading
all the data for the new thread. This adds significant time. Each switch involves flushing memory
caches and doing a lot of housekeeping. Many developers, rightly so, have avoided using lots of
threads. While a few tens of threads may not cause noticeable performance drops on a PC, using
a thread in a real-time strategy (RTS) game for each character’s pathfinding algorithm would be
excessive.

Software Threads

For larger numbers of simultaneous behaviors, a manual scheduler is the most common solution.
This requires behaviors to be written so that they return control after processing for a short time.
Whereas the hardware can manually muscle in and boot out a threaded process, the scheduler
relies on it behaving nicely and surrendering control after a short bout of processing.

This has the advantage that the scheduler doesn’t need to manage the clean-up and house-
keeping for the change of thread; it assumes that the task saved all the data it needed (and only
the data it needed) before returning control.

This scheduling approach is known as “software threads” or “lightweight threads” (although
the latter is also used to mean micro-threads; see below).

The scheduling system we’ve looked at so far can cope with interruptible processes without
modification. The difficulty is writing the behaviors to be scheduled. Behaviors scheduled with
a frequency of 1 will get called each frame. If the code is written in such a way that it only takes

9.1 Scheduling 723

a short time to do a bit more processing and then returns, the repeated calling will eventually
provide it time to complete.

Micro-Threads

Although operating systems support threads, they often add a lot of extra processing and overhead.
This overhead allows them to better manage thread switching—to track down errors or to support
advanced memory management.

This overhead can be unnecessary in a game, and many developers have experimented with
writing their own thread switching code, sometimes called micro-threads (or lightweight threads,
confusingly).

By trimming down the thread overhead, a relatively speedy threading implementation can be
achieved. If the code in each thread is aware of the way threads are switched, then it can avoid
operations that expose the shortcuts made.

This approach produces very fast code, but can also be extremely difficult to debug and
develop. While it might be suitable for running a small number of key systems, developing the
whole game in this way can be a nightmare. Personally, we’ve always stayed away from it, but we
know a handful of AI developers who are quite comfortable with mixing the approach with some
of the other scheduling techniques in this section.

Hyper-Threads and Multiple Cores

On more recent PCs, a new approach to threading is being used. Modern CPUs have a number
of separate processing pipelines, each working at the same time. The latest PCs and the current
generation of games machines have multiple cores: multiple complete CPUs on one sliver of
silicon.

In normal operation the CPU splits its execution task into chunks and sends a chunk to each
pipeline. It then takes the results and merges them together (sometimes realizing it needs to go
back and do something again because the results of one pipeline conflict with those of another).

Hyper-threading is a technology whereby these pipelines are given their own thread to process;
different threads literally run at the same time. On multi-core machines each processor can be
given its own thread.

It seems clear that this parallel architecture will become increasingly ubiquitous throughout
PCs, consoles, and handheld games machines. It is potentially very fast. Threads are still switched
in the normal way, however, so for large numbers of threads it still isn’t the most efficient solution.

Quality of Service

Console manufacturers have stringent sets of requirements that need to be fulfilled before a game
can be released on their platform. Frame rates are an obvious sign of quality to gamers, and
all console manufacturers specify that frame rates should be steady. Frame rates of 30, 50, or

724 Chapter 9 Execution Management

60 Hz are most common and require that all game processing be done and dusted in 33, 20, or
16 milliseconds.

At 60 Hz, if the whole processing uses 16 milliseconds, then everything is fine. If it gets done
in 15 milliseconds, that’s fine, too, but the console waits around for the extra millisecond doing
nothing. That is time that could be used to make the game more impressive—an extra visual
effect, a cloth simulation, or a few more bones in the skeleton of the character.

For this reason, time budgets are usually pushed as close to the limit as possible. To make sure
the frame rate doesn’t drop, it is critical that limits be placed on how long the graphics, physics,
and AI will take. It is often more acceptable to have a long-running component than a component
that fluctuates wildly.

The scheduling system we’ve looked at so far expects behaviors to run for a short time. It trusts
that the fluctuations in running time will average out any differences to give a steady AI time. In
many cases this is just not good enough and more control is necessary.

Threads can be difficult to synchronize. If a behavior is always being interrupted (i.e., by a
thread switch) before it can return a result, then its character might simply stand still and do
nothing. A tiny change in the amount of processing can often give rise to this kind of problem,
which is very difficult to debug and can be even harder to correct. Ideally, we’d like a system that
allows us to control total execution time, while being able to guarantee that behaviors get run.
We’d also like to be able to access statistics that help us understand where processing time is being
used and how behaviors are taking their share of the pie.

9.1.3 Load-Balancing Scheduler

A load-balancing scheduler understands the time it has to run and distributes this time among
the behaviors that need to be run.

We can turn our existing scheduler into a load-balancing scheduler by adding simple timing
data.

The scheduler splits the time it is given according to the number of behaviors that must be
run on this frame. The behaviors that get called are passed timing information so they can decide
when to stop running and return.

Because this is still a software threading model, there is nothing to stop a behavior from
running for as long as it wants. The scheduler trusts that they will be well behaved. To adjust for
small errors in the running time of behaviors, the scheduler recalculates the time it has left after
each behavior is run. This way an overrunning behavior will reduce the time that is given to others
run in the same frame.

Pseudo-Code

1 class LoadBalancingScheduler:
2

3 # Holds the data per behavior to schedule
4 struct BehaviorRecord:

9.1 Scheduling 725

5 thingToRun
6 frequency
7 phase
8

9 # Holds the list of behavior records
10 behaviors
11

12 # Holds the current frame number
13 frame
14

15 # Adds a behavior to the list
16 def addBehavior(function, frequency, phase):
17

18 # Compile the record
19 record = new Record()
20 record.thingToRun = function
21 record.frequency = frequency
22 record.phase = phase
23

24 # Add it to the list
25 behaviors.append(record)
26

27 # Called once per frame
28 def run(timeToRun):
29

30 # Increment the frame number
31 frame += 1
32

33 # Keep a list of behaviors to run
34 runThese = []
35

36 # Go through each behavior
37 for behavior in behaviors:
38

39 # If it is due, schedule it
40 if behavior.frequency % (frame + behavior.phase):
41 runThese.append(behavior)
42

43 # Keep track of the current time
44 lastTime = time()
45

46 # Find the number of behaviors we need to run
47 numToRun = runThese.length()
48

726 Chapter 9 Execution Management

49 # Go through the behaviors to run
50 for i in 0..numToRun:
51

52 # Find the available time
53 currentTime = time()
54 timeToRun -= currentTime - lastTime
55 availableTime = timeToRun / (numToRun - i)
56

57 # Run the function
58 entry = runThese[i].thingToRun
59 entry(availableTime)
60

61 # Store the current time
62 lastTime = currentTime

Data Structures

The functions that we are registering should now take a time value, indicating the maximum time
they should run.

We have assumed that the list of functions we want to run has a length method that gets the
number of elements.

Performance

The algorithm remains O(n) in time (n is the total number of behaviors in the scheduler), but is
now O(m) in memory, where m is the number of behaviors that will be run. We cannot combine
the two loops to give O(1) memory because we need to know how many behaviors we will be
running before we can calculate the allowed time.

These values are excluding the processing time and memory of the behaviors. Our whole
aim with this algorithm is that the processing resources used by the scheduled behaviors is much
greater than those spent scheduling them.

9.1.4 Hierarchical Scheduling

While a single scheduling system can control any number of behaviors, it is often convenient
to use multiple scheduling systems. A character may have a number of different behaviors to
execute—for example, pathfinding a route, updating its emotional state, and making local steer-
ing decisions. It would be convenient if we could run the character as a whole and have the
individual components be scheduled and allotted time. Then we can have a single top-level sched-
uler that gives time to each character, and the time is then divided according to the character’s
composition.

Hierarchical scheduling allows a scheduling system to be run as a behavior by another sched-
uler. A scheduler can be assigned to run all the behaviors for one character, as in the previous

9.1 Scheduling 727

example. As in Figure 9.5, another scheduler can then allocate time on a per-character basis. This
makes it very easy to upgrade a character’s AI without unbalancing the timing of the whole game.

With a hierarchical approach, there is no reason why the schedulers at different levels should
be of the same kind. It is possible to use a frequency-based scheduler for the whole game and
priority-based schedulers (described later) for individual characters.

Data Structures and Interfaces

To support this, we can move from schedulers calling functions to a generic interface for all
behaviors:

1 class Behavior:
2 def run(time)

Anything that can be scheduled should expose this interface. If we want hierarchical schedul-
ing, then the schedulers themselves also need to expose it (the load-balancing scheduler above has
the right method, it just needs to explicitly derive from Behavior). We can make our schedulers
work by modifying the LoadBalancingScheduler class in the following way:

1 class LoadBalancingScheduler (Behavior):
2 # ... All contents as before ...

Since behaviors are now classes rather than functions, we also need to change the way they are
called. Previously, we used a function call, and now we need to use a method call, so:

1 entry(availableTime)

Team
scheduler

Character 4
scheduler

Character 1
scheduler

Team strategy
behavior

Pathfinding
behavior

Decision making
behavior

Movement
behavior

Time is divided among characters

Time is divided among behaviors

Figure 9.5 Behaviors in a hierarchical scheduling system

728 Chapter 9 Execution Management

becomes:

1 entry.run(availableTime)

in the LoadBalancingScheduler class.

Behavior Selection

On its own there is nothing that hierarchical scheduling provides that a single scheduler can-
not handle. It comes into its own when used in combination with level of detail systems,
described later. Level of detail systems are behavior selectors; they choose only one behavior
to run.

In a hierarchical structure this means that schedulers running the whole game don’t need
to know which behavior each character is running. A flat structure would mean removing and
registering behaviors with the main scheduler each time the selection changed. This is prone to
runtime errors, memory leaks, and hard-to-trace bugs.

9.1.5 Priority Scheduling

There are a number of possible refinements to the frequency-based scheduling system. The most
obvious is to allow different behaviors to get a different share of the available time. Assigning a
priority to each behavior and allocating time based on this is a good approach.

In practice, this bias (normally called priority) is just one of many time allocation policies
that can be implemented. If we go a little further with priorities, we can remove the need for
frequencies entirely.

Each behavior receives a proportion of the AI time according to its priority.

Pseudo-Code

1 class PriorityScheduler:
2

3 # Holds the data per behavior to schedule
4 struct BehaviorRecord:
5 thingToRun
6 frequency
7 phase
8 priority
9

10 # Holds the list of behavior records
11 behaviors
12

9.1 Scheduling 729

13 # Holds the current frame number
14 frame
15

16 # Adds a behavior to the list
17 def addBehavior(function, frequency, phase, priority):
18

19 # Compile the record
20 record = new Record()
21 record.functionToCall = function
22 record.frequency = frequency
23 record.phase = phase
24 record.priority = priority
25

26 # Add it to the list
27 behaviors.append(record)
28

29 # Called once per frame
30 def run(timeToRun):
31

32 # Increment the frame number
33 frame += 1
34

35 # Keep a list of behaviors to run, and their total
36 # priority
37 runThese = []
38 totalPriority = 0
39

40 # Go through each behavior
41 for behavior in behaviors:
42

43 # If it is due, schedule it
44 if behavior.frequency \% (frame + behavior.phase):
45 runThese.append(behavior)
46 totalPriority += behavior.priority
47

48 # Keep track of the current time
49 lastTime = time()
50

51 # Find the number of behaviors we need to run
52 numToRun = runThese.length()
53

54 # Go through the behaviors to run
55 for i in 0..numToRun:
56

730 Chapter 9 Execution Management

57 # Find the available time
58 currentTime = time()
59 timeToRun -= currentTime - lastTime
60 availableTime = timeToRun * behavior.priority /
61 totalPriority
62

63 # Run the function
64 entry = runThese[i].thingToRun
65 entry(availableTime)
66

67 # Store the current time
68 lastTime = currentTime

Performance

This algorithm has the same characteristics as the load-balancing scheduler: O(n) in time
and O(m) in memory, excluding the processing time and memory used by the scheduled
behaviors.

Other Policies

One priority-based scheduler we have worked with had no frequency data at all. It used only the
priorities to divide up time, and all behaviors were scheduled to run every frame. The scheduler
presumed that every behavior was interruptible and would continue its processing in the follow
frame if it did not complete. In this case, having all behaviors running, even for a short time, made
sense.

Alternatively, we could also use a policy where each behavior asks for a certain amount of
time, and the scheduler splits up its available time so that behaviors get what they ask for. If a
behavior asks for more time than is available, it may have to wait for another frame before getting
its request. This is usually combined with some kind of precedence order, so behaviors that are
more important will be preferred when allocating the budget.

Alternatively, we could distribute time according to bias, then work out the actual length of
time behaviors are taking and change their bias. A behavior that always overruns, for example,
might be given less time to try to make sure it doesn’t squeeze others.

The sky’s the limit, no doubt, but there are practical concerns, too. If your game is under high
load, it may take some tweaking to find a perfect strategy for dividing up time. We haven’t seen a
complex game where the AI didn’t benefit from some kind of scheduling (excluding games where
the AI is so simple that it always runs everything in a frame). The mechanism usually requires
some tweaking.

9.2 Anytime Algorithms 731

Priority Problems

There are subtle issues with priority-based approaches. Some behaviors need to run regularly,
while others don’t; some behaviors can be cut into small time sections, while others require their
time all at once; some behaviors can benefit from spare time, while others will not improve.
A hybrid approach between priority and frequency scheduling can solve some of these issues, but
not all.

The same issues arise for hardware and operating system developers who are implement-
ing threads. Threads can have priorities, different allocation policies, and different frequencies.
Look for information on implementing threading if you need a really nuts-and-bolts scheduling
approach. In our experience most games don’t need complex scheduling. A simple approach, such
as the frequency implementation earlier in this section, is powerful enough.

9.2 Anytime Algorithms

The problem with interruptible algorithms is that they can take a long time to complete. Imagine
a character trying to plan a route across a very large game level. At the rate of a few hundred
microseconds per frame, this could take several seconds to complete.

The player will see the character stand still, doing nothing for several seconds, before moving
off with great purpose. If the perception window isn’t very large, this will immediately alert the
player, and the character will appear unintelligent. It is ironic that the more complex the processing
going on and the more sophisticated the AI, the longer it will take and the more likely the character
is to look stupid.

When we do the same process, we often start acting before we have finished thinking. This
interleaving of action and thinking relies on our ability to generate poor but fast solutions and to
refine them over time to get better solutions. We might move off in the rough direction of our
goal, for example. In the couple of seconds of initial movement, we have worked out the complete
route. Chances are the initial guess will be roughly okay, so nothing will be out of place, but on
occasion we’ll remember something key and have to double back (we’ll be halfway to the car and
realize we’ve forgotten the keys, for example).

AI algorithms that have this same property are called “anytime algorithms.” At any time you
can request the best idea so far, but leave the system to run longer and the result will improve.

Putting an anytime algorithm into our existing scheduler requires no modifications. The
behavior needs to be written in such a way that it always makes its best guess available before
returning control to the scheduler. That way another behavior can start acting on the guess, while
the anytime algorithm refines its solution.

The most common use of anytime algorithms is for movement or pathfinding. This is usually
the most time-consuming AI process. Certain variations of common pathfinding techniques can
be easily made into anytime algorithms. Other suitable candidates are turn-based AI, learning,
scripting language interpreters, and tactical analysis.

732 Chapter 9 Execution Management

9.3 Level of Detail

In Chapter 2 we looked at the perception window: the player’s attention that roams selectively
during gameplay. At any time the player is likely to be focused on only a small area of the game
level. It makes sense to ensure that this area looks good and contains realistic characters, even at
the expense of the rest of the level.

9.3.1 Graphics Level of Detail

Level of detail (LOD) algorithms have been used for years in graphics programming. The idea
is to spend the most computational effort on areas of the game that are most important to the
player. Close-up, an object is drawn with more detail than it is at a distance.

In most graphics LOD techniques, the detail is a function of the geometric complexity: the
number of polygons drawn in a model. At a distance even a few polygons can give the impression
of an object; closeup, the same object may require thousands of polygons.

Another common approach is to use LOD for texture detail. This is supported in hardware
on most graphics cards. Textures are mipmapped; they are stored in multiple LODs, and distant
objects use lower resolution versions. In addition to texture and geometry, other visual artifacts
can be simplified: special effects and animation are both commonly reduced or removed for
objects at a distance.

Levels of detail are usually based on distance, but not exclusively. In many terrain rendering
algorithms, for example, silhouettes of hills at a distance are drawn with more detail than a piece
of flat ground immediately next to the player. Both Sony and Renderware engineers have told us
that it is surprising how many developers simply think of LOD as distance. In reality, anything
that is more noticeable to the player needs more detail.

The hemispherical headlight on an old motorbike, for example, jars the eye if it is made of few
polygons (human eyes detect corners easily). It may end up accounting for 15% of the polygons
in the whole bike, simply because we don’t expect to see corners on a spherical object. In the guts
of the bike, however, where there is more detail in reality, we can use less polygons, because the
eye is expecting to see corners and a lack of smoothness.

There are two general principles here. First, spend the most effort on the things that will be
noticed, and second, spend effort on those things that cannot be approximated easily.

9.3.2 AI LOD

Level of detail algorithms in AI are no different to those in graphics: they allocate computer time
in preference to those characters that are most important or most sensitive to error, from the
player’s point of view.

Cars at a distance along the road, for example, don’t need to follow the rules of the road
correctly; players are unlikely to notice if they change lanes randomly. At a very long distance,
players are even unlikely to notice if a lot of cars are passing right through one another. Similarly,

9.3 Level of Detail 733

if a character in the distance takes 10 seconds to decide where to move to next, it will be less
noticeable than if a nearby character suddenly stops for the same duration.

Despite these examples, AI LOD is not primarily driven by distance. We can watch a character
from a distance and still have a good idea about what it is doing. Even if we can’t watch them, we
expect characters to be acting all the time. If the AI applied only when the character was on-screen,
then it would look odd when we turn away for a while and turn back to find the same character
at exactly the same location, mid-walk. As well as distance, we have to consider how likely it is
that a player would watch a character or look to see if it had moved. That depends on the role the
character has in the game.

Importance in AI is often dictated by the story of the game. Many game characters are added
for flavor; it doesn’t matter if they are always walking around the town in a fixed pattern, because
only a very few players will notice that. You might end up with hard-core gamers on forums saying,
“I followed the blacksmith around the city, and he follows the same route, and never goes to sleep
or pee.” But that is hardly important to the majority of your players and isn’t likely to affect sales.

If a character who is central to the game’s story walks around in a circle in the main square,
most players will notice. It is worth letting the character have a bit more variety. Of course, this has
to be balanced against gameplay concerns. If the character in question has important information
for the player’s quest, then we don’t want the player to have to search the whole city to track the
character down and ask one more question.

Importance Values

Throughout this section we will assume that importance is a single numerical value that applies
to each character in the game. Many factors can be combined to create the importance value, as
we have seen. An initial implementation can usually make do with distance to start with, simply
to make sure everything is up and running.

9.3.3 Scheduling LOD

A simple and effective LOD algorithm is based on the scheduling systems discussed previously.
Simply using a scheduling frequency based on the importance of a character provides an LOD
system.

Important characters can receive more processing time than others by being scheduled more
frequently. If you are using a priority-based scheduling system, then both frequency and priority
can depend on importance.

This dependence may be by means of a function, where as importance increases the frequency
value decreases, or it might be structured in categories, where a range of importance values
produces one frequency and another range maps to a different frequency. Frequencies, because
they are integers, effectively use the latter approach (although if there are hundreds of possible
frequency values, it makes more sense to think of it as a function). Priorities, on the other hand,
can work in either way.

734 Chapter 9 Execution Management

Under this scheme characters have the same behavior whether their importance value is high
or low. The reduced time available has different effects on the character depending on whether a
frequency or priority-based scheduler is used.

Frequency Schedulers

In a frequency-based implementation, less important characters get to make decisions less often.
Characters moving through a city, for example, may keep walking in a straight line between

calls to their AI. If the AI is called infrequently, they may overshoot their target and have to double
back occasionally. Alternatively, they may not be able to react in time to a collision with another
pedestrian.

Priority Schedulers

Priority-based implementations give more time to important behaviors. All behaviors may be run
every frame, but important ones can run for longer. We assume that anytime algorithms are being
used, so the character can begin to act before its AI processing is complete.

Characters with low importance will tend to make worse decisions than those with high
importance. The characters above, for example, will not overshoot their target, but they may elect
to go a bizarre route to their destination, rather than a seemingly obvious shortcut (i.e., their
pathfinding algorithm may not have time to get the best result). Alternatively, when avoiding
another pedestrian, the behavior may not have time to check if the new path is clear, causing the
character to collide with someone else.

Combined Scheduling

Combining frequency and priority scheduling can reduce the problems caused with scheduling
LOD. Priority scheduling allows AI to be run more often (reducing behavior lock-in such as
overshooting), while frequency scheduling allows AI to be run longer (providing better quality
decisions).

It is not a silver bullet, however. In both the examples a low-importance character may collide
with other characters more often. Combining approaches will not get around the fact that collision
avoidance, essential for nearby characters, takes lots of processing power. It is often better to change
a character’s behavior entirely when its importance drops.

9.3.4 Behavioral LOD

Behavioral LOD allows a character’s choice of behavior to depend on its importance. The character
selects one behavior at a time based on its current importance. As its importance changes, the
behavior may be changed for another. The aim is that behaviors associated with lower importance
require fewer resources.

9.3 Level of Detail 735

For each possible importance value there is an associated behavior. At each time step the
behavior is selected based on the importance value.

A pedestrian in a role-playing game (RPG), for example, might have fairly complex collision
detection, obstacle avoidance, and path following steering when it is important. Pedestrians in
the periphery of the action (such as those on a distant walkway or seen from a bridge) can have
their collision detection disabled completely. Passing through one another freely isn’t nearly as
noticeable as you would expect. It is certainly less noticeable than frequent pinball-style collisions.
This is because our optic apparatus is tuned for detecting changes in motion more than smooth
motion.

Entry and Exit Processing

Behaviors have memory requirements as well as processor load. For games with many characters
(such as RPGs or strategy games), it is impossible to keep the data for all possible behaviors of
all characters in memory at one time. We want the LOD mechanism to keep memory as well as
execution time as low as possible.

To allow the data to be created and destroyed correctly, code is executed when a behavior is
entered and when it is exited. The exiting code can clean up any memory used in the previous
LOD, and the entry code can set up data correctly in the new LOD ready to be processed.

To support this extra step, the LOD system needs to keep track of the behavior it ran last
time. If the behavior it intends to run is the same, then no entry or exit processes are needed. If
the behavior is different, then the current behavior’s exit routine is called, followed by the new
behavior’s entry routine.

Behavior Compression

Low-detail behaviors are often approximations of high-detail behaviors. A pathfinding system
may give way to a simple “seek” behavior, for example. Information stored in the high-detail
behavior can be useful to the low-detail behavior.

To make sure the AI is memory efficient, we normally throw away the data associated with a
behavior when it is switched off. At the entry or exit step, behavior compression can retrieve the
data that could be useful to the new LOD, convert it to a correct format, and pass it along.

Imagine RPG characters in a market square with complex goal-driven decision making sys-
tems. When they are important, they consider their needs and plan actions to meet them. When
they are less important, they move around between random market stalls. Using behavior com-
pression, the noticeable join between behaviors can be reduced. When characters move from low
to high importance, their plan is set so that the stall they were heading to becomes the first item
on the plan (to avoid them turning in mid-stride and heading for a different target). When they
move from high to low importance, they don’t immediately make a random choice; their target is
set from the first item on the plan.

Behavior compression provides low-importance behaviors with a lot more believability. High-
importance behaviors can be run less often, and they can have a smaller range of importance values

736 Chapter 9 Execution Management

for which they are active. The disadvantage is development effort: custom routines need to be
written for each pair of behaviors that is likely to be used sequentially. Unless you can guarantee
that importance will never change rapidly, single entry and exit routines are not enough; transition
routines are required for each pair of behaviors.

Hysteresis

Imagine a character that switched between behaviors at a distance of 10 meters from the player.
Closer than this value, the character has a complex behavior, while it is dumber when more
distant. If the player happens to be walking along behind the character, it may continually be
shifting across the 10-meter boundary.

The switching between behaviors, which may be unnoticeable if it happens occasionally, will
stand out if it is rapidly fluctuating. If either of the behaviors uses an anytime algorithm, it is
possible that the algorithm will never get enough time to generate sensible results; it will be
continually switched out. If the behavior switch has an associated entry or exit processing step,
the fluctuation may cause the character to have even less time than if it chose one level or the
other.

As with any behavior switching process, it is a good idea to introduce hysteresis: boundaries
that are different depending on whether the underlying value (the importance in our case) is
increasing or decreasing.

For LOD, each behavior is given an overlapping range of importance values where it is valid.
Each time the character is run, it checks if the current importance is within the range of the
current behavior. If it is, then the behavior is run. If it is not, then the behavior is changed. If only
one behavior is available, then it can be selected. If more than one behavior is available, then we
need an arbitration mechanism to choose between them.

The most common arbitration techniques are discussed here.

Choose Any Available Behavior

This is the most efficient selection mechanism. We can find any available behavior by making sure
each is ordered by its range and performing a binary search.

The range is controlled by two values (maximum and minimum), but the ordering cannot
take this into control, so the binary search may not give a correct result. We need to look at the
nearby ranges if the initial behavior is not available. The ordering is most commonly performed
by sorting in order of the midpoint of the range.

Choose the First Available Behavior in the List

This is an efficient way of selecting a behavior, because we don’t need to check to see how many
behaviors are valid. As soon as we find one, we use it. As we saw in Chapter 5, it can provide
rudimentary priority control. By arranging possible behaviors in order of priority, the highest
priority behavior will be selected.

9.3 Level of Detail 737

This approach is also the simplest to implement and will form the basis of the pseudo-code
below.

Select the Most Central Behavior

We select the available behavior where the importance value is nearest to the center of its range.
This heuristic tends to make the new behavior last longest before being swapped out. This is useful
when the entry and exit processing is costly.

Select the Available Behavior with the Smallest Range

This heuristic prefers the most specific behavior. It is assumed that if a behavior can only run in a
small range, then it should be run when it can because it is tuned for that small set of importance
values.

Fallback Behaviors

The second and fourth selection methods allow for a fallback behavior that is run only when
no other is available. Fallback behaviors should have ranges that cover all possible importance
values. In method two, the last behavior in the list will never be run if another is available. In
method four, the fallback’s huge range means that the behavior will always be overruled by other
behaviors.

Pseudo-Code

A behavioral LOD system can be implemented in the following way:

1 class BehavioralLOD (Behavior):
2

3 # Holds the list of behavior records
4 records
5

6 # Holds the current behavior
7 current = None
8

9 # Holds the current importance
10 importance
11

12 # Finds the right record to run, and runs it
13 def run(time):
14

15 # Check if we need to find a new behavior
16 if not (current and current.isValid(importance)):

738 Chapter 9 Execution Management

17

18 # Find a new behavior, by checking each in turn
19 next = None
20 for record in records:
21

22 # Check if the record is valid
23 if record.isValid(importance):
24

25 # If so, use it
26 next = record
27 break
28

29 # We’re leaving the current behavior, so notify
30 # it where we’re going
31 if current and current.exit:
32 current.exit(next.behavior)
33

34 # Likewise, notify our new behavior where we’re
35 # coming from
36 if next and next.enter:
37 next.enter(current.behavior)
38

39 # Set our current behavior to be that found
40 current = next
41

42 # We should have either decided to use the previous
43 # behavior, or else we have found a new one, either
44 # way it is stored in the current variable, so run it
45 current.behavior.run(time)

Data Structures and Interfaces

We have assumed that behaviors have the following structure:

1 class Behavior:
2 def run(time)

exactly as before.
The algorithm manages behavior records, which add additional information to the core behav-

ior. Behavior records have the following structure:

9.3 Level of Detail 739

1 # Holds the data for one possible behavior
2 struct BehaviorRecord:
3 behavior
4 minImportance
5 maxImportance
6 enter
7 exit
8

9 # Checks if the importance is in the correct range
10 def isValid(importance):
11 return minImportance >= importance >= maxImportance

The enter and exit members hold a function pointer (they could also be implemented as
methods to be overloaded, but then we’d be dealing with multiple sub-classes of behavior record).
If there is no setup or breakdown needed, then either can be left unset.

The two functions are called when the corresponding behavior is entered or exited, respectively.
They should have the following form:

1 def enterFunction(previousBehavior)
2 def exitFunction(nextBehavior)

They take the next or previous behavior as a parameter to allow them to support behavior
compression. In a behavior’s exit method, it can pass on the appropriate data to the next behavior
it has been given.

This is the preferred method, because it allows the exiting behavior to clear all its data. If the
enter function is used to try to interrogate the previous behavior for data, then the data may have
already been cleaned up. We could, of course, swap the order of the two calls so that enter is called
before exit. Unfortunately, this means that the memory for both behaviors is active at the same
time, which can cause memory spikes. We err on the side of caution and have a short time when
neither behavior is fully set up.

Implementation Notes

The pseudo-code above is designed so that the behavior LOD can function as a behavior in its
own right. This allows us to use it as part of a hierarchical scheduling system, as discussed in the
previous section.

In a full implementation, such as that on the website, we should also keep track of the amount

Program

of time it takes to decide which behavior should be run and then subtract that duration from
the time we pass to the behavior. Although the LOD selection is fast, we’d ideally like to keep the
timing as accurate as possible.

740 Chapter 9 Execution Management

Performance

The algorithm is O(1) in memory and O(n) in time, where n is the number of behaviors managed
by the LOD. This is a function of the arbitration scheme we selected. Using the “choose any
available behavior” scheme can allow the algorithm to approach O(log n) in time. Because we
typically deal with very few LODs per character (typically, in our experience four is an absolute
maximum), there is no need to worry about O(n) time.

9.3.5 Group LOD

Even with the simplest behaviors, large numbers of characters require lots of processing power.
In a game world with thousands of characters, even simple motion behaviors will be too much to
process efficiently. It is possible to switch characters off when they are not important, but this is
easily spotted by the player.

A better solution is to add low levels of detail where groups of characters are processed as a
whole, rather than as individuals.

In a role-playing game set over four cities, for example, all the characters in a distant city
can be updated with a single behavior: changing an individual’s wealth, creating children, killing
various citizens, and moving treasure locations. The details of each resident’s daily business are
lost, such as a walk to the market to spend money, buy items, take them home, pay taxes, catch
plagues, and so on. But the overall sense of an evolving community remains. This is exactly the
approach used in Republic: The Revolution [Elixir Studios Ltd., 2003].

Switching to a group is easy to implement using a hierarchical scheduling system. At the
highest level, a behavior LOD component selects how to process a whole city. It can use a single
“economic” behavior or simulate the individual city blocks. If it chooses the city block approach,
it gives control to a scheduling system that distributes the processor time to a set of behavior LOD
algorithms for each city block. In turn, these can pass on their time to scheduling systems that
control each character individually, possibly using another LOD algorithm. This case is illustrated
in Figure 9.6.

If the player is currently in one city block, then the individual behaviors for that block will be
running, the“block”behavior will be running for other blocks in the same city, and the“economic”
behavior will be running for other cities. This is shown in Figure 9.7.

This combines seamlessly with other LOD or scheduling approaches. At the lowest level of the
hierarchy in our example, we could add a priority LOD algorithm that assigns processor time to
individuals in the current city block, depending on how close they are to the player.

Probability Distributions

The group LOD approach so far requires that some skeleton data be retained for each character
in the game. This can be as simple as age, wealth, and health values, or it can include a list of
possessions, home and work locations, and motives.

9.3 Level of Detail 741

City 2 LODCity 1 LOD

City block LOD

Whole city
economic
behavior

City block
scheduler

City block
behavior

Citizen
behavior

City
scheduler

Country scheduler

Figure 9.6 Hierarchical LOD algorithms

With very large numbers of characters, even this modest storage becomes too great. Recently,
games have begun using a group LOD that merges character data together. Rather than storing a
set of values for each character, it stores the number of characters and the distributions for each
value.

In Figure 9.8 each set of characters has a wealth value. When they are merged, their individual
wealth values are lost, but their distribution is kept. When the high-importance LOD is needed, the
compression routine can create the correct number of new characters using the same distribution.
The individuality of each character is lost, but the overall structure of the community is the same.

Many real-world quantities are distributed in a bell curve: the normal distribution curve
(Figure 9.9). This can be represented with two quantities: the mean (the average value—at the
highest point of the curve) and the standard deviation (representing how flat the curve is).

Of those quantities that are not normally distributed, the power distribution is usually the
closest fit. The power distribution is used for quantities where lots of individuals score low, while
a few score high. The distribution of money among people, for example, follows a power law
(Figure 9.10). The power law distribution can be represented with a single value: the exponent
(which also represents how flat the curve is).

So with one or two items of data, it is possible to generate a realistic distribution of values for
a whole set of characters.

742 Chapter 9 Execution Management

City 2 LODCity 1 LOD

City block LOD

Whole city
economic
behavior

City block
scheduler

City block
behavior

Citizen
behavior

City
scheduler

Country scheduler

Player is in this
city block

Figure 9.7 The behaviors being run in the hierarchical LOD

Separate characters Distribution

Character 2
Wealth = 4

Character 3
Wealth = 8

Character N
Wealth = 7

Character 1
Wealth = 11

Wealth =

10–155–100–5 15–20

Figure 9.8 Distribution-based group LOD

9.3 Level of Detail 743

High deviation Low deviation

Figure 9.9 Normal distribution curve

High exponent Low exponent

Figure 9.10 Power law distribution

9.3.6 In Summary

In this chapter we looked at scheduling systems that execute behaviors at different frequencies
or that assign different processor resources to each. We looked at mechanisms to change the
frequency, the priority, or the whole behavior depending on how important the character is to the
player.

In most games, the scheduling needs are fairly modest. An action game may have 200 characters
in a game level, and they are often either “off” or “on.” We don’t need sophisticated scheduling
to cope with this situation. We can simply use a frequency-based scheduler for the currently “on”
characters.

At a slightly more tricky level, city simulations such as Grand Theft Auto 3 [DMA Design,
2001] require simulation of a small number of characters out of a theoretical population of
thousands. The characters that are not on-screen do not have an identity (other than a handful of
characters specific to the story). As the player moves, new characters are spawned into existence
based on the general properties of the area of the city and the time of the day. This is a fairly basic
use of the group LOD technique.

Countrywide strategy games, such as Republic, go further, requiring characters with distinct
identities. The group LOD algorithms we looked at in this chapter were largely devised by Elixir
Studios to cope with the huge scalability of that game. They have since been used with variations
in a number of real-time strategy games.

744 Chapter 9 Execution Management

Exercises

1. For the situation depicted in Figure 9.2, determine new phases and frequencies so there are no
clashes and each behavior runs at least as frequently.

2. For the situation depicted in Figure 9.4, what would be the best phase to use for a new behavior
that must run every 2 frames? Why might it be unfair to include frame 10 in your calculation?

3. Implement a load-balancing scheduler. First test it with some artificial data, and then, if you
can, try incorporating it into some real game code.Program ming

4. Create an environment in which many characters are wandering around randomly. Implement
an LOD system that will cause characters near the camera to avoid collisions but allow those
farther away to interpenetrate without restriction. What problems would arise with this scheme
if characters exploded when they collided?

5. Suppose we are using the following histogram to represent the distribution over professions
for a region from which the character is currently far away:

0

0.2

0.4

Blacksmith SoldierBuilderCook

If the character is suddenly teleported into the region, then we must populate the region
with characters according to the distribution. After randomly selecting 5 characters, what is
the probability that they are all blacksmiths? What is the probability that after generating 10
characters we have no soldiers? What consequences could such outcomes have for the game’s
story line?

10
World

Interfacing

ne of the most difficult things to get right as an AI developer is interaction between the AIOand the game world. In addition, some algorithms need to have the world represented in
the correct way for them to process correctly.

To build a general-purpose AI system, we need to have some infrastructure that makes it easy
to get the right information to the right bits of AI code at the right time. With a special-purpose,
single-game AI, there may be no dividing line between the world interface and the AI code. In a
game engine including AI, it is essential for stability and reusability to have a single central world
interface system.

This chapter will look at building robust and reusable world interfaces using two different
techniques: event passing and polling. The event passing system will be extended to include
simulation of sensory perception, a hot topic in current game AI.

10.1 Communication

It is easy to implement a character that goes about its own business, oblivious to the world around
it and to other characters in the game: guards can follow patrol routes, military units can move
directly where they’re told, and non-player characters can ignore the player.

But that would not look very realistic, or be much fun. Events in the game world need to
be acted on correctly, and agents need to know what is happening to themselves and to their
colleagues and enemies.

Copyright © 2009 by Elsevier Inc. All rights reserved. 745

746 Chapter 10 World Interfacing

Communication allows the right AI to know the right thing at the right time. It is essential
for even simple AI, but comes into its own when multiple characters need to coordinate their
behaviors.

In this section we’ll look at the two approaches for getting information to and between
characters in a game.

10.2 Getting Knowledge Efficiently

The simplest way to get information from the game world is to look for it. If a character needs
to know whether a nearby siren is sounding, the AI code for the character can directly query the
state of the siren and find out.

Similarly, if a character needs to know if it will collide with another character, it can look at
the positions of each character and calculate its trajectory. By comparing this trajectory with its
own, the character can determine when a collision will occur and can take steps to avoid it.

10.2.1 Polling

Looking for interesting information is called polling. The AI code polls various elements of the
game state to determine if there is anything interesting that it needs to act on.

This process is very fast and easy to implement. The AI knows exactly what it is interested in
and can find it out immediately. There is no special infrastructure or algorithm between the data
and the AI that needs it.

As the number of potentially interesting things grows, however, the AI will spend most of its
time making checks that return a negative result. For example, the siren is likely to be off more
than it is on, and a character is unlikely to be colliding with more than one other character per
frame. The polling can rapidly grow in processing requirements through sheer numbers, even
though each check may be very fast.

For checks that need to be made between a character and a lot of similar sources of information,
the time multiplies rapidly. For a level with a 100 characters, 10,000 trajectory checks would be
needed to predict any collisions.

Because each character is requesting information as it needs it, polling can make it difficult to
track where information is passing through the game. Trying to debug a game where information
is arriving in many different locations can be challenging.

Polling Stations

There are ways to help polling techniques become more maintainable. A polling station can
be used as a central place through which all checks are routed. This can be used to track the
requests and responses for debugging. It can also be used to cache data, so complex checks don’t

10.2 Getting Knowledge Efficiently 747

need to be repeated for each request. We’ll look at polling stations in some depth later in the
chapter.

10.2.2 Events

There are many situations, like the single siren example, where the polling approach may be
optimal. In the collision example, however, there are much faster ways to check, as long as we can
do all the checking at once, rather than agent by agent.

In these cases, we want a central checking system that can notify each character when some-
thing important has happened. This is an event passing mechanism. A central algorithm looks for
interesting information and tells any bits of code that might benefit from that knowledge when it
finds something.

The event mechanism can be used in the siren example. In each frame when the siren is
sounding, the checking code passes an event to each character that is within earshot. This approach
is used when we want to simulate a character’s perception in more detail, as we’ll see later in the
chapter.

The event mechanism is no faster in principle than polling. Polling has a bad reputation for
speed, but in many cases event passing will be just as inefficient. To determine if an event has
occurred, checks need to be made. The event mechanism still needs to do the checks, the same
as for polling. In many cases, the event mechanism can reduce the effort by doing everybody’s
checks at once. However, when there is no way to share results, it will take the same time as each
character checking for itself. In fact, with its extra message-passing code, the event management
approach will be slower.

Imagine the AI for the siren example. The event manager needs to know that the character
is interested in the siren. When the siren is ringing, the event manager sends an event to the
character. The character is probably not running the exact bit of code that needs to know about
the siren, so it stores the event. When it does reach the crucial section, it finds the stored event
and responds to it.

We have added lots of processing by sending an event. If the character polled the siren, it
would get the information it needed exactly when it needed it.

So when you can’t share the results of a check, event passing can be significantly slower.

Event Managers

Event passing is usually managed by a simple set of routines that checks for events and then
processes and dispatches them. Event managers form a centralized mechanism through which
all events pass. They keep track of characters’ interests (so they only get events that are useful to
them) and can queue events over multiple frames to smooth processor use.

Centralized event passing has significant advantages in code modularity and debugging.
Because all conditions are being checked in a central location, it is easy to store a log of the
checks made and their results. The events passed to each character can easily be displayed or
recorded, making debugging complex decision making much easier.

748 Chapter 10 World Interfacing

10.2.3 Determining What Approach to Use

As in all things, there is a trade-off to be made here. On the one hand, polling can be very fast,
but it doesn’t scale well. On the other hand, event passing has extra code to write and is overkill
in simple situations.

For sheer execution speed the approach that will give the best performance depends on the
application. It is difficult to anticipate in advance.

As a general rule of thumb, if many similar characters all need to know the same piece of
information, then it is often faster to use events. If characters only need to know the information
occasionally (when they are in a specific state, for example), then it will be faster to poll.

While a combination of some polling and some event passing is often the fastest solution,
this has implications for developing the code. Information is being gathered and dispatched in
multiple ways, and it can be difficult to work out what is being done where.

Regardless of speed, some developers find that it is easier to manage the game information
only using events. You can, for example, print all the events to screen and use them to debug. You
can set up special key presses in the game to manually fire events and check that the AI responds
correctly. The extra flexibility and the fact that the code is often easier to change and upgrade
mean that events are often favored, even when they aren’t the fastest approach.

In general, however, some polling is usually required to avoid jumping through silly hoops to
get information into the AI. If all remaining polling can be routed through a polling station, then
significant improvements in speed and debugging can be gained.

10.3 Event Managers

An event-based approach to communication is centralized. There is a central checking mechanism,
which notifies any number of characters when something interesting occurs. The code that does
this is called an event manager.

The event manager consists of four elements:

1. A checking engine (this may be optional)

2. An event queue

3. A registry of event recipients

4. An event dispatcher

The interested characters who want to receive events are often called “listeners” because they
are listening for an event to occur. This doesn’t mean that they are only interested in simulated
sounds. The events can represent sight, radio communication, specific times (a character goes
home at 5 P.M. for example), or any other bit of game data.

The checking engine needs to determine if anything has happened that one of its listeners may
be interested in. It can simply check all the game states for things that might possibly interest any
character, but this may be too much work. More efficient checking engines take into consideration
the interests of its listeners.

10.3 Event Managers 749

A checking engine often has to liaise with other services provided by the game. If a character
needs to know if it has bumped into a wall, the checking engine may need to use the physics
engine or collision detector to get a result.

There are many possible things to check, and many of them are checked in different ways: a
siren can be checked by looking at a single Boolean value (on or off), collisions may have to be
predicted by a geometric algorithm, and a speech recognition engine may need to scan a player’s
voice input for commands. Because of this, it is normal to have specialized event managers that
only check certain types of information (like collisions, sound, or the state of switches in the
level). See the sub-sections on narrowcasting and broadcasting in Section 10.3.2.

In many cases no checking needs to be done at all. In a military squad, for example, characters
may choose to tell each other when they are ready for battle. If the characters are implemented
using finite state machines, then their “battle-state” will become active, and they can directly send
a “ready-for-battle” event to the event manager. These events are placed in the event queue and
dispatched to the appropriate listeners as usual.

It is also common to separate the checking mechanism from the event manager. A separate
piece of code does the checking every few frames, and if the check comes up, it sends an event
directly to an event manager. The event manager then processes it as normal. This checking
mechanism is polling the game state (in the same way as a character might poll the game state)
and sharing its results with any interested characters.

The implementation of an event manager in Section 10.3.1 includes a method that can be
called to directly place an event in the event queue.

For the event queue, once an event is made known to the event manager (either by being
directly passed or through a check), it needs to be held until it can be directly dispatched.
The event will be represented as an Event data structure, and we’ll look at its implementation
below.

A simple event manager will dispatch every event as it arises, leaving the event listeners to
respond appropriately. This is the approach most commonly used in event managers: it has no
storage overhead to keep a queue of events, and it requires no complex queue management code.

More complex event managers may track events in a queue and dispatch them to listeners at
the best time. This enables the event manager to be run as an anytime algorithm (see Chapter 9),
sending out events only when the AI has time remaining in its processing budget. This is par-
ticularly important when broadcasting lots of events to lots of characters. If the notification
cannot be split over multiple frames, then some frames will have a much greater AI burden than
others.

Time-based queuing of events can be very complex, having events with different priorities
and delivery deadlines. Notifying a character that a siren is sounding can be delayed by a couple
of seconds, but notifying a character that it has been shot should be instantaneous (especially if
the animation controller is relying on that event in order to start the “die” animation).

The registry of listeners allows the event manager to pass the correct events on to the correct
listeners.

For event managers that have a specialized purpose (like determining collisions), the listeners
may be interested in any event that the manager is capable of generating. For others (such as
finding out when it is going home time), the listener may have a specific interest (i.e., a specific
time), and other events may be useless.

750 Chapter 10 World Interfacing

Soldiers, who need to know when it is time to leave for their barracks, aren’t interested in
being told the time every frame (it’s 12:01, it’s 12:02, . . .). The registry can be created to accept
a description of a listener’s interests. This can allow the checker to restrict what it looks for and
can allow the dispatcher to only send appropriate events, cutting down on the inefficiency of
unnecessary checks and messages.

The format used to register interests can be as simple as a single event code. Characters
can register their interest in “explosion” events, for example. A finer degree of control can be
supported with characters being able to register more focused interests, such as “explosions of
grenades within 50 meters of my current position.”

More discriminating registration allows the checking engine to be more focused with what it
looks for and reduces the number of unwanted events passed around. On the other hand, it takes
longer to decide if a registered listener should be notified or not, and it makes the code more
complex, more game specific (because the kinds of things to be interested in often change from
game to game), and less reusable between games.

In general, most developers use a simple event code-based registration process and then use
some kind of narrowcasting approach (see Section 10.3.2) to limit unwanted notifications.

The event dispatcher sends notification to the appropriate listeners when an event occurs.
If the registry includes information about each listener’s interests, the dispatcher can check

whether the listener needs to know about the event. This acts as a filter, removing unwanted events
and improving efficiency.

The most common way for a listener to be notified of an event is for a function to be called. In
object-oriented languages, this is often a method of a class. The function is called, and information
about the event can be passed in its arguments.

In the event management systems that drive most operating systems, the event object itself is
often passed to the listener. A listener interface of the form:

1 class Listener:
2 def notify(event)

is very common.

10.3.1 Implementation

We’re now ready to put together all the bits to get an event manager implementation.

Pseudo-Code

1 class EventManager:
2

3 # Holds data on one registered listener. The same
4 # listener may be registered multiple times.
5 struct ListenerRegistration:

10.3 Event Managers 751

6 interestCode
7 listener
8

9 # Holds the list of registered listeners.
10 listeners
11

12 # Holds the queue of pending events.
13 events
14

15

16 # Checks for new events, and adds them to the queue
17 def checkForEvents()
18

19 # Schedule an event to be dispatched as soon as possible.
20 def scheduleEvent(event):
21 events.push(e)
22

23 # Add a listener to the registry
24 def registerListener(listener, interestCode):
25 # Create the registration structure
26 lr = new ListenerRegistration()
27 lr.listener = l
28 lr.code = code
29

30 # And store it
31 listeners.push(lr)
32

33 # Dispatch all pending events.
34 def dispatchEvents():
35

36 # Loop through all pending events
37 while (!events.empty()):
38

39 # Get the next event, and pop it from the queue.
40 Event* event = events.pop()
41

42 # Go through each listener
43 for listener in listeners:
44 # Notify if they are interested.
45 if listener.interestCode = event.code:
46 next->listener->notify(event)
47

48 # Call this function to run the manager (from a scheduler
49 # for example).

752 Chapter 10 World Interfacing

50 def run():
51 checkForEvents()
52 dispatchEvents()

Data Structures and Interfaces

Event listeners should implement the EventListener interface so they can register themselves with
the event manager and be notified correctly.

Characters need information about an event that occurs. If a character reports an enemy
sighting to its team, the location and status of the enemy need to be included.

In the code above we’ve assumed that there is an Event structure. The basic Event structure
only needs to be able to identify itself. We have used a code data member for this:

1 struct Event:
2 code

This is the mechanism used in many windowing toolkits to notify an application of mouse,
window, and key press messages.

The Event class can be sub-classed to create a family of different event types with their own
additional data:

1 struct CollisionEvent:
2 code = 0x00001000
3 character1
4 character2
5 collisiontime
6

7 struct SirenEvent:
8 code = 0x00002000
9 sirenId

In a C-based event management system, the same effect can be achieved by including a void*
in the event data structure. This can then be used to pass a pointer to any other data structure, as
event-specific data:

1 typedef struct event_t
2 {
3 unsigned eventCode;
4 void *data;
5 } Event;

10.3 Event Managers 753

Performance

The event manager is O(nm) in time, where n is the number of events in the queue, and m is the
number of listeners registered. It is O(n + m) in memory. This doesn’t take into account the time
or memory required by the listener to handle the event. Typically, processing in the listeners will
dominate the time it takes to run this algorithm.1

Implementation Notes

It is possible to make a number of refinements to this class. Most obviously, it would be good to
allow a listener to receive more than one event code. This can be done with the above code by
registering a listener several times with different codes. A more flexible method might use event
codes that are powers of two and interpret the listener’s interest as a bit mask.

10.3.2 Event Casting

There are two different philosophies for applying event management. You can use a few very
general event managers, each sending lots of events to lots of listeners. The listeners are responsible
for working out whether or not they are interested in the event.

Or, you can use lots of specialized event managers. Each will only have a few listeners, but
these listeners are likely to be interested in more of the events it generates. The listeners can still
ignore some events, but more will be delivered correctly.

The scattergun approach is called broadcasting, and the targeted approach is called narrow-
casting.

Both approaches solve the problem of working out which agents to send which events. Broad-
casting solves the problem by sending them everything and letting them work out what they need.
Narrowcasting puts the responsibility on the programmer: the AI needs to be registered with
exactly the right set of relevant event managers.

Broadcasting

We looked at adding extra data in the registry so behaviors could show what their interests were.
This isn’t a simple process to make general. It is difficult to design a registration system that has
enough detail so that listeners with very specific needs can be identified.

For example, an AI may need to know when it hits walls made of one of a set of bouncy
materials. To support this, the registry would need to keep hold of all the possible materials for
all the objects in the game world and then check against the valid material list for each impact.

It would be easier if the AI was told about all collisions, and it could filter out those it wasn’t
interested in.

1. This isn’t the case with all event management algorithms. The sense management system we’ll meet later is time consuming
in its own right.

754 Chapter 10 World Interfacing

This approach is called broadcasting. A broadcasting event manager sends lots of events to
its listeners. Typically, it is used to manage all kinds of events and, therefore, also has lots of
listeners.

Television programs are broadcast. They are sent through cable or radio signals, regardless of
whether or not anyone is interested in watching them. Your living room is being bombarded with
all these data all the time. You can choose to switch off the TV and ignore it, or you can watch the
program you want to see. Even if you are watching TV, the vast majority of information reaching
your TV set is not being displayed.

Broadcasting is a wasteful process, because lots of data are being passed around that are useless
to the recipients.

The advantage is flexibility. If a character is receiving and throwing away lots of data, it can
suddenly become interested and know that the correct data are available immediately. This is
especially important when the AI for a character is being run by a script, where the original
programmers aren’t aware of what information the script creator might want to use.

Imagine we have a game character wandering around a mushroom patch picking mushrooms.
We are interested in having the character know if the player steals one of its mushrooms. We aren’t
interested in knowing whether doors have been opened on the level. The character is developed
so that it ignores all door-open events but responds to stolen-mushroom events.

Later in the development process, the level designer adds the mushroom picker’s house to the
level and wants to edit the AI script to react if the player enters the house.

If the event manager broadcasts events, this wouldn’t be difficult. The script could respond
to door-open events. If the event manager used a narrowcast approach, the level designer would
have to enlist a programmer to register the character with the door-open listener.

Of course, there are ways around this. For example, you could make the registration process
part of the script (although you might be expecting too much of the level designers to manipulate
event channels). But flexibility will always be higher with a broadcast approach.

Narrowcasting

Narrowcasting solves the difficulty of knowing which AI is interested in which events by requiring
the programmer to make lots of registrations to specialized event managers.

If teams of units in an RTS game need to share information, they could each have their
own event manager. With one event manager per group, any events will go only to the correct
individuals. If there are hundreds of teams on the map, there needs to be hundreds of event
managers.

In addition, these teams may be organized in larger groups. These larger groups have their
own event managers, which share information around the battalion. Eventually, there is a single
event manager per side, which is used to share information globally.

Narrowcasting is a very efficient approach. There are few wasted events, and information is
targeted at exactly the right individuals. There doesn’t need to be any record of listener’s interests.
Each event manager is so specialized that all listeners are likely to be interested in all events. This
improves speed again.

10.3 Event Managers 755

While the in-game speed is optimized using a narrowcasting approach, setting up characters
is much more complex. If there are hundreds of event managers, there needs to be a substantial
amount of setup code that determines which listeners need to be wired to which event managers.

The situation is even more complex if the characters change over time. In the RTS example,
most of a team may get killed in battle. The remaining members need to be placed into a new
team. This means changing registrations dynamically. For a simple hierarchy of event managers,
this is still achievable. For more complex “soups” of event managers, each controlling different
sets of unrelated events, this may be more effort than it is worth.

Compromising

In reality, there is a compromise to be reached between event managers with complex registration
information and those with no explicit interests at all. Similarly, there is a related compromise
between narrowcasting and broadcasting.

In reality, developers tend to use simple interest information that can be very quickly filtered.
In the example implementation we used an event code. If an event’s code matches the listener’s
interest, then the listener is notified. The event code can be used to represent any kind of interest
information, without the event manager needing to know what the code means in the game. This
makes it possible to use the same event manager implementation in any number of situations.

Compromising between broadcasting and narrowcasting depends more on the application,
particularly the number of events that are likely to be generated. Often, there aren’t enough AI
events to make broadcasting noticeably slow.

Based on our experience, we recommend you use a broadcasting approach when the game
is in development. This allows you to play with character behaviors more easily. If you find the
event system is slow as development moves on, it can be optimized using multiple narrowcasting
managers before release.

An exception to this rule of thumb is for event managers with very specific functions. An
event manager that notifies characters at a specific game time (to tell soldiers when to clock-off,
for example) would be difficult to incorporate into a broadcasting manager alongside other kinds
of event.

10.3.3 Inter-Agent Communication

While most of the information that an AI needs comes from the player’s actions and the game
environment, games are increasingly featuring characters that cooperate or communicate with
each other.

A squad of guards, for example, should work together to surround an intruder. When the
intruder’s location is known, the guards may cover all exits, waiting until their teammates are in
position before launching an attack.

The algorithms for coordinating this kind of action are discussed in Chapter 6. But, regardless
of the techniques used, characters need to understand what others are doing and what they intend

756 Chapter 10 World Interfacing

to do. This could be achieved by allowing each character to examine the internal state of other
characters or by polling them for their intentions. While this is fast, it is prone to errors and can
require lots of rewriting for every change in the character’s AI. A better solution is to use an event
mechanism to allow each character to inform others of its intention. You can think of this event
manager as providing a secure radio link between members of an AI team.

The basic event mechanism in this chapter is enough to handle cooperative message pass-
ing. Using a narrowcasting event manager for each squad ensures that the data get to the right
characters quickly and don’t confuse members of a different squad.

10.4 Polling Stations

There are situations where polling is obviously more efficient than events. A character that needs
to open a door moves toward it and checks if it is locked. It doesn’t make any sense to have the
door sending “I’m locked” messages every frame.

Sometimes the checks are time consuming, however. This is especially true when the check
involves the game level’s geometry. A patroling guard may occasionally check the status of a
control panel from the doorway to the control room. If the player pushes a box in front of the
panel, the line of sight will be blocked. Calculating the line of sight is expensive. If there is more
than one guard, the extra calculation is wasted.

In an event-based system the check can be made once and for all. In a polling system the check
is made by each character individually.

Fortunately, there is a compromise. When polling is the best approach, but checks are time
consuming, we can use a structure called a polling station.

A polling station has two purposes. First, it is simply a cache of polling information that can
be used by multiple characters. Second, it acts as a go-between from the AI to the game level.
Because all requests pass through this one place, they can be more easily monitored and the AI
debugged.

Several caching mechanisms can be used to make sure the data are not recalculated too
often. The pseudo-code example uses a frame number counter to mark data stale. Data are
recalculated once each frame, if necessary. If the data are not requested in a frame, they will not be
recalculated.

10.4.1 Pseudo-Code

We can implement a specific polling station in the following way:

1 class PollingStation:
2

3 # Holds the cache for a boolean property of the game
4 struct BoolCache:
5 value

10.4 Polling Stations 757

6 lastUpdated
7

8

9 # Holds the cache value for one topic
10 isFlagSafe[MAX_TEAMS]
11

12 # Updates the cache, when required
13 def updateIsFlagSafe(team)
14 isFlagSafe[team].value = # ... query game state ...
15 isFlagSafe[team].lastUpdated = getFrameNumber()
16

17 # ... add other polling topics ...
18

19

20 # Query the cached topic.
21 def getIsFlagAtBase(team):
22 # Check if the topic needs updating.
23 if isFlagSafe[t].lastUpdated < getFrameNumber():
24 # Only update if the cache is stale.
25 updateIsFlagSafe(team)
26

27 # Either way, return its value
28 return isFlagSafe[team].value
29

30 # A polling topic without a cache.
31 def canSee(from, to):
32 return # ... always query game state ...

10.4.2 Performance

The polling station is O(1) in both time and memory for each polling topic it supports. This
excludes the performance of the polling activity itself.

10.4.3 Implementation Notes

The implementation above is for a specific polling station, rather than a generic system. It shows
two different polling topics: getIsFlagAtBase and canSee. The former shows the pattern of a
cached result, and the latter is calculated each time it is needed.

The caching part of the code relies on the existence of a getFrameNumber function to keep track
of stale items. In a full implementation there would be several additional cache classes similar to
BoolCache for different sets of data types.

758 Chapter 10 World Interfacing

Often, the polling station simplifies the AI as well. In the above code, a character only needs
to call the polling station’s canSee function. It doesn’t need to implement the check itself. In this
case, the function always recalculates the sight check; its value is not cached.

The AI doesn’t care whether the result is stored from a previous call or whether it needs to be
recalculated. It also doesn’t care how the result is fetched. This allows the programmers to change
and optimize implementations later on without rewriting lots of code.

10.4.4 Abstract Polling

The listing above is the simplest form of polling station. Often, these kinds of methods can be
added to a game world class as a standard interface. They have the disadvantage of being difficult
to extend. Eventually, the polling station will be very large and hold lots of data.

The polling station can be improved by adding a central request method where all polls
are directed. This request method takes a request code that signals which check is needed. This
abstract polling model enables the polling station to be extended without changing its interface
and without changing any other code that relies on it. It also helps debugging and logging tools,
because all polling requests are channeled through a central method.

On the other hand, there is an extra translation step to work out which request is being
delivered, and that slows down execution.

This polling station implementation extends the idea one step further to allow “pluggable”
polling. Instances of a polling task can be registered with the station, with each representing one
possible piece of data that can be polled. The cache control logic is the same for all topics (the
same frame number-based caching as previously).

1 # Abstract class; the base for any pollable topic.
2 class PollingTask:
3 taskCode
4 value
5 lastUpdated
6

7 # Checks if the cache is out of date.
8 def isStale():
9 return lastUpdated < getFrameNumber()

10

11 # Updates the value in the cache - implement in
12 # subclasses.
13 def update()
14

15 # Gets the correct value for the polling task.
16 def getValue():
17 # Update the internal value, if required.
18 if isStale(): update()
19

10.5 Sense Management 759

20 # Return it.
21 return value
22

23

24 class AbstractPollingStation:
25

26 # Keeps track of the tasks registered as a hash-table
27 # indexed by code
28 tasks
29

30 def registerTask(task):
31 tasks[task.code] = task
32

33 def poll(code):
34 return tasks[code].getValue()

At this point we are almost at the complexity of an event management system, and the trade-
off between the two becomes blurred. In practice, few developers rely on polling stations of this
complexity.

10.5 Sense Management

So far we’ve covered techniques for getting appropriate knowledge into the hands of characters
that might be interested. Our concern has been to make sure that a character gets the information
it wants to be able to make appropriate decisions.

But, as we all know, wanting something isn’t the same as getting it! We need to also make sure
that a character is able to acquire the knowledge it is interested in.

Game environments simulate the physical world, at least to some degree. A character gains
information about its environment by using its senses. So it makes sense to check if a character
can physically sense information. If a loud noise is generated in the game, we could determine
which characters heard it: a character across the other end of the level may not, and neither would
a character behind a soundproof window.

An enemy may be walking right across the middle of a room, but if the lights are out or the
character is facing in the wrong direction, the enemy will not be seen.

Up until the mid-1990s, simulating sensory perception was rare (at most, a ray cast check
was made to determine if line of sight existed). Since then, increasingly sophisticated models
of sensory perception have been developed. In games such as Splinter Cell [Ubisoft Montreal
Studios, 2002], Thief: The Dark Project [Looking Glass Studios, Inc., 1998], and Metal Gear
Solid [Konami Corporation, 1998], the sensory ability of AI characters forms the basis of the
gameplay.

Indications are that this trend will continue. AI software used in the film industry (such as
Weta’s Massive) and military simulation use comprehensive models of perception to drive very

760 Chapter 10 World Interfacing

sophisticated group behaviors.2 It seems clear that the sensory revolution will become an integral
part of real-time strategy games and platformers, as well as third-person action games.

10.5.1 Faking It

Obviously, we try to take shortcuts whenever possible. There is no point in simulating the way
that sound travels from the headphones on a character’s head down its ear canal. Some knowledge
we can just give to the character.

Even when there is some doubt about knowledge getting through, we can use the methods
discussed earlier in the chapter: we could use an event manager per room, for example. Sounds
that occur in the room can be communicated to all the characters currently in that room, and
registered to the event manager. Here we are using the event manager in a slightly different way
than that described earlier. Rather than using its distribution power, we are relying on the fact
that information not given to the event manager cannot be gained by its listeners. This is not
necessarily the case if characters are polling for data (although we can add filtering code to limit
access to a polling station for the same effect).

To make an event manager work for sound notification, we need to make sure that characters
swap event managers whenever they move between rooms. This may work for specific situations,
such as a particular style of game level or a very simple game project. It falls short of being a
realistic model, however, as loud noises might be heard down a corridor, but gentle noises might
be inaudible a meter away. And what do we do about other senses? Vision is often implemented
using ray casts to check line of sight, but this can rapidly get out of hand if lots of characters are
trying to see lots of different things.

Eventually, we’ll need some dedicated sense simulation code.

10.5.2 What Do We Know?

A character has access to different sources of knowledge in the game. We looked briefly at knowl-
edge at the start of Chapter 5, dividing knowledge into two categories: internal knowledge and
external knowledge.

A character’s internal knowledge tells it about itself: its current health, equipment, state of
mind, goals, and movement. External knowledge covers everything else in the character’s envi-
ronment: the position of enemies, whether doors are open, the availability of power-ups, or the
number of its squad members still alive.

Internal knowledge is essentially free, and the character should have direct and unfettered
access to it. External knowledge is delivered to the character based on the state of the game. Many
games allow characters to be omniscient; they always know where the player is, for example. To
simulate some degree of mystery, the behavior of a character can be designed so that it appears
not to have knowledge.

A character might be constantly looking at the position of the player, for example. When the
player gets near enough, the character suddenly engages its “chase” action. It appears to the player

2. Interestingly, the AI models in this kind of system are typically very simple.

10.5 Sense Management 761

as if the character couldn’t see the player until he got close enough. This is a feature of the AI
design, not of the way the character gains its knowledge.

A more sophisticated approach uses event managers or polling stations to only grant access
to the information that a real person in the game environment might know. At the final extreme,
there are sense managers distributing information based on a physical simulation of the world.

Even in a game with sophisticated sense management, it makes sense to use a blended approach.
Internal knowledge is always available, but external knowledge can be accessed in any of the
following three ways: direct access to information, notification only of selected information, and
perception simulation.

The remainder of this section will focus only on the last element: sense management. The
other elements have been covered so far in this chapter.

Polling and Notification Revisited

While it is theoretically possible to implement a sensory management system based on polling,
we have never seen it done in practice. We could, for example, test the sensory process every time
a polling state receives a request for information, only passing on the data if the test passes. There
is nothing intrinsically wrong with this approach, but it isn’t the one we suggest you take.

Sensory perception feels more like an input process: a character discovers information by
perceiving it, rather than looking for everything and failing to perceive most of it. Running sense
management in a polling structure will mean that the vast majority of polling requests fail—a big
waste of performance.

We will exclusively use an event-based model for our sense management tools. Knowledge
from the game state is introduced into the sense manager, and those characters who are capable
of perceiving it will be notified. They can then take any appropriate action, such as storing it for
later use or acting immediately.

10.5.3 Sensory Modalities

Four natural human senses are suitable for use in a game: sight, touch, hearing, and smell, in
roughly decreasing order of use. Taste makes up the fifth human sense, but we’ve yet to see (or
even conceive of) a game where characters make use of taste to gain knowledge about their world.

We’ll look at each sensory modality in turn. Their peculiarities form the basic requirements
of a sense manager.

Sight

Sight is the most obvious sense. Because it is so obvious, players can tell if it is being simulated
badly. This, in turn, means that we’ll need to work harder to develop a convincing sight model.
Among all the modalities we will support, sight requires the most infrastructure.

A whole range of factors can affect our ability to see something.

762 Chapter 10 World Interfacing

Speed

Light travels at almost 300 million ms−1. Unless your game involves very large distances through
space, then light will travel across your game level in less than a frame. We will treat vision as
being instantaneous.

Sight Cone

First, we have a sight cone. Our vision is limited to a cone shape in front of us, as shown in
Figure 10.1.

If a person’s head is still, he has a sight cone with a vertical angle of around 120◦ and a
horizontal angle of 220◦ or so. We are able to see in any direction 360◦ by moving our neck and
eyes, while keeping the rest of our body still. This is the possible sight cone for a character who is
looking for information.

People going about their normal business concentrate on a very small proportion of their
visual field. We are consciously able to monitor a cone of just a few degrees, but eye movements
sweep this cone rapidly to give the illusion of a wider field of view.

Psychological studies indicate that people are very poor at noticing things they aren’t specif-
ically looking for. In fact, we are worse at noticing things we are looking for than you might
imagine.

One experiment involved a video of a basketball practice through which a man in a fluffy
animal costume walked. When asked to count the number of passes made by the basketball

Figure 10.1 A set of sight cones

10.5 Sense Management 763

players, most viewers did not notice the man in the costume standing right in center court,
waving his arms.

To get a flavor of these limits, a sight cone of around 60◦ is often used. It takes into account
normal eye movement, but effectively blinds the character to the large area of space it can see but
is unlikely to pay any attention to.

Line of Sight

Vision’s most characteristic feature is its inability to go around corners. To see something, you
need to have a direct line of sight with it.

While this is obvious, it isn’t strictly true. If a character stands at one end of a doglegged, dark
corridor, it will be unable to see the enemy at the other end. But, as soon as the enemy fires its rifle,
the character will see the reflected muzzle flash. Events that emit light behave differently from
those that do not, as far as simulation goes. All surfaces reflect light to some extent, allowing it to
bounce around corners quite easily.

One sense management system we were involved with had this feature. Unfortunately, the
effect was so subtle that it wasn’t worth the processing effort to simulate (it transpired that
the publisher decided that the whole game wasn’t worth the effort, and it was canned before
publication). Despite its failings, the sense simulation in this game was beyond anything else we
have seen, and we will refer to several of its features throughout the rest of this section.

For the purpose of this chapter, we will assume sight only happens in straight lines. To simulate
radiosity or effects like mirrors, you will need to extend the framework we develop.

Distance

On the scales modeled in average game levels, human beings have no distance limitation to their
sight. Atmospheric effects (fog or haze, for example) and the curve of the Earth limit our ability
to see very long distances, but human beings have no problem seeing for millions of light years if
nothing is in the way.

There are countless games where distance is used as a limit on vision, however. This is not
always a bad thing. In a platform game, Jak and Daxter: The Precursor Legacy [Naughty Dog,
Inc., 2001], for example, we wouldn’t want to round every corner to find that enemies from the
other side of the clearing have seen us and are incoming. Games often use a convention that
enemies only notice the player when the player gets within a certain distance. It deliberately gives
characters worse sight than they otherwise would have.

Games that do not adhere to this limitation, such as Tom Clancy’s Ghost Recon [Red Storm
Entertainment, Inc., 2001], require different play tactics, usually involving considerably more
stealth.

Where distance is significant is in the size of the thing being viewed. All animals can only
resolve objects if they appear large enough (ignoring brightness and background patterns for a
while). At a human scale, for most game levels, this is not an issue. We can resolve a human being
over half a mile away, for example.

In the same way as for sight cones, there is a difference between ability and likelihood. While
we can resolve human beings hundreds of meters away, we are unlikely to notice a person at

764 Chapter 10 World Interfacing

that distance unless we are specifically tasked with looking for him. Even in games that don’t
limit the distance a character can see, some distance threshold for noticing small objects is
advisable.

Brightness

We rely on photons reaching our eye to see things. The light-sensitive cells in the eye get excited
when a photon hits them, and they gradually relax over the following few milliseconds. If enough
photons reach a cell before it relaxes, then it will get more and more excited and eventually send
its signal along to the brain.

We find it notoriously difficult to see in dim light. Splinter Cell uses this feature of human
vision to good effect by allowing the player to hide in shadows and avoid detection by guards
(even though the player’s character has three bright green torches strapped to its forehead).

In reality, we are rarely in dark enough conditions that the light sensitivity of our eyes is the
limiting factor in our vision. The vast majority of our problem with seeing in low light isn’t a lack
of photons, it is a problem of differentiation.

Differentiation

Human sight has evolved based on our survival needs. What we see in our mind’s eye as a picture
of the outside world is in fact an illusion reconstructed from lots of different signals. When you
tilt your head, for example, the image you see doesn’t tilt; we have specialized cells in our visual
system that are dedicated to finding vertical. All the results from the rest of our visual system are
then internally rotated back before their output hits our conscious brain. Most of us physically
can’t see tilted (one reason why most driving games don’t tilt the camera as the car corners, even
though most drivers tilt their heads).

The adaptation that is most significant to sense management is our contrast detectors. We have
a whole range of cells dedicated to identifying areas where colors or shades are changing. Some
of these cells are dedicated to finding distinct lines at different angles, and others are dedicated to
finding patches where there is a change in contrast. In general, we find it difficult to see something
without sufficient contrast change. The contrast change can occur in just one color component.
This is the basis of those spotty color-blindness tests; if you can’t detect the difference between
red and green, you can’t detect a simultaneous but opposite change in red and green intensity and
therefore can’t see the number.

What this means is that we cannot see objects that do not contrast with their backgrounds, and
we are very good at seeing objects that do contrast. All camouflage works on this principle; it tries
to make sure that there is no contrast change between the edge of something and its background.
The reason we can’t see things in dim light is because there isn’t sufficient contrast to see it, not
because the photons aren’t reaching our eyes.

The Ghost Recon games have a good implementation of background camouflage. If your
squad is in military greens, lying among a thicket of foliage, enemy characters would not see
them. In the same uniform standing in front of a brick wall, they are sitting ducks.

10.5 Sense Management 765

On the other hand, Splinter Cell, justifiably praised for its hiding-in-shadows gameplay, does
not take into account background. Sam Fisher (the character you play) can be standing in a
shadow halfway down a very brightly lit corridor, and an enemy at one end of the corridor will
not see him. In reality, of course, the enemy would see a huge black silhouette against a bright
background and Sam would be rumbled. (To be fair, the level designers work hard to avoid this
situation from occurring too often.)

Hearing

Hearing is not limited by straight lines. Sound travels as compression waves through any physical
medium. The wave takes time to move, and as it moves it spreads out and is subject to friction.
Both factors serve to diminish the intensity (volume) of the sound with distance. Low pitched
sounds suffer less friction (because their vibrations are slower) and therefore travel farther than
high-pitched sounds.

Low-pitched sounds are also able to bend around obstacles more easily. This is why sound
emanating from behind an obstacle sounds muddy and lower in pitch. Elephants emit infrasound
barks below the level of human hearing in order to communicate with other members of their
herd several miles away through scrubland foliage. By contrast, bats use high pitched sounds to
perceive moths; low-frequency sounds would simply bend around their prey.

These differences are probably too subtle for inclusion in the AI for a game. We will treat all
sounds alike: they uniformly reduce in volume over distance until they pass below some threshold.
We allow different characters to sense different volumes of sound to simulate acute hearing or
deafness resulting from a nearby bomb blast, for example.

As far as AI goes, sound travels through air around corners without a problem, regardless of its
pitch. Environmental audio technologies, used to prepare three-dimensional (3D) audio for the
player, have more comprehensive capabilities to simulate occlusion. When the player is listening,
the effects are significant. However, when determining if a character gets to know something, the
effects are not significant.

In the real word, all materials transmit sound to some extent. Denser and stiffer materials
transmit sound faster. Steel transmits sound faster than water, and water transmits sound faster
than air, for example. For the same reason, air at a higher temperature transmits sound faster.

The speed of sound in air is around 345 meters per second.
In a game implementation, however, we typically divide all materials into two categories: those

that do not transmit sound and those that do. Materials that do transmit sound are all treated
like air.

Because game levels tend to be quite small, the speed of sound is often fast enough not to
be noticed. Many games simulate sound by letting it behave like light, traveling instantaneously.
Metal Gear Solid, for example, has no discernable speed of sound, whereas Conflict: Desert Storm
[Pivotal Games Ltd., 2002] does.

If you do intend to use the speed of sound, then it may be worth slowing it down. In a typical
third- or first-person game, a speed of sound around 100 meters per second gives a “realistic” and
noticeable effect.

766 Chapter 10 World Interfacing

Touch

Touch is a sense that requires direct physical contact. It is best implemented in a game using
collision detection: a character is notified if it collides with another character.

In stealth games, this is part of the game. If you touch a character (or get within a small fixed
distance of it), then it feels you there, whether or not it can see or hear you otherwise.

Because it is easy to implement touch using collision detection, the sense management system
described here will not include touch. Collision detection is beyond the scope of this book. There
are two books in this series [Ericson, 2005, van den Bergen, 2003] with comprehensive details.

In a production system, it might be beneficial to incorporate touching into the sense manager
framework. When a collision is detected, a special touching event is sent between the touching
characters. Having this routed through the sense manager allows a character to receive all of its
sense information through one route, even though touch is handled differently behind the scenes.

Smell

Smell is a relatively unexplored sense in games. Smells are caused by the diffusion of gases through
the air. This is a slow and distance-limited process. The speed of diffusion makes wind effects
appear more prominent. While sound can be carried by wind, its fast motion means that we don’t
notice that it travels downwind faster than upwind. Downwind, smells are significantly more
noticeable.

Typically, smells that are not associated with concentrated chemicals (such as the scent of
an enemy) travel only a few tens of feet. Animals with better sensitivity to smell can detect
human beings at significantly greater distances, given suitable wind conditions. Hunting games
are typically the only ones that model smells.

We have come across other potential uses for smell. The game we mentioned earlier (that
modeled radiosity for light transmission) used smell to represent the diffusion of poisonous
gases. A gas grenade could be detonated outside a guard post, for example. The sense manager
signaled the guard characters when they could smell the gas. In this case, they responded to the
smell by dying.

One of the best uses of smell simulation is in Alien vs. Predator [Activision Publishing, Inc.,
1993]. Here the aliens sense the presence of the player using smell. As the smell diffuses, aliens
follow the trail of increasing intensity to find the player’s location. This gives rise to some neat
tactics. If a character stands for a long time at a good ambush spot and then quickly ducks behind
cover, the aliens will follow the trail to the intense spot of smell where it was previously standing,
giving the player the initiative to attack.

Fantasy Modalities

In addition to sight, hearing, and smell, there are all sorts of uses you could put the sense manager
to. Although we will limit the simulation to these three modalities, their associated parameters
mean we can simulate other fictional senses.

10.5 Sense Management 767

Fantasy senses such as aura or magic can be represented using modified vision; telepathy can
be a modified version of hearing, and fear, reputation, or charm can be a modified smell. A whole
range of spell effects can be broadcast using the sense manager: victims of the spell will be notified
by the sense manager, removing the need to run a whole batch of special tests in spell-specific code.

10.5.4 Region Sense Manager

We will look at two algorithms for sense management. The first is a simple technique using a
spherical region of influence, with fixed speeds for each modality.

A variation on this technique is used for the majority of games with sense simulation. It
is also the approach favored by simulation software for animation (such as Massive) and the
military.

The Algorithm

The algorithm works in three phases: potential sensors are found in the aggregation phase; the
potential sensors are checked to see if the signal got through, in the testing phase; and signals that
do get through are sent in the notification phase.

Characters register their interest with the sense manager along with their position, orientation,
and sensory capabilities. This is stored as a sensor, equivalent to the listener structure in the event
manager.

In a practical implementation, position and orientation are usually provided as a pointer to the
character’s positional data, so the character doesn’t need to continually update the sense manager
as it moves. Sensory capabilities consist of a threshold value for each modality that the character
can sense.

The sense manager can handle any number of modalities. Associated with each modality is
an attenuation factor, a maximum range, and an inverse transmission speed.

The sense manager accepts signals: messages that indicate that something has occurred in the
game level (the equivalent to events in the event manager). Signals are similar to events used in
an event manager but have three additional pieces of data: the modality through which the signal
should be sent, the intensity of the signal at its source, and the position of the source.

The attenuation factor corresponding to each modality determines how the volume of a sound
or the intensity of a smell drops over distance. For each unit of distance, the intensity of the signal
is multiplied by the attenuation factor. The algorithm stops processing the transmission beyond
the maximum range.

Once the signal’s intensity drops below a character’s threshold value, the character is unable to
sense it. Obviously, the maximum range for a modality should be chosen so that it is large enough
to reach any characters that would be able to perceive appropriate signals.

Figure 10.2 shows this process for a sound signal. The sense manager has a registered attenu-
ation of 0.9 for sound. A signal of intensity 2 is emitted from the source shown. At a distance of 1
unit from the source, the intensity of the sound is 1.8, at a distance of 2 units it is 1.62, and so

768 Chapter 10 World Interfacing

Figure 10.2 Attenuation in action

on. Character A has a sound threshold of 1. At a distance of 1.5 units, the sound has an intensity
of around 1.7, and character A is notified of the sound. Character B has a threshold of 1.5. At a
distance of 2.8 units, the sound has an intensity of 1.49, and character B is not notified.

The inverse transmission speed indicates how long it will take for the signal to travel one unit
of distance. We don’t use the uninverted speed, because we want to be able to handle the infinite
speed associated with vision.

The basic algorithm works in the same way for each modality. When a signal is introduced
to the sense manager, it immediately finds all characters within the maximum radius of the
corresponding modality (the aggregation phase). For each character it calculates the intensity of
the signal when it reaches the character and the time when that will happen. If the intensity is
below the character’s threshold, it is ignored.

If the intensity test passes, then the algorithm may perform additional tests, depending on the
type of modality. If all tests pass, then a request to notify the character is posted in a queue. This
is the testing phase.

The queue records store the signal, the sensor to notify, the intensity, and the time at which to
deliver the message (calculated from the time the signal was emitted and the time the signal takes
to travel to the character). Each time the sense manager is run, it checks the queue for messages
whose time has passed and delivers them. This is the notification phase.

10.5 Sense Management 769

This algorithm unifies the way smells and sounds work (sounds are just fast-moving smells).
Neither of them requires additional tests; the intensity test is sufficient. Modalities based on vision
do require two additional tests in the testing phase.

First, the source of the signal is tested to make sure it lies within the character’s current sight
cone. If this test passes, then a ray cast is performed to make sure line of sight exists. If you wish
to support camouflage or hiding in shadows you can add extra tests here. These extensions are
discussed after the main algorithm below.

Notice that this model allows us to have characters with fixed viewing distances: we allow
visual signals to attenuate over distance and give different characters different thresholds. If the
intensity of visual signal is always the same (a reasonable assumption), then the threshold imposes
a maximum viewing radius around the character.

Pseudo-Code

The sense manager can be implemented in the following way:

1 class RegionalSenseManager:
2

3 # Holds a record in the notification queue, ready to notify
4 # the sensor at the correct time.
5 struct Notification:
6 time
7 sensor
8 signal
9

10 # Holds the list of sensors
11 sensors
12

13 # Holds a queue of notifications waiting to be honored
14 notificationQueue
15

16 # Introduces a signal into the game. This also calculates
17 # the notifications that this signal will be needed
18 def addSignal(self, signal):
19

20 # Aggregation phase
21 validSensors = []
22 for sensor in self.sensors:
23

24 # Testing phase
25

26 # Check the modality first

770 Chapter 10 World Interfacing

27 if not sensor.detectsModality(signal.modality): continue
28

29 # Find the distance of the signal and check range
30 distance = distance(signal.position, sensor.position)
31 if signal.modality.maximumRange < distance: continue
32

33 # Find the intensity of the signal and check threshold
34 intensity = signal.strength *
35 pow(signal.modality.attenuation, distance)
36 if intensity < sensor.threshold: continue
37

38 # Perform additional modality specific checks
39 if not signal.modality.extraChecks(signal, sensor):
40 continue
41

42 # We’re going to notify the sensor, work out when
43 time = getCurrentTime() +
44 distance * signal.modality.inverseTransmissionSpeed
45

46 # Create a notification record and add it to the queue
47 notification = new Notification()
48 notification.time = time
49 notification.sensor = sensor
50 notification.signal = signal
51 notificationQueue.add(notification)
52

53 # Send signals, in case the current signal is ready to notify
54 # immediately.
55 sendSignals()
56

57 # Flushes notifications from the queue, up to the current time
58 def sendSignals(self):
59

60 # Notification Phase
61

62 currentTime = getCurrentTime()
63

64 while notificationQueue.hasEntries():
65 notification = notificationQueue.peek()
66

67 # Check if the notification is due
68 if notification.time < currentTime:
69 notification.sensor.notify(notification.signal)
70 notificationQueue.pop()

10.5 Sense Management 771

71

72 # If we are beyond the current time, then stop
73 # (the queue is sorted)
74 else: break

The code assumes a getCurrentTime function that returns the current game time. It also
assumes the existence of the pow mathematical function.

Note that the sendSignals function should be called each frame, whether or not any signals
have been introduced, to make sure that cached notifications are correctly dispatched.

Data Structures and Interfaces

This code assumes an interface for modalities, sensors, and signals. Modalities conform to the
interface:

1 class Modality:
2 maximumRange
3 attenuation
4 inverseTransmissionSpeed
5

6 def extraChecks(signal, sensor)

where extraChecks performs modality-specific checks in the testing phase. This will be imple-
mented differently for each specific modality. Some modalities may always pass this test. For sight,
we might have:

1 class SightModality:
2 def extraChecks(signal, sensor):
3 if not checkSightCone(signal.position,
4 sensor.position,
5 sensor.orientation): continue
6 if not checkLineOfSight(signal.position,
7 sensor.position): continue

where checkSightCone and checkLineOfSight carry out the individual tests; both return true if
they pass.

Sensors have the interface:

1 class Sensor:
2 position
3 orientation
4

772 Chapter 10 World Interfacing

5 def detectsModality(modality)
6

7 def notify(signal)

where detectsModality returns true if the sensor can detect the given modality; the modality is a
modality instance. The notify method is just the same as we saw in regular event management: it
notifies the sensor of the signal.

Signals have the interface:

1 class Signal:
2 strength
3 position
4 modality

In addition to these three interfaces, the code assumes that the notificationQueue is always
sorted in order of time. It has the structure:

1 class NotificationQueue:
2 def add(notification)
3 def peek()
4 def pop()

where the add method adds the given notification to the correct place in the queue. This data
structure is a priority queue, in order to time. Chapter 4 has lots of detail on the efficient imple-
mentation of priority queues.

Performance

The regional sense manager is O(nm) in time, where n is the number of sensors registered, and
m is the number of signals. It stores pending signals only, so it is O(p) in memory, where p is the
number of pending signals. Depending on the speed of the signals, this may approach O(m) in
memory but most times will be very much smaller.

Camouflage and Shadows

To support camouflage, we can add an additional test for visual modalities in the SightModality
class. After ray casting to check that the signal is in line of sight with the character, we perform
one or more additional ray casts out beyond the character. We find the materials associated with
the first object that each ray intersects.

Typically, the level designer marks up each material according to its type of pattern. We might
have ten pattern types, for example, including brick, foliage, stone, grass, sky, and so on. Based on

10.5 Sense Management 773

the material types of the background, an additional attenuation factor is calculated. Suppose the
character is wearing green camouflage. The designer might decide that a foliage background gives
an additional attenuation of 0.1, while sky gives an additional attenuation of 1.5. The additional
attenuation is multiplied by the signal strength and passed on only if the result is higher than the
character’s threshold.

We can use a similar process to support hiding in shadows. An easier method is simply to
make the initial signal strength proportional to the light falling on its emitter. If a character is in
full light, then it will send high-strength “I’m here” signals to the sense manager. If the character
is in shadow, the signal strength will be lower, and characters with a high-intensity threshold may
not notice them.

Weaknesses

Figure 10.3 shows a situation where the simple sense manager implementation breaks down.
A sound emitted from character A is heard first by character C, even though C is farther from
the source than character B. Transmission is always handled by distance and doesn’t take level
geometry into account, other than for line-of-sight tests.

Figure 10.3 Angled corridor and a sound transmission error

774 Chapter 10 World Interfacing

Figure 10.4 Transmission through walls

This slight timing discrepancy may not be too noticeable. Figure 10.4 shows a more serious
situation. Here, character B can hear the sound, even though B is nowhere near the sound source
and is insulated by a large barrier.

We have also assumed that characters are always stationary. Take the case in Figure 10.5. Two
characters both start at the same distance from a sound. One character is moving quickly toward
the source. Realistically, character A will hear the sound earlier than character B at the point
marked on the diagram. In our model, however, they hear the sound together. This isn’t normally
noticeable for sounds, since they tend to move much faster than characters. For smells, however,
it can be highly significant.

This algorithm for sense management is very simple, fast, and powerful. It is excellent for open
air levels or for indoor environments where the thickness of walls is greater than the distance a
signal can travel. For the environments common in first- and third-person action games, however,
it can give unpleasant artifacts.

Many developers using these kinds of sense managers have extended them using additional
tests, code for special cases, and heuristics to give the impression of avoiding the algorithm’s
limitations.

Rather than spend time trying to patch the basic system (which is a valid plan, as long as
the patches don’t take too much implementation effort), we will look at a more comprehensive
solution. Bear in mind, however, that with increased sophistication will come correspondingly
greater processing requirements.

10.5 Sense Management 775

Figure 10.5 Timing discrepancy for moving characters

10.5.5 Finite Element Model Sense Manager

To accurately model vision, hearing, and smell would require some serious development effort. In
the coding experiments done at our company, we looked at building geometrically accurate sense
simulation. The task is formidable, and we are reasonably convinced that there is no practical way
to do it for the next couple of generations of hardware.

We devised a mechanism based on finite element models that works well and can be reasonably
efficient. We later found out that this was a technique independently devised by at least two other
developers (not surprisingly, given its similarity to other game algorithms in this book).

Finite Element Models

A finite element model (FEM) splits up a continuous problem into a finite number of discrete
elements. It replaces the difficulty of solving a problem for the infinite number of locations in the
continuous world with a problem for a finite number of locations.

Although pathfinding does not strictly use an FEM, it uses a very similar approach. It splits
up the continuous problem into finite elements, in very much the same way as we will need to do
for our algorithm. (It is not strictly an FEM because it doesn’t apply an algorithm to each region
in parallel; it applies a once-and-for-all algorithm to the whole model.)

In dividing up the continuous problem into regions, simpler algorithms can be applied. In
pathfinding we swap the difficult problem of finding the fastest route through arbitrary 3D
geometry with the simpler problem of traversing a graph.

Whenever you use an FEM to solve a problem, you are making a simplifying approximation.
By not solving the real problem, you run the risk of getting back only an approximate solution.
As long as the approximation is good, the model works.

We covered the approximation process for pathfinding in some depth, with tips on how to
split the level into regions so the resulting paths are believable. Similarly, when we use an FEM

776 Chapter 10 World Interfacing

to model perception in a game, we need to choose regions carefully to make sure the resulting
pattern of character perception is believable.

The Sense Graph

In just the same way as for pathfinding, we transform the game level into a directed acyclic graph
for sense management.

Each node in the graph represents a region of the game level where signals can pass around
unhindered. For each smell-based modality, the node contains a dissipation value that indicates
how much of the smell will decay per second. A dissipation of 0.5, for example, means a smell
loses half its intensity each second. For all modalities, the node contains an attenuation value that
indicates how a signal decays for each unit of distance it travels.

Connections are made between pairs of nodes where one or more modalities can pass between
the corresponding regions.

Figure 10.6 shows an example. Two separate rooms are divided by a sound-proof, one-way
window. The sense graph contains two nodes, one for each room. Room A is connected to Room B,
because visual stimuli can pass in that direction, even though sound and smell cannot. Room B is
not connected to Room A, however, because no stimuli can pass in that direction.

For each modality, a connection has a corresponding attenuation factor and distance. This
allows us to calculate the amount of signal that is passed. In the example above, the connection will
have attenuations of 0 for both smell and sound (it allows neither through). It has an attenuation
factor of 0.9 for vision, to simulate the fact that the window is darkly tinted. The distance along
the connection is given as 1, for simplicity (so the overall attenuation through the window will be
0.9). The main reason for having both attenuation and distance is to allow slow-moving signals
(namely, smells) to take time to move along the connection.

Figure 10.6 Sense graph for one-way glass

10.5 Sense Management 777

Connections also have an associated 3D position for both their ends, shown in Figure 10.7. The
connection position is used to work out how a signal transmits across a node from an incoming
connection. Because nodes usually border each other, it is common for the start and end points of
a connection to be at the same position: the algorithm will cope with this situation. The distance
associated with the connection doesn’t have to be the same as the 3D distance between its start
and end points. They are dealt with entirely separately by the algorithm.

There is no reason for connections to be limited to nearby regions of the level. Figure 10.8
illustrates a long-distance connection that allows only smell through. This is an example from the
ill-fated sense-based game we introduced earlier. The connection represents an air-conditioning
duct, a critical puzzle in the game. The solution involves detonating a poison gas grenade in
Room A and letting it pass down the air-conditioning duct to kill the guard standing in Room B.
The duct is the only connection between the two rooms.

Another case might be a control room with video links to several rooms in a level; there could
be visual links between the conference room and the surveyed areas, even though they are at a
distance. Guards in the control room would be notified and react to events caught on camera.

Sight

Sight warrants special mention here. A connection between two nodes should allow sight signals
to pass if any location in the destination node is visible from any location in the source. In general,
there will be many locations in the destination node that cannot be viewed from many locations
in the source. As we’ll see, these cases will be trapped by the line-of-sight tests in the algorithm.
But the line-of-sight tests won’t be considered if the nodes aren’t connected. Figure 10.9 shows
a connection between two rooms, even though only a very small region of Room B can be seen
from Room A, and then only by shuffling into a corner of Room A.

Figure 10.7 Connection positions in a sense graph

778 Chapter 10 World Interfacing

Figure 10.8 Air-conditioning in a sense graph

Sight graph

Figure 10.9 Line of sight in a sight-connected pair of nodes

10.5 Sense Management 779

Figure 10.10 The sight sense graph

Another consequence of the algorithm below is that all pairs of nodes that have connected lines
of sight must have a connection. Unlike for pathfinding, we cannot rely on intermediate nodes to
carry information through. This is not true for modalities other than sight. Figure 10.10 shows
a correct sense graph for a series of three rooms. Note that there are sight connections between
Rooms A and C, even though Room B is in the way. There are no smell or sound connections
between Rooms A and C, however.

Sense managers we’ve worked with using this model have occasionally used a separate graph
for sight, since it is specialized. A particularly sound implementation uses the potentially visible
set (PVS) data from the rendering engine to calculate the sight graph. Potentially visible set is the
name given to a range of graphics techniques used to cut down the amount of geometry that must
be rendered each frame. It is a standard feature of all modern rendering engines.

In the algorithm below we’ll use one graph for all senses, but since each sense is handled
slightly differently it is a relatively simple process to replace the one graph with two or more.

The Algorithm

The algorithm works in the same three phases as before: aggregating the sensors that might get
notified, testing them to check that they are valid, and notifying them of the signal.

As before, the sense manager is notified of signals from external code (often some polling
mechanism) that isn’t part of the algorithm. The signals are provided along with their location,
their intensity, their modality, and any additional data that must be passed on.

780 Chapter 10 World Interfacing

The sense manager also stores a list of sensors: event listeners capable of detecting one or more
modalities. Again, these provide a list of modalities and intensity threshold values. They will be
notified of any signal that they are capable of detecting.

The algorithm is also given the sense graph, along with some mechanism to quantize locations
in the game world into nodes in the sense graph. Both sensors and signals need to be quantized
into a node before the algorithm can work. This quantization can be performed exactly as for
pathfinding quantization. See Chapter 4 on pathfinding for more details. Internally, the sense
manager stores sensors on a per-node basis, so it can rapidly find which sensors are present in a
given node.

Depending on the modality type, the algorithm behaves slightly differently. In order of increas-
ing complexity, sights, sounds, and smells are handled by different sub-algorithms.

Sights

Sights are the simplest signals to handle. When a sight is introduced, the algorithm gets a list of
potential sensors: this is the aggregation phase. This list consists of all the sensors in the same
node as the signal and all the sensors in nodes that are connected to that node. Only one set
of connections is followed; we don’t allow visual signals to carry on spreading around the level.
If you need to simulate radiosity, as previously mentioned, then two sets of connections can be
followed if, and only if, the visual signal emits light.

The algorithm then moves onto the testing phase. The potential sensors list is tested exactly
as in the region sense manager. They are checked to see if they are interested in visual stimuli,
whether the signal would have sufficient intensity, whether the signal is in the sight cone, and
whether it is in line of sight. Background contrast can also be checked, exactly as before.

The timing and intensity data are calculated based on the position, transmission, and distance
data in each connection. This is the same for all three modalities and is detailed below.

If the sensor passes all tests, then the manager works out when it needs to be notified, based
on its distance from the stimuli (calculated as a Euclidean distance in three dimensions, unlike the
other modalities below). The notification is then added to a notification queue, exactly as before.
If sight is always instant in your game, you can skip this step and immediately notify the sensor.

Sound

Sound and smell are treated similarly, but with one major distinction. Smells linger in a region over
time. Sounds in our model do not (we’re not taking into account echoes, for example, although
they can be modeled by sending in fresh sounds every few frames).

We treat sound as a wave, spreading out from its source and getting increasingly faint. When it
reaches its minimum intensity limit, it disappears forever. This means that the sound can only be
perceived as the wave passes you. If the sound wave has reached the edge of the room, the sound
is no longer audible within the room.

To model sounds we begin at the node where the sound source is located. The algorithm
looks up all sensors in this node. It marks the node as having been visited. It then follows the
connections marked for sound, decreasing the intensity by the amount the connection specifies.

10.5 Sense Management 781

It continues this process as far as it can go, working node to node via connections and marking
each node it visits.

If it reaches a node where it has already been, it does not process the node again. Nodes are
processed in distance order (which is equal to time order if we assume that sound travels at a
constant speed). At each node visited, the list of potential sensors is collected.

If the intensity of the sound is below the minimum intensity, then no more nodes are processed.
Intensity is calculated the same way for each modality and is described below.

In the testing phase, intensity checks are made for each sensor: those that are capable of
receiving the signal have a notification request added to a queue ready for the dispatching phase.

Smell

Smell behaves in a way very similar to sound. Sound keeps track of each node it has passed through
and refuses to process previous nodes. Smell replaces this with a stored intensity and associated
timing information. Each node can have any lingering intensity of smell, so it stores an intensity
value for the smell. To make sure this value is accurately updated, a time value is also stored. The
timing value indicates when the intensity was last updated.

Each time the algorithm is run, it propagates its smells to neighbors based on the transmission
and distance of intervening connections. It does not propagate if either the source or new desti-
nation intensities are below the minimum intensity threshold or if the signal could not reach the
destination in the length of time the sense manager is simulating. This simulation time usually
corresponds to the duration between sense manager calls (a frame perhaps). Limiting it by time
in this way stops the smell from spreading faster through the sense graph than it would through
the level.

The smell in a single node dies out based on the dissipation parameter of the node.
To avoid updating a node multiple times per iteration of the sense manager, a time stamp is

stored. A node is only processed if its time stamp is smaller than the current time.
At each iteration, it aggregates sensors from each node in which there is an intensity greater

than the minimum value. These are then tested in the testing phase for interest in the modal-
ity and for intensity threshold. Notification requests are scheduled for those that pass in the
normal way.

Calculating Intensity from Node to Node

To calculate the intensity and the journey time of a non-visual stimulus as it moves from node
to node, we split the journey into three sections: the journey from its source to the start of the
connection, the journey along the connection, and the journey from the end of the connection to
the sensor (or to the start of the next connection, if it’s traveling multiple steps).

The total length of time is given by the speed of modality divided by the total distance: the
distance from signal to the start of the connection (a 3D Euclidean distance), the distance along
the connection (stored explicitly), and the distance to the sensor (another 3D distance).

The total attenuation is given by the attenuation factor of each component: the attenuation
for the node that the source is in, the attenuation of the connection, and the attenuation of the
sensor’s node.

782 Chapter 10 World Interfacing

Iterative Algorithm

So far we’ve assumed that all the propagation for sight and sound is handled in one run of the sense
manager. Smell, because it creeps around and gradually diffuses, needs to be handled iteratively.
Sight works so fast that we need to process all its effects immediately.

Sound may occupy a middle ground. If it travels slowly enough, then it may benefit from being
treated like smell: it is propagated by a few nodes and connections each time the sense manager
is run. The same time stamp used to update the smell can be used for sound updating, as long
as you aren’t looking for perfect accuracy with regard to the way the sound wave expands. (We’d
ideally like to process nodes from the source outward, but using only one time stamp means we
can’t do that for every source.)

The sense manager we built using this algorithm allowed for slow-moving sound of this kind.
In practice, however, it was never needed. If sound was handled instantaneously it was equally
believable.

Dispatching

Finally, the algorithm dispatches all stimulus events to the sensors that have been aggregated and
tested. It does this based on time, exactly as in the region sense manager.

For smells, or slow-moving sound, only the notifications for the immediate future are gen-
erated. If sound is handled in one iteration, then the queue may hold a notification for several
milliseconds or seconds.

On the Website

The pseudo-code of the FEM sense manager is many pages long, and giving it in pseudo-code

Library

doesn’t make it much easier to understand. We decided not to include it here and waste several
pages with difficult-to-follow code. There is a full source code implementation provided on the
website, with lots of comments, that we recommend you work through.

The Sense Management program on the website shows the code in action. It gives you a bird’s-
eye view of how signals can propagate around a level. The program gives you a view from above

Program

of a two-dimensional (2D) level (this is for simplicity; the algorithm works just as well in three
dimensions). Nodes are represented by rooms, and the connections between rooms are shown.
You can click anywhere on the level to introduce a stimulus at that point. The icons on the base
of the screen allow you to choose the modality and intensity of the signal.

Characters are shown as dots on the screen, and they will light up briefly if they receive
notification of a signal.

Experiment with the way signals are delayed and the way in which the position of a signal and
a sensor within a node affects the notification.

Implementation Notes

If smells are excluded, this algorithm behaves similarly to the region-based sense manager. Using
the graph-based representation effectively speeds up detecting candidate sensors (the aggregation

Exercises 783

phase) and stops additional cases where the original algorithm gave wrong results (such as modal-
ities passing through walls). It is relatively state free (only having to store which nodes have been
checked for sound transmission).

Adding smells in, or making sound checking split over many iterations, turns it into a very
different beast. A lot more state is needed, and smells passing backward and forward between
nodes can dramatically increase the number of calculations needed. Although smell has its uses
and can enable some great new gameplay, I advise you to only implement it if you need it.

Weaknesses

When sound is processed all in one frame, the same weaknesses apply to this algorithm as to the
region sense manager: we can potentially be notified at the wrong time. For very fast-moving
characters this might be noticeable. This algorithm has removed the problem for smell and can
completely solve the problem if sound is handled iteratively (at the cost of additional memory
and time, of course).

Content Creation

This algorithm provides believable sense simulation and can cope with really interesting level
designs: one-way glass, air-conditioning units, video cameras, windy corridors, and so on. FEM
sense management, and algorithms like it, are state of the art in sense simulation for games.

As throughout this book, state of the art is a byword for complex. The most difficult element
of this algorithm is the source data; specifying the sense graphs accurately requires dedicated tool
support. The level designer needs to be able to mark where different modalities can go. A coarse
approximation can be made using the level geometry, by firing rays around, but this will not cope
with special effects such as glass windows, ducting, or closed-circuit TV.

For now, sense simulation is a luxury, and if your game doesn’t make a feature of it, then a
simpler solution such as regional sense management or a vanilla event manager is a better option.
But the trend is for increasing ubiquity of sense simulation in first- and third-person action games
(they aren’t so important in less realistic genres). I suspect it won’t be long before complex sense
simulation is expected.

Exercises

1. Implement an event manager. First test it with some artificial data and then, if you can, try
incorporating it into some real game code.Program ming

2. Implement a polling station. First test it with some artificial data and then, if you can, try
incorporating it into some real game code.

Program ming

3. Suppose a sound has an intensity of 4 and the attenuation factor is 0.8. If there are 2 characters,
one 2 units away from the sound with a threshold of 2.6 and the other 3 units away with a
threshold of 2, then will they each hear the sound? How long will it take the sound to reach
each of them if the transmission speed is 200?

784 Chapter 10 World Interfacing

4. Draw a level that might plausibly correspond to the following sense graph:

Sight

Sight,
Sound,
Smell Smell

Sight

5. Incorporate the FEM sense manager on the website into a game that is based around smell. For
example, create a game of hide and seek using characters that betray their position by emitting
noxious smells at random intervals. Make sure your game can visualize the smells as they waft
around the environment.Program ming

11
Tools and Content

Creation

rogramming makes up a relatively small amount of the effort in a mass market game.PMost of the development time goes into content creation, making models, textures,
environments, sounds, music, and animation—everything from the concept art to the detailed
level design.

Over the last decade developers have reduced the programming effort further by reusing their
technology on multiple titles, putting together a game engine on which several titles can run.
Adding a comprehensive suite of AI to the engine is only its latest iteration.

Most developers aren’t content to stop there, however. Because the effort involved in content
creation is so great, the content creation process also needs to be standardized, and the runtime
tools need to be seamlessly integrated with development tools. These complete toolchains are
essential for development of large games and are beginning to make inroads into the repertoire
of smaller studios and hobbyists.

In fact, it is difficult to overstate the importance of the toolchain in modern game development.
The quality of the toolchain is now seen as a major deciding factor in a publisher’s decisions to
back a project. For some titles, a major factor in receiving a deal was the developer’s cutting-
edge editing toolset: both Far Cry [Ubisoft Montreal Studios, 2008] and the earlier World Rally
Championship developer raised the bar through tool sophistication, rather than through engine
features.

Middleware vendors have realized this also. All the major middleware vendors have their own
editing tools as part of their technology package. Renderware Studio is now heading Criterion’s
middleware offering, promoted ahead of its graphics, physics, audio, and AI technologies.

Copyright © 2009 by Elsevier Inc. All rights reserved. 785

786 Chapter 11 Tools and Content Creation

11.0.1 Toolchains Limit AI

The importance of toolchains places limits on the AI. Advanced techniques such as neural
networks, genetic algorithms, and goal-oriented action planning (GOAP) haven’t been widely
used in commercial titles. To some degree this is because they are naturally difficult to map into
a level editing tool. They require specific programming for a character, which limits the speed at
which new levels can be created and the code reuse between projects.

The majority of AI-specific design tools are concerned with the bread-and-butter techniques:
finite state machines, movement, and pathfinding. These approaches rely on simple processes and
significant knowledge. Toolchains are naturally better at allowing designers to modify data rather
than code, so use of these classic techniques is being reinforced.

11.0.2 Where AI Knowledge Comes from

Good AI requires a lot of knowledge. As we’ve seen many times in this book, having good
and appropriate knowledge about the game environment saves a huge amount of processing
time. At runtime, when the game has many things to keep track of, processing time is a crucial
resource.

The knowledge required by AI algorithms depends on the environment of the game. A charac-
ter moving around, for example, needs some knowledge of where and how it is possible to move.
This can be provided by the programmers, giving the AI the data it needs directly.

When the game level changes, however, the programmer needs to provide new sets of data. This
does not promote reuse between multiple games and makes it difficult for simple changes to be
made to levels. A toolchain approach to developing a game puts the onus on the content creation
team to provide the necessary AI knowledge. This process can be aided by offline processing which
automatically produces a database of knowledge from the raw level information.

For years it has been common for the content creation team to provide the AI knowledge for
movement and pathfinding. More recently, decision making and higher level AI functions have
also been incorporated into the toolchain.

11.1 Knowledge for Pathfinding
and Waypoint Tactics

Pathfinding algorithms work on a directed graph: a summary of the game level in a form that is
optimal for the pathfinding algorithm. Chapter 4 discussed a number of ways in which the geom-
etry of an indoor or outdoor environment could be broken into regions for use in pathfinding.
The same kind of data structure is used for some tactical AI. Fortunately, the same kinds of tool
requirements for pathfinding apply for waypoint tactics.

Breaking down the level geometry into nodes and connections can be done manually by
the level designer, or it can be done automatically in an offline process. Because manually cre-
ating a pathfinding graph can be a time-consuming process (and one that needs to be redone

11.1 Knowledge for Pathfinding and Waypoint Tactics 787

each time the level geometry changes), many developers have experimented with automatic
processes. Results are typically mixed, with some human supervision being required for optimum
results.

11.1.1 Manually Creating Region Data

There are three elements of a pathfinding graph that need to be created: the placement of the
graph nodes (and any associated localization information), the connections between those nodes,
and the costs associated with the connections.

The entire graph can be created in one go, but it is common for each element to be created
separately using different techniques. The level designer may place nodes in the game level man-
ually. The connections can then be calculated based on line-of-sight information, and the costs
can be calculated likewise algorithmically.

To some extent, the cost and connections between nodes are easy to calculate algorithmically.
Placing nodes correctly involves understanding the structure of the level and having an apprecia-
tion for the patterns of movement that are likely to occur. This appreciation is much easier for a
human operator than an algorithm.

This section looks at the issues involved with manually specifying graphs (mostly the nodes of
a graph). The following section examines automatic calculation of graphs, including connections
and costs.

To support the manual creation of graph nodes, the facilities of the level editing tool depend
on the world representation used.

Tile Graphs

Tile graphs do not normally require designers to manually specify any data in the modeling tool.
The layout of a level is normally fixed (an RTS game, for example, typically is always based on a
fixed grid, often of a limited number of different sizes).

The cost functions involved in pathfinding also need to be specified. Most cost functions
are based on distance and gradient, modified by parameters particular to a given type of char-
acter. These values can usually be generated automatically (gradients can be calculated directly
from the height values, for example). Character-specific modifiers are usually provided in the
character data. An artillery unit, for example, might suffer ten times the gradient cost of a light
reconnaissance unit.

Often, the level design tool for a tile-based game can include the AI data behind the scenes.
Placing a patch of forest, for example, can automatically increase the movement cost through that
tile. The level designer doesn’t need to make the change in cost explicit or even need to know that
AI data are being calculated.

As a result, no extra infrastructure is required to support pathfinding on tile-based graphs.
This is one reason why they have continued to be used so extensively in the AI for games that
require a lot of pathfinding (such as RTS), even when the graphics have moved away from
sprite tiles.

788 Chapter 11 Tools and Content Creation

Dirichlet Domains

Dirichlet domains are a useful world representation in a range of genres. They are appli-
cable (in the form of waypoints) to everything from driving games to shooters to strategy
games.

The level editor needs only to place a set of points in the game level to specify the nodes of
the graph. The region associated with each point is the volume that is closest to that point than
to any other.

Most level editing tools, and all three-dimensional (3D) modeling tools, allow the user to
add an invisible helper object at a point. This can be suitably tagged and used as a node in the
graph.

As discussed in Chapter 4, Dirichlet domains have some problems associated with them.
Figure 11.1 shows two Dirichlet domains in two adjacent corridors. The regions associated with
each node are shown. Notice that the edge of one corridor is incorrectly grouped with the next
corridor. A character that strays into this area will think it is in a completely different area of the
level. Therefore, its planned path will be wrong.

Similar problems with region grouping occur vertically, where one route passes over another.
The problems are compounded when different “weights” can be associated with each node (so a
larger volume is attracted to one node than to another). This is illustrated in Chapter 4.

Solving this kind of misclassification can involve lots of play testing and frustration on the part
of the level designer. It is important, therefore, for tools to support visualization of the regions
associated with each domain. If level designers are able to see the set of locations associated with
each node, they can anticipate and diagnose problems more quickly.

Many problems can be avoided altogether by designing levels where navigable regions are
not adjacent. Levels with thin walls, walkways through rooms, and lots of vertical movement are
difficult to properly divide into Dirichlet domains. Obviously, changing the feel of a game is not
feasible simply for the sake of the AI mark-up tool.

Figure 11.1 Dirichlet domains misclassifying a corridor

11.1 Knowledge for Pathfinding and Waypoint Tactics 789

Navigation Meshes

The same polygon mesh used for rendering can be used as a navigation mesh for pathfinding.
Each floor polygon is a node in the graph, and the connectivity between nodes is given by the
connectivity between polygons.

This approach requires the level editor to specify polygons as being part of the “floor.” This
is most commonly achieved using materials: a certain set of materials is considered to be floors.
Every polygon to which one of these materials is applied is part of the floor. Some 3D tools and
level editors allow the user to associate additional data with a polygon. This could also be used to
manually flag each floor polygon.

In either case, it can be useful to implement a tool by which the level editor can quickly see
which polygons are part of the floor. A common problem is to have a set of decorative textures
in the middle of a room, which is wrongly marked as “non-floor” and which makes the room
unnavigable. This can be easily seen if the floor polygons can be visualized easily.

Navigation meshes have a reputation for being a reliable way of representing the world for
pathfinding. Their popularity is increasing and, if they are not already, they will probably soon
be the most commonly used technique. They have definitely become our personal preferred
representation.

Bounded Regions

The most general form of pathfinding graph is one in which the level designer can place arbitrary
bounding structures to make up the nodes of the graph. The graph can then be built up without
being limited to the problems of Dirichlet domains or the constraints of floor polygons.

Arbitrary bounding regions are complex to support in a level design or modeling tool. This
approach is therefore usually simplified to the placement of arbitrarily aligned bounding boxes.
The level designer can drag a bounding box over regions of the game level to designate that the
contents of that box should count as one node in the planning graph. Nodes can then be linked
together and their costs set manually or generated from geometrical properties of the node boxes.

11.1.2 Automatic Graph Creation

With many of the previous approaches, an algorithm can be used to calculate the costs associated
with connections in the graph. Approaches based on manually specified points of visibility or
Dirichlet domains also use algorithms to determine the connectivity between nodes.

Automatically placing the nodes in the first place is considerably more difficult. For general
indoor levels, there is no single optimum technique. In our experience developers who rely on
automatic node placement always have a mechanism for allowing the level designer to exert some
influence and manually improve the resulting graph.

Automatic node placement techniques can be split into two approaches: geometric analysis
and data mining.

790 Chapter 11 Tools and Content Creation

11.1.3 Geometric Analysis

Geometric analysis techniques operate directly on the geometry of the game level. They analyze
the structure of the game level and calculate the appropriate elements of the pathfinding graph.
Geometric analysis is also used in other areas of game development, such as calculating potentially
visible geometry, performing global radiosity calculations, and ensuring that global rendering
budgets are met.

Calculating Costs

For pathfinding data, most geometric analysis calculates the cost of connections between nodes.
This is a relatively simple process, so much so that it is rare to find a game whose graph costs have
been set by hand.

Most connection costs are calculated by distance. Pathfinding is usually associated with finding
a short path, so distance is the natural metric. The distance between two points can be trivially
calculated. For representations where nodes are treated as points, the distance of a connection can
be taken as the distance between the two points.

A navigation mesh representation usually has connection costs based on the distance between
the centers of adjoining triangles. Bounding region representations can similarly use the center
points of regions to calculate distances.

Calculating Connections

Calculating which nodes are connected is also a common application. This is most commonly
performed by line-of-sight checks between points.

Point-Based Representations

Point-based node representations (such as Dirichlet domains and point-of-visibility representa-
tions) associate each node with a single representative point. A line-of-sight check can be made
between each pair of such points. If there is a line of sight between the points, then a connection
is made between the nodes.

This approach can lead to vast numbers of connections in the graph. Figure 11.2 shows the
dramatic complexity of a visibility-based graph for a relatively simple room.

For this reason, AI programmers often voice concerns about the performance of visibility-
based graphs. But such concerns are curious, since a simple post-processing step can easily rectify
the situation and produce useable graphs:

1. Each connection is considered in turn.

2. The connection starts at one node and finishes at another. If the connection passes through
intermediate nodes on the way, then the connection is removed.

3. Only the remaining connections form part of the pathfinding graph.

11.1 Knowledge for Pathfinding and Waypoint Tactics 791

A B

Center of Dirichlet domain

Limit of domain

Connection between nodes

Figure 11.2 A visibility-based graph and its post-processed form

This algorithm looks for pairs of nodes that are in line of sight but where there is no direct
route between them. Because a character will have to pass through other nodes on the way, there
is no point in keeping the connection.

The second part of Figure 11.2 shows the effect of applying the algorithm to the original
graph.

Arbitrary Bounding Regions

Arbitrary bounding regions are usually connected in a similar way to points. A selection of
sample points are chosen within each pair of regions, and line-of-sight checks are carried
out. A connection is added when some proportion of the line-of-sight checks passes. Other
than using multiple checks for each pair of regions, the process is the same as for a point
representation.

Often, the proportion of required passes is set at zero; a connection is added if any of the
line-of-sight checks passes. In most cases, if any line-of-sight check passes, then most of them
will. As soon as one check passes, you can stop checking and simply add the connection.

For regions that are a long way from each other, a few line-of-sight checks may pass by
squeezing through doorways, obtuse angled corners, up inclines, and so on. These pairs of regions
should not be connected. Increasing the proportion of required passes can solve the problem but
can dramatically increase the time it takes for the connection analysis.

Adding the post-processing algorithm above will eliminate almost all the erroneous connec-
tions but will not eliminate false connections that don’t have an intermediate set of navigable

792 Chapter 11 Tools and Content Creation

regions (such as when there is a large vertical gap between regions). A combination of both solu-
tions will improve the situation, but our experience has shown that there will still be problems
that need to be solved by hand.

Limitations of Visibility Approaches

The primary problem with line-of-sight approaches is one of navigability. Just because two regions
in the level can be seen from one another, it doesn’t mean you can move between them.

In general, there is no simple test to determine if you can move between two locations in a game.
For third-person action-adventure games, it may take a complex combination of accurate moves
to reach a particular location. Anticipating such move sequences is difficult to do geometrically.

Fortunately, the AI characters in such games rarely have to carry out such action sequences.
They are normally limited to moving around easily navigable areas.

It is an open research question as to whether geometric analysis can produce accurate graphs in
complex environments. Those teams that have succeeded have done so by limiting the navigability
of the levels, rather than by improving the sophistication of the analysis algorithms.

Mesh representations avoid some of the problems but introduce their own (jumping, in
particular, is difficult to incorporate). To date, data mining (see Section 11.1.4) is the most
promising approach for creating pathfinding graphs in levels with complex navigability.

Mesh Representations

Mesh representations explicitly provide the connection information required for pathfinding.
A mesh representation based on triangles has each floor triangle associated with a graph

node. The triangle can be optionally connected along each of its three sides to an adjacent floor
triangle. There are therefore up to three connections for each node. The connections can be easily
enumerated from the geometry data: two triangles are connected if they share two vertices, and
both are marked as floor triangles.

It is also possible to connect triangles that meet at a point (i.e., that share only one vertex).
This reduces the amount of wiggle that a pathfinding character will display when moving across
a dense mesh but can also introduce problems with characters trying to cut corners.

Calculating Nodes

Calculating the placement and geometry of nodes by geometric analysis is very difficult. Most
developers avoid it all together. So far the only (semi-) practical solution has been to use graph
reduction.

Graph reduction is a widely studied topic in mathematical graph theory. Starting with a very
complex graph with thousands or millions of nodes, a new graph is produced that captures the
“essence” of the larger graph. In Chapter 4 we looked at the process of creating a hierarchical
graph.

To use this approach, the level geometry is flooded with millions of graph nodes. This can
often be done simply using a grid: graph nodes are placed every half meter throughout the level,

11.1 Knowledge for Pathfinding and Waypoint Tactics 793

for example. Nodes of the grid that are outside the playing area (in a wall or unreachable from
the ground) are removed. If the level is split into sections (which is common in engines that
use portals for rendering efficiency), then the grid nodes can be added on a section-by-section
basis.

This graph is then connected and costed using the techniques we’ve looked at so far. The
graph at this stage is huge and very dense. An average level can have tens of millions of nodes and
hundreds of millions of connections. Typically, creating this graph takes a very large amount of
processing time and memory.

The graph can then be simplified to create a graph with a reasonable number of nodes—for
example, a few thousand. The structure of the level made explicit at the high-detail level will be
captured to some extent in the simplified graph.

Although it sounds simple enough, the graphs produced by this approach are rarely satisfactory
without tweaking. They often simplify away key information that a human would find obvious.
Research into better simplification techniques is ongoing, but those teams that use this method
in their toolchain invariably bank on having someone go back, check, and tweak the resulting
graphs.

11.1.4 Data Mining

Data mining approaches to graph creation find nodes by looking at movement data for characters
in the game world.

The game environment is built, and the level geometry is created. A character is then placed
into the level. The character either can be under player control or can be automated. As the
character moves around in the level, its position is constantly being logged. The logged position
data can then be mined for interesting data.

If the character has moved around enough, then the majority of legal locations in the game
level will be in the log file. Because the character in the game engine will be able to use all of its
possible moves (jumps, flying, and so on), there is no need for complex calculations required to
determine where the character could get to.

Calculating Nodes

Locations that the character is often near will probably consist of junctions and thoroughfares in
the game level. These can be identified and set as nodes in the pathfinding graph.

The log file is aggregated so nearby log points are merged into single locations. This can be
performed by the condensation algorithm from Chapter 4 or by keeping track of the number
of log points over each floor polygon and using the center point of the polygon (i.e., using a
polygon-based navigation mesh).

Although it can be used with navigation meshes, data mining is typically used in combination
with a Dirichlet domain representation of the level. In this case a node can be placed in each
peak area of movement density. Typically, the graphs have a fixed size (the number of nodes for

794 Chapter 11 Tools and Content Creation

the graph is specified in advance). The algorithm then picks the same number of peak density
locations from the graph, such that no two locations are too close together.

Calculating Connections

The graph can then be generated from these nodes using either a points-of-visibility approach or
further analysis of the log file data.

The points-of-visibility approach is fast to run, but there is no guarantee that the nodes chosen
will be in direct line of sight. Two high-density areas may occur around a corner from each other.
The line-of-sight approach will incorrectly surmise that there is no connection between the two
nodes.

A better approach is to use the connection data in the log file. The log file data can be further
analyzed, and routes between different nodes can be calculated. For each entry in the log file, the
corresponding node can be calculated (using normal localization; see Chapter 4 for more details).
Connections can be added between nodes if the log file shows that the character moved directly
between them. This produces a robust set of connections for a graph.

Character Movement

To implement a data mining algorithm, a mechanism is needed to move the character around the
game level. This can be as simple as having a human player control the character or playing a beta
version of the game.

In most cases, however, a fully automatic technique is needed. In this case, the character is
controlled by AI. The simplest approach is to use a combination of steering behaviors to randomly
wander around the map. This can be as simple as a“wander”steering behavior, but usually includes
additional obstacle and wall avoidance.

For characters that can jump or fly, the steering behaviors should allow the character to use its
full range of movement options. Otherwise, the log file will be incomplete, and the pathfinding
graph will not cover the whole level accurately. Creating an exploring character of this kind is a
challenging AI task in itself. Ideally, the character will be able to explore all areas of the level, even
those that are difficult to reach. In reality, automatic exploring characters can often get stuck and
repeatedly explore a small area of the level.

Typically, automatic characters are only left to explore for a relatively short amount of time
(a couple of game minutes at the most). To build up an accurate log of the level, the character
is restarted from a random location each time. Errors caused by a character getting stuck are
minimized, and the combined log files are more likely to cover the majority of the level.

Limitations

The downside with this approach is time. To make sure that no regions of the level are accidentally
left unexplored and to make sure that all possible connections between nodes are represented in

11.2 Knowledge for Movement 795

the log file, the character will need to be moving around for a very long time. This is particularly
the case if the character is moving randomly or if there are areas of the level that require fine
sequences of jumps and other moves to reach.

Typically, an average game level (that takes about 30 seconds to cross by a character moving
at full speed) will need millions of log points recorded.

Under player control, fewer samples are required. The player can make combinations of moves
accurately and exhaustively explore all areas of the level. Unfortunately, this approach is limited
by time: it takes a long time for a player to move through all possible areas of a level in all
combinations. While an automated character could do this all night, if required (and it usually
is), using a human player for this is wasteful. It would be faster to manually create the pathfinding
graph in the first place.

Some developers have experimented with a hybrid approach: having automatic wandering for
characters, combined with player-created log files for difficult areas.

An active area for research is to implement a wandering character that uses previous log file
data to systematically explore poorly logged areas, trying novel combinations of moves to reach
locations not currently explored.

Until reliable exploring AI is achieved, the limitations of this approach will mean that hand-
optimization will still be needed to consistently produce useable graphs.

Other Representations

So far we have looked at data mining with respect to point-based graph representations. Mesh-
based representations do not require data mining approaches; the nodes are explicitly defined as
the polygons in the mesh.

It is an open question as to whether general bounding regions can be identified using data
mining. The problem of fitting a general region to a density map of log data is certainly very
difficult and may be impossible to perform within sensible time scales. To date, the practical data
mining tools we’re aware of have been based on point representations.

11.2 Knowledge for Movement

While pathfinding and waypoint tactics form the most common and trickiest toolchain pressure,
getting movement data comes in a close second.

11.2.1 Obstacles

Steering is a simple process when done on a flat empty plane. In indoor environments there are
typically many different constraints on character movement. An AI character needs to understand
where constraints lie and be able to adjust its steering accordingly. It is possible to calculate this
information at runtime by examining the level geometry. In most cases this is wasteful, and a
pre-processing step is required to build an AI-specific representation for steering.

796 Chapter 11 Tools and Content Creation

Walls

Predicting collisions with walls is not a trivial task. Steering behaviors treat characters as particles
with no width, but characters inevitably need to behave as if they were a solid object in the
game. Collision calculations can be made by making multiple checks with the level geometry
(checks from the right and left extremes of the character, for example). But this can cause steering
problems and stuck characters.

A solution is to use a separate AI geometry for the level shifted out from all walls by the
radius of the character (assuming the character can be represented as a sphere or cylinder). This
geometry allows collision detection to be calculated with point locations and lowers the cost of
collision prediction and avoidance.

The calculation of this geometry is usually done automatically with a geometric algorithm.
Unfortunately, these algorithms often have the side effect of introducing very small polygons in
corners or crevices which can trap a character. Figure 11.3 shows a case where the geometry can
give rise to a fine crevice that is likely to cause problems for an agent.

For very complex level geometries, an initial simplified collision geometry or support
for visualization and modification of the AI geometry in the modeling package may be
required.

Obstacle Representation

AI does not work efficiently with the raw polygon geometry of the level. Detecting obstacles by
searching for them geometrically is a time-consuming task that always performs poorly.

Collision geometry is often a simplified version of the rendering geometry. Many developers
use AI that searches based on the collision geometry.

Often, additional AI geometry needs to be applied to the obstacle so it can be avoided cleanly.
The complex contours of an object do not matter to a character that is trying to avoid it altogether.
As in Figure 11.4, a bounding sphere around the whole would be sufficient.

AI collision geometry

Figure 11.3 A crevice from automatic geometry widening

11.2 Knowledge for Movement 797

Figure 11.4 AI geometries: rendering, physics, and AI

As the environment becomes more complex, the constraints on character movement are
increased. Whereas moving through a room containing one crate is easy (no matter where the
crate is), finding a path through a room strewn with crates is harder. There may be routes through
the geometry that are excluded because the bounding spheres overlap. In this case, more complex
AI geometry is required.

11.2.2 High-Level Staging

Although originally designed for use in the movie industry, AI staging is increasingly being
considered for game effects. Staging involves coordinating movement-based game events.

Typically, the level designer places triggers in the game level that will switch on or off certain
characters. The character AI will then begin to make the characters act correctly. Historically,
this has often been observable to the player (characters suddenly coming to life when the player
approaches), but now is generally better hidden from sight.

Staging takes this one stage further and allows the level designer to set high-level actions for
the characters in response to triggers. Typically, this applies when there are many different AI
characters in the scene (such as a swarm of spiders or a squad of soldiers).

The actions set in this way are overwhelmingly movement related. This is implemented as a
state in the character’s decision making tool where it will execute a parametric movement (usually
“move to this location,” with the location being the parameter). This parameter can then be set in
the staging tool, either directly or as a result of a trigger during the game.

More sophisticated staging requires more complex sets of decisions. It can be supported with
a more complete AI design tool, capable of modifying the decision making of a character. Changes
to the internal state of the character can then be requested as a result of triggers in the level.

798 Chapter 11 Tools and Content Creation

11.3 Knowledge for Decision Making

At the simplest level, decision making can be implemented entirely by polling the game world
for information. A character that needs to run away when faced with danger, for example, can
look around for danger at each frame and run if the check comes back true. This level of decision
making was common in games until the turn of the century.

11.3.1 Object Types

Most modern games use some kind of message passing system to moderate communication. The
character will stand around until it is told that it can see danger, whereupon it will run away. In
this case the decision as to “what is dangerous” doesn’t depend on the character; it is a property
of the game as a whole.

This allows the developer to design a level in which completely new objects are created, marked
as dangerous, and positioned. The character will correctly respond to these objects and run away,
without requiring additional programming. The message passing algorithm and the character’s
AI are constant.

The toolchain needs to support this kind of object-specific data. The level designer will
need to mark up different objects for the AI to understand their significance. Often, this isn’t an
AI-specific process. A power-up in a platform game, for example, needs to be marked as collectable
so the game will correctly allow the player to move into it (as opposed to making it inpenetrable
and having the player bounce off it). This “collectable” flag can be used by the AI: a character
could be set so that it defends any remaining collectables from the player.

Most toolchains are data driven: they allow users to add additional data to an object’s defini-
tion. These data can be used for decision making.

11.3.2 Concrete Actions

In a handful (but growing number) of games, the actions available to a player depend on the
objects in the player’s vicinity—for example, being able to push a button or pull a lever. In
games with more complex decision making, the character may be able to use a range of gadgets,
technologies, and everyday objects. A character may use a table as a shield or a paperclip to open
a lock, for example.

While most games still reserve this level of interaction for the player, people simulation games
are leading a trend toward wider adoption of characters with broad competencies.

To support this, objects need to tell the character what actions they are capable of supporting.
A button may only be pushed. A table may be climbed on, pushed around, thrown, or stripped
of its legs and used as a shield. At its simplest, this can be achieved with additional data items:
all objects can have a “can be pushed” flag, for example. Then a character can simply check
the flag.

11.4 The Toolchain 799

But this level of decision making is usually associated with goal-oriented behavior, where
actions are selected because the character believes they will help achieve a goal. In this case, know-
ing that both buttons and tables can be pushed doesn’t help. The character doesn’t understand
what will happen when such an action is performed and so can’t select an action to further its
goals.

Pushing a button in an elevator does a very different thing than pushing a table under a hole
in the roof; they achieve very different goals. To support goal-oriented behavior, or any kind of
action planning, objects need to communicate the meaning of an action along with the action
itself. Most commonly, this meaning is simply a list of goals that will be achieved (and those that
will be compromised) if the action is taken.

Toolchains for games with goal-oriented AI need to treat actions as concrete objects. An action,
like a game object in a regular game, can have data associated with it. These data include the change
in the state of the world that will result from carrying out the action, along with prerequisites,
timing information, and what animations to play. The actions are then associated with objects in
the level.

11.4 The Toolchain

So far we have looked at the impact of AI on the design of various tools. This section takes a brief
walk through the AI-related elements of a complete toolchain, from complete behavior editing
tools to plug-ins for 3D modeling software.

11.4.1 Data-Driven Editors

AI isn’t the only area in which a huge amount of extra data is required for a game level. Increasingly,
the game logic, physics, networking, and audio require their own sets of data. Developers are
moving increasingly to custom-designed level editing tools to be reused over all their games.
Ownership of such a tool provides the flexibility to implement complex editing functionality that
would be difficult in a 3D package.

This kind of level editing package is often called “data driven” or “object oriented.” Each object
in the game world has a set of data associated with it. This set of data controls the behavior of the
object—the way in which it is treated by the game logic.

It is relatively easy to support the editing of AI data in this context. Often, it is a matter of
adding a handful of extra data types for each object (such as marking certain objects as “to be
avoided” and other objects as “to be collected”).

Creating tools of this kind is a major development project and is not an option for small
studios, self-publishing teams, or hobbyists. Even for teams with such a tool, there are limitations
to the data-driven approach. Creating a character’s AI is not just a matter of setting a bunch of
parameter values. Different characters require different decision making logic and the ability to

800 Chapter 11 Tools and Content Creation

marshal several different behaviors to select the right one at the right time. This requires a specific
AI design tool (although such tools are often integrated into the data-driven editor).

11.4.2 AI Design Tools

So far we have looked at tools that enable the AI to understand the game level better and to get
access to the information it needs to make sensible decisions.

As the sophistication of AI techniques increases, developers are looking at ways to allow level
designers to have access to the AI of characters they are placing. Level designers creating an indoor
lab scenario, for example, may need to create a number of different guard characters. They will
need to give them different patrol routes, different abilities to sense intruders, and different sets
of behaviors when they do detect the player.

Allowing the level designers to have this kind of control requires specialist AI design tools.
Without a tool, the designer has to rely on programmers to make AI modifications and set up
characters with their appropriate behaviors.

Scripting Tools

The first tools to support this kind of development were based on scripting languages. Scripts can
be edited without recompilation and can often be easily tested. Many game engines that support
scripting provide mechanisms for editing, debugging, and stepping through scripts. This has been
primarily used to develop the game level logic (such as doors opening in response to button
presses, and so on). But, as AI has evolved from this level, scripting languages have been extended
to support it.

Scripting languages suffer from the problem of being programming languages. Non-technical
level designers can have difficulty developing complex scripts to control character AI.

State Machine Designers

More recently, tools supporting the combination of pre-built behaviors have been available. Some
commercial middleware tools fall under this category, such as AI-Implant and SimBionic, as well
as several in-house tools created by large developers and publishers. These tools allow a level
designer to combine a palette of AI behaviors.

A character may need to patrol a route until it hears an alarm and investigates, for example.
The “patrol route” and “investigate” behaviors would be created by the programming team and
exposed to the AI tool. The level designer would then select them and combine them with a
decision making process that depends on the state of the siren.

The actions selected by the level designer are often little more than steering behaviors. As
discussed in Chapter 3, this is often all that is required for the majority of game character behavior.

The decision making process overwhelmingly favored by this approach is state machines.
Although some developers have had success with decision trees, most favor the flexibility of
a finite state machine (FSM). Figure 11.5 shows a screenshot of such a tool, the SimBionic
middleware tool.

11.4 The Toolchain 801

Figure 11.5 The SimBionic editor screen

The best tools of this type have incorporated the debugging support of a scripting language,
allowing the level editors to step through the operation of the FSM, seeing visually the current
state of a character and being able to manually set their internal properties.

11.4.3 Remote Debugging

Getting information out of the game at runtime is crucial for diagnosing the kind of AI problem
that doesn’t show in isolated tests. Typically, developers add debugging code to report the internal
state of the game as it is played. This can be displayed on-screen or logged to file and analyzed for
the source of errors.

When running on a PC, it is relatively easy to get inside the running game. Debugging tools
can attach to the game and report details of its internal state. Similarly, on console platforms,
remote debugging tools exist to connect from the development PC to the test hardware.

While there is a lot that can be done with this kind of inspection, developers are increasingly
finding that more sophisticated debugging tools are required. Analyzing memory locations or the
value of variables is useful for some debugging tasks. But it is difficult to work out how a complex
state machine is responding and impossible to understand the performance of a neural network.

802 Chapter 11 Tools and Content Creation

A debugging tool can attach to a running game to read and write data for the AI (and any other
in-game activity, for that matter). One of the most common applications of remote debugging is
the visualization of state machines. Often, combined with a state machine editing tool, this allows
the developer to see and set the state of characters in the game and often to introduce specific
events into an event management mechanism.

Remote debugging requires a debugging application to be running on a PC, communicating
over the network to the game, or running on another PC or a console (or sometimes the same
PC). This network communication can cause problems with data reliability and timing (the state
of the game may have moved on from what the developer is looking at). In addition, certain
consoles and many handheld devices do not support general network communication suitable
for this kind of tool.

Although not common at the moment, this kind of tool is becoming increasingly important.
As techniques increase in complexity, they cannot be easily understood by looking at a handful of
counters on-screen or by reading through log files.

11.4.4 Plug-Ins

Although custom level editing tools are becoming more common, 3D design, modeling, and
texturing are still overwhelmingly performed in a high-end modeling package like Autodesk’s 3ds
Max. There are a handful of less well-known and open-source tools being used in small teams
and by hobbyists, with the most well known being the open source Blender.

Each of these tools has a programmer’s software development kit (SDK) that allows new
functionality to be implemented in the form of plug-in tools. This allows developers to add plug-
in tools for capturing AI data. Plug-ins written with the SDK are compiled into libraries and are
most commonly written in C/C++. In addition, each tool has a comprehensive scripting language
that can be used for simpler tools.

The internal operation of each software package puts significant constraints on the architecture
of plug-ins. It is challenging to integrate with the existing tools in the application, the undo system,
the software’s user interface, and the internal format of its data. Because each tool is so radically
different and the SDKs each have a very different architecture, what you learn developing for one
often will not translate.

For AI support, the candidates for plug-in development are the same as the functionality
required in a level editing tool. Because there has been such a substantial shift toward separate
level editing tools, fewer developers are building AI plug-ins for 3D modeling software.

Exercises

1. Develop a tool that can analyze the placement of waypoints in level geometry and recognize
potential problems like the ones illustrated in Figure 11.1. Note that you are not being asked
to place the waypoints automatically or resolve problems, just identify them. For the geometry

Program ming

you can, at least to start with, just use a simple grid.

Exercises 803

2. Perform a post-processing step to simplify the links in the following example:

3. Here is a visual representation of a log file of the type that might be generated by recording
areas of a level that get visited during a game play session:

What problems might occur if this log file was used to automatically generate a waypoint graph?
What additional information could be recorded in the log file to fix the problem?

804 Chapter 11 Tools and Content Creation

4. The following figure shows two alternative representations that an AI character might use for
an enemy standing on a bridge. The representation on the left uses waypoints and the one on
the right a navigation mesh.

Enemy

Cliff

Cliff

Enemy

Cliff

Cliff

What kind of problems might occur with the waypoint representation and how might the
navmesh fair better in this regard?

5. Implement a tool to allow a level designer to specify object properties. For example, an object
might be classified as “dangerous” or “desirable.” Create AI characters that can perceive these
properties so their behavior will be correct even for objects that are placed in the environment
after the game has shipped.Program ming

Part IV

Designing Game AI

This page intentionally left blank

12
Designing

Game AI

o far in this book we have built up a whole palette of AI techniques and the infrastructure toSallow the AI to get on. We mentioned in Chapter 2 that game AI development is a mixture
of techniques and infrastructure with a generous dose of ad hoc solutions, heuristics, and bits of
code that look like hacks.

This chapter looks at how all the bits are applied to real games and how techniques are applied
to get the gameplay that developers want.

We will look on a genre-by-genre basis at the player expectations and pitfalls of a game’s AI.
No techniques are included here, just an illustration of how the techniques elsewhere in the book
are applied. Our genre classification here is fairly high level and loose, and some games might
have different marketing classifications. But, from an AI point of view, there is a relatively limited
set of things to achieve, and we have grouped genres accordingly.

Before diving into each genre, it is worth looking at a general process for designing the AI in
your game.

12.1 The Design

Throughout this book, we’ve been working from the same model of game AI, repeated once again
in Figure 12.1. As well as mapping the possible techniques, this diagram also provides a plan for
the areas that need to be considered when designing your AI.

When we create the AI for a title, we tend to work from a set of behaviors gleaned from the
design document, trying to work out the simplest set of technologies that will support them. Once

Copyright © 2009 by Elsevier Inc. All rights reserved. 807

808 Chapter 12 Designing Game AI

AI gets given processor time

AI has implications for
related technologies

AI gets turned into on-screen action

AI gets its
information

Character AI

Group AI

Execution management

Content creation

Decision making

W
or

ld
 in

te
rf

ac
e

Movement

Animation Physics

Scripting

Strategy

Figure 12.1 The AI model

we have convinced ourselves that we understand the requirements that these behaviors impose
on the game, we select technologies to implement them and a basic approach for integrating the
technologies together. Then we can start to build the integration layer between our planned AI
and the rest of the game engine. Initially, we use placeholder behaviors for characters, but with
the infrastructure in place we start to work on fleshing characters out.

This is, of course, an ideal, our plan of action if we had free rein over a project. In reality, you
will face constraints from lots of different directions that will affect your plan of approach. In
particular, publisher milestones mean that functionality and behaviors need to be implemented
early on in the development cycle. In many, if not most, projects content like this is quickly
implemented just for the milestone and then removed and rewritten later on. In a worrying
number of projects, the quick-and-dirty code ends up getting patched and hacked so much that
it ends up being impossible to surgically remove and becomes the AI that gets shipped.

These kinds of hassles are normal and happen to everyone. You shouldn’t think of yourself
as a bad person just because you end up shipping hacked and half-baked AI code in a couple of
titles! On the other hand, you can do your career a great service if you think ahead and get reliable
and effective AI built.

12.1.1 Example

In this section, we’ll walk through the two-stage design needs (the behaviors required and tech-
nologies to achieve them) of a hypothetical game, by way of an example. The game is simple from
a gameplay slant, but the AI requirements are varied.

Our game is called “Haunted House,” and not surprisingly it is set in a haunted house. It
is a well-known haunted house, and people from far and wide pay money to come and visit it.
The player owns the house, and the player’s job is to keep the customers paying by managing the
frights in the house, making sure that visitors get the spooks they are looking for.

12.1 The Design 809

Visitors arrive at the house, and the player’s aim is to send them fleeing in panic. To do this,
the player is given a selection of apparitions and mechanical tricks to apply in the house. Previous
visitors inevitably share their experiences, and others will come seeking to debunk or mimic their
frights.

The player must also try to keep the visitors from stumbling across the secrets of the house,
the tricks of the trade, one-way mirrors, smoke machines, and the ghost’s common room.

A variant of this idea can be seen in Ghost Master [Sick Puppies Studio and Interna-
tional Hobo Ltd., 2003], where a variety of houses are presented with different occupants.
The occupants are not expecting to be scared and follow their own Sims-like lives. It also has
similarities to games such as Dungeon Keeper [Bullfrog Productions Ltd., 1997] and Evil Genius
[Elixir Studios, 2004].

12.1.2 Evaluating the Behaviors

The first task is to design the behaviors that the characters in your game will display. If you are
working on your own game, this is probably part of your vision for the project. If you are working
in a development studio, it is likely to be the game designer’s job.

While the game’s designer will have set ideas about how the characters in the game should
act, in our experience these are rarely set in stone. Often, designers don’t understand what seems
trivial, but is truly difficult (and therefore should only be included if it is a central point of the
game), and the many seemingly difficult but simple additions that could be made to improve
character behavior.

The behavior of characters in the game will naturally evolve as you implement and try new
things. This is not just true of hobbyist projects or games with long research and development
phases; it is also true of a development project with fixed ideas and a tight time scale. With the
best will in the world, you won’t completely understand the AI needs of a game before you start
to develop it. It is worth planning from the outset for some degree of flexibility.

For example, creating an AI with a fixed set of inputs from the game is just asking for late
nights at the end of the project (they’ll happen anyway, so why ask for them?). Inevitably, the
designers will need some extra AI input at an inconvenient time, and the AI code will need
reworking. Because of this, we always tend to err on the side of flexibility rather than raw speed
in our initial designs. It is much easier to optimize later on than to un-optimize tangled code to
eke out flexibility at the last minute.

So, starting from the set of behaviors we want to see, we have some questions to answer for
each of the components of the AI model:

� Movement

— Will our characters be represented individually (as in most games), or will we only see
their group effects (as in city simulation games, for example)?

— Will our characters need to move around their environment in a more or less realistic
manner? Or can we just place them where we want them to go (in a tile-based, turn-based
game, for example)?

810 Chapter 12 Designing Game AI

— Will the characters’ motion need to be physically simulated, as in a car game, for example?
How realistic does the physics have to be (bearing in mind that it is typically much harder
to build movement algorithms to work with realistic physics than it is to tweak the physics
so it is less realistic for the AI characters)?

— Will characters need to work out where to go? Can they get by just wandering, following
designer-set paths, staying only in one small area, or chasing other characters? Or do we
need the characters to be able to plan their route over the whole level with a pathfinding
system?

— Will the characters’ motion need to be influenced by any other characters? Will chas-
ing/avoiding behaviors be enough to cope with this, or do the characters need to coordi-
nate or move in formations, too?

� Decision making —This is typically the area in which AI designers get the most carried away.
It is common to see AI designs at the start of a game that involve all kinds of exotic new
techniques. More often than not, the final game ships with state machines running all the
important stuff. In our experience, the more ambitious the AI at the start of the project, the
more conventional it usually is at the end of the project (with a few notable exceptions).

— What is the full range of different actions that your characters can carry out in the game?
— How many distinct states will each of your characters have? In other words, how are those

actions grouped together to fulfill the goals of the character? Note that we’re not assuming
you are going to use either state machines or goal-based behavior here. Whatever drives
your characters, they should appear to have goals, and when acting to achieve one goal
they can be thought of as being in one state.

— When will your character change its behavior, switch to another state, or choose another
goal to follow? What will cause these changes? What will it need to know in order to
change at the right time?

— Will characters need to lookahead in order to select the best decision? Will they need
to plan their actions or carry out actions that lead only indirectly to their goals? Do
these actions require action planning, or can a more complex state-based or rule-based
approach cover them?

— Will your character need to change the decisions it makes depending on how the player
acts? Will it need to respond based on a memory of player actions, using some kind of
learning?

� Tactical and strategic AI

— Do your characters need to understand large-scale properties of the game level in order
to make sensible decisions? Do you need to represent tactical or strategic situations to
them in a way that enables them to select an appropriate behavior?

— Do your characters need to work together? Do they need to carry out actions in correct
sequences, depending on each other’s timing?

— Can your characters think for themselves and still display the group behavior you are
looking for? Or do you need some decisions to be made for a group of characters at
a time?

12.1 The Design 811

Example

In the “Haunted House” example we get the following answers to our questions:

� Movement —Characters will be represented individually, moving around their environment
autonomously. We do not need realistic physical simulation. We can get by with kinematic
movement algorithms rather than full steering behaviors. Characters will often want to head
for a specific location (the exit, for example) which may require navigation through the
house, so we’ll need pathfinding.

� Decision making —Characters have a small range of possible actions. They can creep about,
run, or stand still (petrified). They can examine objects or “act on them”: each object has a
maximum of one action that can be performed on it (a light switch can be toggled or a door
can be opened, for example). They can also console other people in the house.

Characters will have four broad types of behavior: scared behavior, in which they will try to
recover their wits; curious behavior, in which they will examine objects and explore; social
behavior,where they will attempt to keep the group together and console concerned members;
and bored behavior, where they head for the customer service desk and ask for a refund.

The characters will change their behavior based on levels of fear. Each character has a fear
level. When a character passes a threshold, it will enter scared behavior. When a character
is near another scared character, it will enter social behavior. If a character’s fear level drops
very low, it gets bored. Otherwise, it will be in curious mode.

Characters will change their fear level by seeing, hearing, or smelling odd things. Each spook
and trick has an oddness intensity in each of these three senses. Characters need to be
informed when they can see, hear, or smell something and how odd it seems.

The characters will seek to explore places they haven’t been before or will go back to places
they or others enjoyed before. They should keep track of visited places and interesting places.
Interesting places can be shared among many groups to represent gossip about good frights.

� Tactical and strategic AI—Characters need to avoid locations they know to be scary when
they are trying to recover their wits. Similarly, they will avoid the boring areas when they are
looking for action.

12.1.3 Selecting Techniques

With answers to the behavior-based questions, you will have a good idea of how far you need to go
in the AI. You may have worked out whether you need pathfinding and what kind of movement
behaviors are required, for example, but not necessarily which pathfinding algorithm or which
steering arbitration system to use.

This is the next stage: building up a candidate set of technologies that you intend to use.
In our experience most of this is fairly straightforward. If you have decided that you need

pathfinding, then A* is the obvious choice. If you know that characters need to move in a for-
mation, then you need a formation motion system. Some decisions are a little more tricky—in
particular, the decision making architecture causes headaches.

812 Chapter 12 Designing Game AI

As we saw in Chapter 5, there are no hard and fast rules for selecting a decision making system.
Most things you can do with one system, you can do with the others. Our recommendation would
be to start with a simple technique such as behavior trees or state machines or a simple combination
of the two, unless you know of a specific thing you want to do that cannot be achieved with them.
Their flexibility has proven its worth so many times for us that we need to have a better reason
than novelty for doing something else.

We encourage you at this stage to avoid getting pulled back into the behaviors you identified.
It is tempting to think that if we used such-and-such exotic technique, then we could show such-
and-such cool behavior. It is important to blend the promise of cool effects with the ability to get
the other 95% of the AI working rock-solidly.

Example

In the “Haunted House” example we can fulfill the requirements of our behaviors with the
following suite of technologies from this book:

� Movement —Characters will move with kinematic movement algorithms. They can select
any direction to move in, at one of their two movement speeds.

In curious and scared modes, they will select their movement target as a room and use A* to
pathfind a route there. They will use a path following behavior to follow the route. We will
use a waypoint graph to fit in with the tactical and strategic AI, below.

In social mode, they will head for scared characters they can see, using a kinematic seek
behavior.

� Decision making —Characters will use a very simple finite state machine to determine their
broad behavior pattern and within each state a behavior tree to determine what to actually
do about it.

The state machine has four states: scared, curious, social, and bored. Transitions are based
purely on the fear level of a character and the other characters in line of sight.

In each mode there may be a range of actions available. In curious mode, the character can
investigate locations or objects; in scared mode, they want to select the best way to find a
safe place to gather their wits. Each of these behaviors is implemented as a decision tree with
the various strategies chosen by selectors. Each strategy may in turn have multiple elements,
which can be added to sequence nodes in the tree.

� Tactical and strategic AI —To facilitate the learning of scary and safe locations, we keep a
waypoint map of the level. When characters change their scared state, they record the event
in the map. This is just the same process as creating a frag-map from Chapter 6.

� World interface—Characters need to get information on the sights, smells, and sounds of
odd occurrences in the game. This should be handled by a sense management simulation
(a region sense manager would be fine).

Characters also need information on the available actions to take when they are in curious
mode. The character can request a list of objects that it can interact with, and we can provide

12.1 The Design 813

this information from a database of objects in the game. We do not need to simulate the
character seeing and recognizing these objects.

� Execution management —There are two technologies, pathfinding and sense management.
Both are time consuming.

With only a few rooms in the house, an individual’s pathfinding will not take very long.
However, there may be many characters in the house, so we can use a pool of a few planners
(one might do it) and queue pathfinding requests. When a character asks for a path, it waits
until there is a planner free and then gets its path in one go. We don’t need anytime algorithms
for pathfinding.

The sense management system gets called each frame and incrementally updates. It is by
design an anytime algorithm distributed over many frames.

There may be many characters (tens, let’s say) in the house at once. Each character is acting
relatively slowly; it does not need to process all of its AI each frame. We can avoid using a
complex hierarchical scheduling system and simply update a few different characters each
frame. With 5 characters per frame updated, 50 characters in the game, and 30 frames per
second being rendered, a character will have to wait less than half a second between updates.
This delay may actually be useful; having characters wait for fractions of a second before
reacting to a fright simulates their reaction time.

We end up with only a handful of modules that need implementing for this game. The
sense management system is probably the most complex, and most are very standard and have
simple components. We have even managed to include the random number generator: the first
AI technique we met in Chapter 2.

12.1.4 The Scope of One Game

Given the range of technologies in this book, you might have expected us to make the “Haunted
House” more complex, relying on clever use of lots of different algorithms. In the end, the only
thing in our design that is slightly exotic is the sense management system used to notify characters
of odd events.

In reality, the AI in games works this way. Fairly simple techniques take the bulk of the work.
If there are specific AI-based gameplay effects you are looking for, then one or two high-powered
techniques can be applied. If you find yourself designing a game with neural networks, sense
management, steering pipelines, and a Rete-based expert system, then it’s probably time to focus
in on what is really important in your game.

Each of the more unusual techniques in this book is crucial in some games and can make the
difference between a boring game and really neat character behavior. But, like a fine spice, if they
aren’t used sparingly to add flavor, they can end up spoiling the final product.

In the remainder of this chapter we’ll look at a range of commercial games in a variety of
genres. In each case, we’ll try to focus on the techniques that make the genre unusual: where new
innovations can really make a difference.

814 Chapter 12 Designing Game AI

We have limited this chapter to the most significant game genres, the bread and butter for
most AI developers. The final chapter of the book, Chapter 13, covers other game genres where
AI is specifically tasked with providing the gameplay. These are not large genres with thousands
of titles, but they are interesting for an AI developer because they stretch AI in ways that common
genres don’t.

12.2 Shooters

First- and third-person shooters are the most financially significant genre and have been in one
form or another since the first video games were created.

With the arrival of Wolfenstein 3D [id Software, 1992] and Doom [id Software, 1993], the
shooter genre has become synonymous with characters moving on foot (possibly with jetpacks,
as in Tribes II [Dynamix, 2001]) with a camera tied to the player’s character. Enemies usually
consist of a relatively small number of on-screen characters. Many shooters have enemy characters
represented as “bots”: computer-controlled characters with physical capabilities similar to those
of the player. Other games provide cannon fodder, a larger number of less sophisticated enemies.

The most significant AI needs for the genre are:

1. Movement—control of the enemies

2. Firing—accurate fire control

3. Decision making—typically simple state machines

4. Perception—determining who to shoot and where they are

5. Pathfinding—often (but not always) used to allow characters to plan their route through the
level

6. Tactical AI—again, often used to allow characters to determine safe positions to move or for
more advanced tactics such as ambush laying

Of these, the first two are the key issues seen in all games of the genre. The latter needs are
more frequently addressed in more sophisticated titles and are increasingly becoming necessary
for a good critical reception.

Figure 12.2 shows a basic AI architecture suited to a first- or third-person shooter.

12.2.1 Movement and Firing

Movement is the most visible part of character behavior, and, second only to people sims, shooters
have the most complex sets of animation around. It is not unusual for characters to combine tens
or hundreds of animation sequences, along with other controllers such as inverse kinematics or
ragdoll physics. A character in F.E.A.R. 2: Project Origin [Monolith Productions, Inc., 2009] can
be running, firing, and looking all at the same time. The first two are animation channels, and
the third is a procedural animation controlled by the direction the character is looking (as is the
direction, but not the overall movement, of the firing arm).

12.2 Shooters 815

Line of sight checks

Waypoint tactics/frag-maps

Scripting language

Kinematic movement

Animation controller

Supporting technology

Decision making

Movement

Tactical/Strategic AI

Pathfinding
(for complex enemies or bots)

Inverse kinematics or other constraints
may limit possible movement

Figure 12.2 AI architecture for a shooter

In No One Lives Forever 2 [Monolith Productions, Inc., 2002] ninja characters have sophis-
ticated movement abilities that add to the difficulty of synchronizing movement and animation.
They can perform cartwheels, vault over obstacles, and leap between buildings.

Simple movement around the level becomes a challenge. The AI not only needs to work out a
route, but also needs to be able to break this motion into animations. Most games separate the two
parts: the AI decides where to move, and another chunk of code turns this into animations. This
allows the AI complete freedom of motion but has the disadvantage of allowing odd combinations
of animation and movement to occur, which can look jarring to the player. This difficulty has been
tackled to date by including a richer palette of animations, making it more likely that a reasonable
combination can be found.

Several games that use scripting languages to control their characters expose the same controls
to the AI as the player uses. Rather than output desired motion or target locations, the AI needs
to specify how fast it is moving forward or backward, turning, changing weapons, and so on. This
makes it very easy during development to remove an AI character and replace it with a human
being (playing over the network, for example). Most titles, including those based on licensing the
most famous game engines, have macro commands—for example:

1 sleep 3
2 gotoactor PathNodeLoc1
3 gotoactor PathNodeLoc2
4 agentcall Event_U_Wave 1
5 sleep 2
6 gotoactor PathNodeLoc3
7 gotoactor PathNodeLoc0

is a typical script fragment from the Unreal engine.

816 Chapter 12 Designing Game AI

Because of the constrained, indoor nature of the levels in many shooters, the characters almost
certainly need some kind of route finding. This may be as simple as the gotoactor statements in
the Unreal script above, or it might be a full pathfinding system. Whatever form this takes (we’ll
return to pathfinding considerations later), the routes need to be followed. With a reasonably
complicated route, the character can simply follow the path. Unfortunately, the game level is likely
to be dynamic. The character should react properly to other characters moving about. This is most
commonly done using a simple repulsion force between all characters. If characters approach too
closely, then they will move apart. In Mace Griffin: Bounty Hunter [Warthog Games, 2003], the
same technique is used to avoid collisions between characters on the ground and between combat
spacecraft during the deep space sections of the game. Indoors, pathfinding is used to create the
routes. In space, a formation motion system is used instead.

The Flood in Halo [Bungie Software, 2001] and the aliens in Alien vs. Predator [Rebellion,
1994]1 both move along walls and the ceiling as well as the floor. Neither uses a strictly 2 1

2 -
dimensional (2 1

2 D) representation for character movement.
Firing AI is crucial in shooters (not surprisingly). The first two incarnations of Doom were

heavily criticized for unbelievably accurate shooting (the developers slowed down incoming pro-
jectiles to allow the player to move out of the way; otherwise, the accuracy would be overwhelm-
ing). More realistic games, such as Medal of Honor: Airborne [Electronic Arts Los Angeles, 2007]
and Far Cry 2 [Ubisoft Montreal Studios, 2008] use firing models that allow characters to miss in
exciting ways (i.e., they try to miss where the player can see the bullet).

12.2.2 Decision Making

Decision making is commonly achieved using finite state machines, and increasingly with behavior
trees. These can be very simple with just “seen-player” and “not-seen-player” behaviors.

A very common approach to decision making in shooters is to develop a bot scripting system.
A script written in a game-specific scripting language (which in some cases is JIT compiled for
speed) is called. The script has a whole range of functions exposed to it by which it can determine
what the character can perceive. These are usually implemented by directly polling the current
game state. The script can then request actions to be executed, including the playing of animations,
movement, and in some cases pathfinding requests. This scripting language is then made available
to users of the game to modify the AI or to create their own autonomous characters. This is the
approach used in Unreal [Epic Games, 1998] and successive games, and it is beginning to be
adopted in non-shooters such as Neverwinter Nights [Bioware, 2002] (as a tool purely for level
designers, when it is not available to end users, it is much more common).

For Sniper Elite [Rebellion, 2005], Rebellion wanted to see emergent behavior that was dif-
ferent on each play through. To achieve this they applied a range of state machines, operating
on waypoints in the game level. Many of the behaviors depended on the actions of other char-
acters or the changing tactical situation at nearby waypoints. A small amount of randomness in
the decision making process allowed the characters to behave differently each time and to act in
apparent cooperation, without needing any squad-based AI.

1. Not to be confused with Alien vs. Predator [Activision, 1993], the arcade and SNES games of the same name, both of
which are sideways scrolling shooters.

12.2 Shooters 817

A slightly different approach to autonomous AI was created in No One Lives Forever 2 [Mono-
lith Productions, Inc., 2002]. Monolith blended state machines with goal-oriented behavior. Each
character would have a pre-determined set of goals that could influence its behavior. The characters
would periodically evaluate their goals and select the one that was most relevant for them at that
time. That goal would then take control of the character’s behavior. Inside each goal was a finite
state machine that was used to control the character until a different goal was selected.

The game uses waypoints (which they call nodes) to make sure characters are in the correct
position for behaviors such as rifling through filing cabinets, using computers, and switching
on lights. The presence of these waypoints in the vicinity of a character allows the character to
understand what actions are available.

Monolith’s AI engine continues to undergo development. In F.E.A.R. [Monolith Productions,
Inc., 2005], the same goal-oriented behavior is used, but the pre-built state machines are replaced
by a planning engine that tries to combine available actions in such a way as to fulfill the goal.
F.E.A.R. had one of the first full goal-oriented action planning systems.

In Halo 2 and Halo 3 [Bungie Software, 2004, Bungie Software, 2007] decision trees were used
to allow AI characters to perform rudimentary planning as they acted. When nodes in a selector
in the behavior tree fail, the AI falls back to other nodes representing different plans, giving the
AI a breadth of tactical opportunities that would be difficult to specify using a state machine.

12.2.3 Perception

Perception is sometimes faked by placing a radius around each enemy character and having that
enemy “come to life” when the player is within it. This is the approach taken by the original Doom.
After the success of Goldeneye 007 [Rare Ltd., 1997], however, more sophisticated perception
simulation became expected. This doesn’t necessarily mean a sense management system, but at
the very least characters should be informed of what is going on around them through some kind
of messages.

In the Ghost Recon [Red Storm Entertainment, Inc., 2001] games, the perception simulation
is considerably more complex. The sense management system that provides information to AI
characters takes into account the amount of broken cover provided by bushes and tests the
background behind characters to determine if their camouflage matches. This is achieved by
keeping a set of pattern ids for each material in the game. The line-of-sight check passes through
any partially transparent object until it reaches the character being tested. It then continues
beyond the character and determines the next thing it collides with. The camouflage id and the
background material id are then checked for compatibility.

The Splinter Cell [Ubisoft Montreal Studios, 2002] games use a different tack. Because there
is only one player character (in Ghost Recon there are many), each AI simply checks to see if
it is visible. Each level can contain dynamic shadows, mist, and other hiding effects. The player
character is checked against each of these to determine a concealment level. If this is below a
certain threshold, then the enemy AI has spotted the player character.

The concealment level does not take into account background in the way that the Ghost Recon
games do; if the character is standing in a dark shadow in the middle of a bright corridor, then it will
not be seen, even though it would appear to the guards as a big black figure on a bright background.
The levels have been designed to minimize the number of times this limitation is obvious.

818 Chapter 12 Designing Game AI

The AI characters in Splinter Cell also use a cone-of-sight for vision checks, and there is a
simple sound model where sound travels in the current room up to a certain radius depending
on the volume of the sound. Very similar techniques are used in the Metal Gear Solid [Konami
Corporation, 1998] series of games.

12.2.4 Pathfinding and Tactical AI

In Soldier of Fortune 2: Double Helix [Raven Software, 2002], links in the pathfinding graph
were marked with the type of action needed to traverse them. When a character reached the
corresponding link in the path, it could then change behavior to appear to have knowledge of
the terrain. The link might represent an obstacle to vault over, a door to open, a barrier to break
through, or a wall to rappel down. The AI team responsible, Christopher Reed and Ben Geisler,
call this approach “embedded navigation.”

It is becoming almost universal to incorporate some kind of waypoint tactics in shooters. In
the original Half-Life [Valve, 1998], the AI uses waypoints to work out how to surround the player.
A group of AI characters will be coordinated so that they occupy a set of good defensive positions
that surround the player’s current location, if that is possible. In the game an AI character will
often make a desperate run past the player in order to take up a flanking position.

Unless your enemy characters always rush the player, as in the original Doom, you will probably
need to implement a pathfinding layer. The indoor levels of most shooters can be represented with
relatively small pathfinding graphs that are quickly searched. Rebellion used the same waypoint
system for their pathfinding and tactical AI in Sniper Elite, whereas Monolith created a completely
different representation for No One Lives Forever 2. In Monolith’s solution, the area that a
character could move to was represented by overlapping “AI volumes,” which then formed the
pathfinding graph. The waypoints of its action system did not directly take part in pathfinding
(except as a goal for the pathfinder to plan to).

At the time of the first edition of this book developers used a range of representations for
pathfinding. Since then it has become almost (but not quite) ubiquitous to use navigation meshes
to represent internal spaces. It is more effort to unify the navigation mesh approach with robust
tactical analysis, and it is not uncommon to see grid-based tactical analysis running side-by-side
with navigation meshes for pathfinding.

There are still other viable approaches, however. Monolith’s pathfinding volumes are yet
another approach, and many games set outdoors still rely on grid-based pathfinding graphs.

Games set primarily indoors naturally break up their levels into sectors, often separated
by portals (a rendering optimization technology). These sectors can act naturally as a higher
level pathfinding graph for long-distance route planning. This makes hierarchical pathfinding
algorithms a natural fit for implementations capable of dealing with large levels.

12.2.5 Shooter-Like Games

Various games use a first- or third-person viewpoint with human-like characters. The player
directly controls one character, used as the viewpoint of the game, and enemy characters typically
have similar physical capabilities.

12.2 Shooters 819

In combination with the natural conservatism of game settings, this means that a number of
genres that could not be described as shooters use very similar AI techniques. They therefore tend
to have the same basic architecture.

Rather than cover the same ground again, we will consider these genres in terms of what they
add or remove from the basic shooter setup.

Platform and Adventure Games

Platform games are normally intended for a younger audience than first-person shooters. A major
design goal is to make the enemy characters interesting, but fairly predictable. It is common to
see obvious patterns designed into a character’s behavior. The player is rewarded for observing
the action of the enemy and building up an idea of how to exploit its weaknesses.

The same holds true for adventure games, in which enemies become another puzzle to be
solved. In Beyond Good and Evil [UbiSoft Montpellier Studios, 2003], the Alpha Sections, an
otherwise impervious enemy, lower their shields for a few seconds after attacking, for example.

In both cases the AI will use similar, but simpler, techniques to those seen in shooters. Move-
ment will typically use the same approach, although platform games often add flying enemies,
which will need to be controlled with 2 1

2 D or three-dimensional (3D) movement algorithms.
Adventure games, in particular, place a larger burden on animation to communicate character
actions. A small number of games allow their characters to pathfind. Jak and Daxter: The Pre-
cursor Legacy [Naughty Dog, Inc., 2001], for example, uses a navigation mesh representation to
allow characters to move around intelligently. In many platform-type games, movement can be
safely kept local.

The state of the art in decision making is still the simplest techniques. Typically, characters
have two states: a “spotted the player” state and a “normal behavior” state. Normal behaviors will
often be limited to standing playing a selection of animations or fixed patrol routes. In Oddworld:
Munch’s Oddysee [Oddworld Inhabitants, 1998], some animals move around randomly using a
wander behavior until they spot the protagonist.

When a character has spotted the player, it will typically home in on the player with a seek
or pursue behavior. In some games this homing is limited to aiming at the player and moving
forward. Other games extend the capabilities of the moving character. The human enemies in
Tomb Raider III [Core Design Ltd., 1998] and later games of the franchise, for example, grab on
and climb up onto blocks to get at Lara.

Obviously, variations on this exist: some characters might have a few more states, they might
call for help, there might be different close-quarters and long-distance actions, and so on. But we
can’t think of any game in these genres where the characters use fundamentally more complex
techniques such as goal-oriented behaviors, rule-based systems, or waypoint tactics.

MMOGs

Massively multi-player online games (MMOGs) usually involve a large number of players in a
persistent world. Technically, their most important feature is the separation between the server
on which the game is running and the machines on which the player is playing.

820 Chapter 12 Designing Game AI

A distinction between client and server is usually implemented in shooters (and many other
types of game) also to make multi-player modes easier to program. In an MMOG, however, the
server will never be running on the same machine as the client; it will normally be running on a
set of dedicated hardware. We can therefore use more memory and processor resources.

Some massively multi-player games have only a marginal need for AI. The only AI-controlled
characters are animals or the odd monster. All characters in the game are played by humans.

While this might be an ideal situation, it is not always practical. The game requires some
critical mass of players before it is worth anyone’s time playing. Most MMOGs add some kind of
AI-based challenge to the game, much like you’d see in any first- or third-person adventure.

With such a huge game world, all the challenges to the AI developer arrive in terms of scale.
The technologies used are largely the same as for a shooter, but their implementation needs to be
significantly different to cope with large numbers of characters and a much larger world. Whereas
a simple A* pathfinder can cope with a level in a shooter and the 5 to 50 characters using it to
plan routes, it will likely grind to a halt when 1000 characters need to plan their way around a
continent-sized world.

It is these large-scale technologies, particularly pathfinding and sensory perception, that need
more scalable implementations. We have looked at some of these. In pathfinding, for example, we
can pool planners, use hierarchical pathfinding, or use instanced geometry.

12.3 Driving

Driving is one of the most specialized, genre-specific AI tasks for a developer. Unlike other genres,
the crucial AI tasks are all focused around movement. The task isn’t to create realistic goal-seeking
behavior, clever tactical reasoning, or route finding, although all of these may occur in some
driving games. The player will judge the competency of the AI by how well it drives the car.

Figure 12.3 shows an AI architecture suited to a racetrack driving game, and Figure 12.4
expands this architecture for use in an urban driving title, where different routes are possible and
ambient vehicles share the road.

FSM
(Driving line selection)

Markov/Fuzzy SM
(Generate desired steering)

Capability-sensitive steering

Supporting technology

Decision making

Movement

Tactical/Strategic AI

Track data
(Specially marked-up AI data)

or

Figure 12.3 AI architecture for race driving

12.3 Driving 821

Capability-sensitive steering

Supporting technology

Decision making

Movement

Tactical/Strategic AI

Pathfinding

Markov/Fuzzy SM
(Generate desired steering)

FSM/rule-based system/script
(Destination selection)

Kinematic steering

Explicit traffic/pedestrian simulation code

Figure 12.4 AI architecture for urban driving

12.3.1 Movement

For racing games there are two options for a developer implementing the car motion. The simplest
approach is to allow the level designer to create one or more racing lines, along which the vehicle
can achieve its optimal speed. This racing line can then be followed rigidly. This may not even
require steering at all. Computer-controlled cars can simply move along the predefined path.

Typically, this kind of racing line is defined in terms of a spline: a mathematical curve. Splines
are defined in terms of curves in space, but they can also incorporate additional data. Speed data
incorporated into the spline allow the AI to look up exactly the position and speed of a car at any
time and render it accordingly. This provides a very limited system: cars can’t easily overtake one
another, they won’t avoid crashes in front of them, and they won’t be deflected out of the way
when colliding with the player. To avoid these obvious limitations, additional code is added to
make sure that if the car gets knocked out of position, a simple steering behavior can be engaged
to get it back onto the racing line. It is still characterized by the tendency of cars to stream into a
crashed car with naive abandon.

Most early driving games, such as Formula 1 [Bizarre Creations, 1996], used this approach.
It has also been used in many recent games for controlling cars that are intended to be part of the
“background,” as seen in Grand Theft Auto 3 [DMA Design, 2001].

The second approach, used overwhelmingly in recent titles, is to have the AI drive the car—to
apply control inputs into the physics simulation so that the car behaves realistically. The degree
to which the physics that the AI cars have to cope with is the same as the physics that the
player experiences is a critical issue. Typically, the player has somewhat harder physics than the
AI-controlled cars, although many games are now giving the AI the same task as the player.

822 Chapter 12 Designing Game AI

It is very common to still see racing lines being defined for this kind of game. The AI-controlled
car tries to follow the racing line by driving the car, rather than having the racing line act as a rail
for it to move along. This means that the AI often cannot achieve its desired line, especially if it has
been nudged by another car. This can cause additional problems. In Gran Turismo [Polyphony
Digital, 1997], which used this approach, a car could be knocked out of position by the player. At
this point the car would still try to drive its racing line, which would usually result in it outbreaking
itself on the next corner and ending up in the gravel trap.

To solve the problem of overtaking, when a slower moving vehicle sits on the racing line,
many developers add special steering behaviors: the car will wait until a long straight and then
pull out to overtake. This is characteristic overtaking behavior seen in many driving games from
Gran Turismo to Burnout [Criterion Software, 2001] and is a common overtaking ploy in real-
world racing with medium- and low-powered cars. Most of the overtaking in the world’s fastest
racing series (such as Formula One) takes place under braking at corners, however. This can be
accomplished using an alternative racing line defined by the level designer. If a car wishes to
overtake, it takes up a position on this line, which will ensure that it can brake later and take
control of the exit of the corner. We’re not aware of anyone using AI to generate these kinds of
lines. To the best of our knowledge they are created manually.

A variation on this approach is used in many rally games and is sometimes called “chase the
rabbit.” An invisible target (the eponymous rabbit) is moved along the racing line using the direct
position update method. The AI-controlled vehicle then simply aims for the rabbit; it can be
controlled using an “arrive” behavior, for example. As the rabbit is always kept in front of the car,
it begins to turn first, making sure that the car steers at the right point. This is particularly suited to
rally games, because it makes implementing power slides quite natural. The car will automatically
begin steering well before the corner, and if the corner is severe it will steer heavily, causing the
physics simulation to allow the back end of the car to slip out a little.

Other developers have used decision making tools as part of the driving AI. The karting
simulator Manic Karts [Manic Media Productions, 1995] used fuzzy decision making in place
of racing lines. It determined the left and right extent of the track a short distance in front of
the vehicle, as well as any nearby karts, and then used a hand-written Markov state machine to
determine what to do next.

Forza Motorsport [Turn 10 Studios, 2005] used neural networks to learn how to drive by
observing human players. The final AI that shipped with the game was the result of hundreds of
hours of training by the development team.

12.3.2 Pathfinding and Tactical AI

With Driver [Reflections Interactive, 1999], a new genre of driving game emerged. Here there is
no fixed track. The game is set on city streets, and the goal is to catch or avoid other cars. A car
can take any route it likes, and when running from the police the player will usually weave and
double back. A single, fixed racetrack is not applicable for this kind of game.

Many games in this genre have enemy AI following a set path when it is escaping from the player
or performing a simple homing-in algorithm when trying to catch them. In Grand Theft Auto 3,
cars are only created for the few blocks surrounding the player’s position. When police home in

12.4 Real-Time Strategy 823

on the player, they are gathered from this area, and additional cars are injected at appropriate
positions.

As this kind of game simulates a wider area, however, vehicles begin to need pathfinding to
find their route around, especially with a view to catching the player.

The same is true of the use of tactical analysis to work out likely escape routes and block them.
The driver uses a simple algorithm to try to surround the player. At least one (unannounced)
game that we know is currently in development performs a tactical analysis based on the current
direction the player is moving and asks police car AI to intercept. The police cars then use tactical
pathfinding to get to their positions without crossing the player’s path (to avoid giving the game
away).

12.3.3 Driving-Like Games

The basic approach used for driving games can apply to a number of other genres.
Some extreme sports games, such as SSX [Electronic Arts Canada, 2000] and Downhill Dom-

ination [Incog, Inc. Entertainment, 2003], have a racing game mechanic at their core. Overlaid
onto the racing system (normally implemented using the same racing line-based AI as for driving
games) is commonly a“tricks”sub-game, which involves scheduling animated trick actions during
jumps. These can be added at predefined points on the racing line (i.e., a marker that says, when
the character reaches this point, schedule a trick of a particular duration) or can be performed
by a decision making system that predicts the likely airtime that will result and schedules a trick
with an appropriate duration.

Futuristic racers, such as Wipeout [Psygnosis, 1995], are likewise based on the same racing AI
technology. It is common for this kind of game to include weapons. To support this, additional AI
architecture is needed to include targeting (often, this isn’t a full firing solution, as the weapons
home in) and decision making (the vehicle may slow down to allow an enemy to overtake it in
order to target them).

12.4 Real-Time Strategy

With Dune II [Westwood Studios, 1992],2 Westwood created a new genre3 that has become a
mainstay of publishers’ portfolios. Although it accounts for a small proportion of total game sales,
the genre is one of the strongest on the PC platform.

Key AI requirements for real-time strategy games are:

1. Pathfinding

2. Group movement

2. Not to be confused with the original Dune game [Cryo Interactive Entertainment, 1992], which was a fairly nondescript
graphical adventure.

3. Some games historians trace the genre back further to strategy hybrid games like Herzog Zwei [TechnoSoft, 1989], but
for the purposes of AI styles these earlier games are very different.

824 Chapter 12 Designing Game AI

3. Tactical and strategic AI

4. Decision making

Figure 12.5 shows an AI architecture for a real-time strategy (RTS) game. This varies more
from game to game than previous genres, depending on the particular set of gameplay elements
being used. The model below should act as a useful starting point for your own development.

12.4.1 Pathfinding

Early real-time strategy games such as Warcraft: Orcs and Humans [Blizzard Entertainment,
1994] and Command and Conquer [Westwood Studios, 1995] were synonymous with pathfind-
ing algorithms, because efficient pathfinding was the primary technical challenge of the AI. With
large grid-based levels (often encompassing tens of thousands of individual tiles), long pathfind-
ing problems (the player can send a unit right across the map), and many tens of units, pathfinding
speed is crucial.

Although most games no longer use tile-based graphics, the underlying representation is
still grid based. Most games use a regular array of heights (called a height field) to render the
landscape. This same array is then used for pathfinding, giving a regular grid-based structure.
Some developers pre-compute route data for common paths in each level. More recently, games
such as Company of Heroes [Relic Entertainment, 2006] have included deformable terrain, where
exhaustive pre-computation is difficult.

Supporting technology

Decision making

Movement

Tactical/Strategic AI

Execution management

Tactical analysis

Rule-based system/custom code
(Strategic decisions)

FSM
(Per character behavior)

Pathfinding

Kinematic steering

Difficulty of found
paths may influence

decisions

Figure 12.5 AI architecture for RTS games

12.4 Real-Time Strategy 825

12.4.2 Group Movement

Games such as Kohan: Ahriman’s Gift [TimeGate Studios, 2001] and Warhammer: Dark Omen
[Mindscape, 1998]4 group individuals together as teams and have them move as a whole. This is
accomplished using a formation motion system with pre-defined patterns.

In Homeworld [Relic Entertainment, 1999], formations are extended into three dimensions,
giving an impression of space flight despite keeping a strong up and down direction.

Where Kohan’s formations have a limited size, in Homeworld any number of units can par-
ticipate. This requires scalable formations, with different slot positions for different numbers of
units.

The majority of RTS games now use formations of some kind. Almost all of them define
formations in terms of a fixed pattern (given a fixed set of characters in the formation) that moves
as a whole. In Full Spectrum Warrior [Pandemic Studios, 2004] (another RTS-like game that
describes itself otherwise), the formation depends on the features of the level surrounding it. Next
to a wall, the squad assumes a single line, behind an obstacle providing cover, they double up,
and in the open they form a wedge. The player has only indirect control over the shape of the
formation. The player controls where the squad moves to, and the AI determines the formation
pattern to use. The game is also unusual in that its formations only control the final location
of characters after they have moved. During movement, the units move independently and can
provide cover for each other if requested.

12.4.3 Tactical and Strategic AI

If early RTS games pioneered game AI by their use of pathfinding, then games in the late 1990s
did the same for tactical AI. Influence mapping was devised for use in RTS games and has only
recently begun to be interesting to other genres (normally in the form of waypoint tactics).

So far the output of tactical and strategic AI has been mostly used to guide pathfinding.
An early example was Total Annihilation [Cavedog Entertainment, 1997], where units take into
account the complexity of the terrain when working out paths; they correctly move around hills or
other rocky formations. The same analysis is also used to guide the strategic decisions in the game.

A second common application is in the selection of locations for construction. With an
influence map showing areas under control, it becomes much simpler to safely locate an important
construction facility. Whereas a single building occupies only one location, walls are a common
feature in many RTS games, and they are more tricky to handle. The walls in Warcraft, for example,
were constructed in advance by the level designer. In Empire Earth [Stainless Steel Studios, 2001],
the AI was responsible for wall construction, using a combination of influence mapping and
spatial reasoning (the AI tried to place walls between economically sensitive buildings and likely
enemy positions).

There has been a lot of talk in game AI circles about using tactical analysis to plan large-scale
troop maneuvers—detecting weak points in the enemy formation, for example—and deploying a

4. Warhammer describes itself as a role-playing game because of its character development aspects, but during the levels it
plays as an RTS.

826 Chapter 12 Designing Game AI

whole side’s units to exploit this. To some extent this is done in every RTS game: the AI will direct
units toward where it thinks the enemy is, rather than just sweep them up the map to a random
location. It is taken further in games such as Empire: Total War [The Creative Assembly Ltd.,
2009], where the AI will try to maneuver outside the range of missile weapons and cannons before
launching attacks on multiple flanks. This is made even more difficult in levels representing naval
battles where prevailing wind is an important consideration.

The potential is there to go even further and have the AI reason about possible attack strategies
in light of the tactical analysis and the routes that each unit would need to take to exploit any
weakness. We have seen few examples of games that have obviously gone this far.

Because tactical analysis is so heavily tied to RTS games, the discussion in Chapter 6 was
geared toward this genre. What remains is to analyze the behavior that you expect your computer-
controlled side to display and to select an appropriate set of analyses to perform.

12.4.4 Decision Making

There are several levels at which decision making needs to occur in an RTS game, so they almost
always require a multi-tiered AI approach.

Some simple decision making is often carried out by individual characters. The archers in
Warcraft, for example, make their own decisions about whether to hold their location or move
forward to engage the enemy.

At an intermediate level, a formation or group of characters may need to make some decisions.
In Full Spectrum Warrior, the whole squad can make a decision to take cover when they are exposed
to enemy fire. This decision then passes off to each individual character to decide how best to take
cover (to lie on the ground, for example).

Most of the tricky decision making occurs at the level of a whole side in the game. There will
typically be many different things happening at the same time: correct resources need collecting,
research needs to be guided, construction should be scheduled, units need to be trained, and
forces need to be marshalled for defense or offense.

For each of these requirements an AI component is created. The complexity of this varies
dramatically from game to game. To work out the research order, for example, we could use a
numerical score for each advance and choose the next advance with the highest value. Alternatively,
we could have a search algorithm such as Dijkstra to work out the best path from the current set
of known technologies to a goal technology.

In games such as Warcraft, each of these AI modules is largely independent. The AI that sched-
ules resource gathering doesn’t plan ahead to stockpile a certain resource for later construction
efforts. It simply assigns balanced effort to collect available resources. The military command AI,
likewise, waits until sufficient forces are amassed before engaging the enemy.

Games such as Warcraft 3: Reign of Chaos [Blizzard Entertainment, Inc., 2002] use a central
controlling AI that can influence some or all of the modules. In this case the overall AI can decide
that it wants to play an offensive game, and it will skew the construction effort, unit training, and
military command AI to that end.

In RTS games, the different levels of AI are often named for military ranks. A general or a
colonel will be in charge, and lower down we might have commanders or lieutenants on down to
individual soldiers. Although this naming is common, there is almost no agreement about what

12.5 Sports 827

each level should be called, which can be very confusing. In one game the general AI might be
controlling the whole show. In another game it is merely the AI responsible for military action,
under the guidance of the king or president AI.

The choice of decision making technology mirrors that for other games. Typically, most of
the decision making is accomplished with simple techniques such as state machines and decision
trees. Markov or other probabilistic methods are more common in RTS games than in other
genres. Decision making for the military deployment is often a simple set of rules (sometimes a
rule-based system, but commonly hard-coded IF-THEN statements) relying on the output of a
tactical analysis engine.

12.5 Sports

Sports games can range from major league sports franchises such as Madden NFL 2009 [Elec-
tronic Arts Tiburon, 2008] to pool simulators such as World Championship Pool 2004 [Blade
Interactive, 2004]. They have the advantage of having a huge body of readily available knowledge
about good strategies: the professionals who play the game. This knowledge isn’t always easy to
encode into the game, however, and they face the additional challenge of having players who
expect to see human-level competence.

For team sports the key challenge is having different characters react to the situation in a way
that takes into account the rest of the team. Some sports, such as baseball and football, have very
strong team patterns. The baseball double play example in Chapter 3 (Figure 3.62) is a case in
point. The actual position of the fielders will depend on where the ball was struck, but the overall
pattern of movement is always the same.

Sports games therefore typically use multi-tiered AI of some kind. There is high-level AI
making strategic decisions (often using some kind of parameter or action learning to make sure
it challenges the player). At a lower level there may be a coordinated motion system that plays
patterns in response to game events. At the lowest level each individual player will have his own AI
to determine how to vary behavior within the overall strategy. Non-team sports, such as singles
tennis, omit the middle layer; there is no team to coordinate.

Figure 12.6 shows the architecture of a typical sports game AI.

12.5.1 Physics Prediction

Many sports games involve balls moving at speed under the influence of physics. This might be
a tennis ball, a soccer ball, or a billiard ball. In each case, to allow the AI to make decisions (to
intercept the ball or to work out the side effects of a strike), we need to be able to predict how it
will behave.

In games where the dynamics of the ball are complex and an integral part of the game (cue
games, such as pool, and golf game genres, for example), the physics may need to be run to predict
the outcome.

For simpler dynamics, such as baseball or soccer, the trajectories of the ball can be predicted.
In each case, the process is the same as we saw for projectile prediction in Chapter 3. The same

firing solutions used for firearms can be used in sports games.

828 Chapter 12 Designing Game AI

Figure 12.6 AI architecture for sports games

12.5.2 Playbooks and Content Creation

Implementing robust playbooks is a common source of problems in team sports AI. A playbook
consists of a set of movement patterns that a team will use in some circumstance. Sometimes
the playbook refers to the whole team (an offensive play at the line of scrimmage in football,
for example), but often it refers to a smaller group of players (a pick-and-roll in basketball, for
example). If your game doesn’t include tried and tested plays like this, it will be obvious to fans
of the real-world game who buy your product.

The coordinated movement section of Chapter 3 included algorithms for making sure that
characters moved at the correct time. This typically needs to be combined with the formation
motion system of the same chapter to make sure that the team members move in visually realistic
patterns.

Aside from the technology to drive playbooks, care needs to be taken to allow the plays to be
authored in some way. There needs to be a good content creation path for plays to get into the
game. Typically, as a programmer you won’t know all the plays that need to make it to the final
game, and you don’t want the burden of having to test each combination. Exposing formations and
synchronized motion are the key to allowing sport experts to create the patterns for the final game.

12.6 Turn-Based Strategy Games

Turn-based strategy games often rely on the same AI techniques used in RTS games. Early turn-
based games were either variants of existing board games (3D Tic-Tac-Toe [Atari, 1980], for
example) or simplified tabletop war games (Computer Bismark [Strategic Simulations, Inc.,
1980] was one of our favorites). Both relied on the kind of minimax techniques used to play
board games (see Chapter 8).

12.6 Turn-Based Strategy Games 829

Execution management
(Limits maximum thinking time)

Tactical analysis

Rule-based system/custom code
(Strategic decisions)

Pathfinding

Supporting technology

Decision making

Movement

Difficulty of found paths
may influence decisions

Units can be moved
directly without explicit
movement algorithms

Tactical/Strategic AI

Figure 12.7 AI architecture for turn-based strategy games

As strategy games became more sophisticated, the number of possible moves at each turn
grew vastly. In recent games, such as Sid Meier’s Civilization IV [Firaxis Games, 2005], there is
an almost unlimited number of possible moves open to the player at each turn, even though each
move is relatively discrete (i.e., a character moves from one grid location to another). In games
such as Worms 3D [Team 17, 2003], the situation is even more broad. During a player’s turn, he
gets to take control of each character and move them in a third-person manner (for a limited
distance representing the amount of time available in one turn). In this case, the character could
end up anywhere. No minimax technique can search a game tree of this size.

Instead, the techniques used tend to be very similar to those used in a real-time strategy game.
A turn-based game will often require the same kinds of character movement AI. Turn-based
games rarely need to use any kind of sophisticated movement algorithms. Kinematic movement
algorithms or even a direct position update (just placing the character where it needs to be) is
fine. At a higher level, the route planning, decision making, and tactical and strategic AI use the
same techniques and have the same broad challenges.

Figure 12.7 shows an AI architecture for turn-based strategy games. Notice the similarity
between this and the RTS architecture in Figure 12.5.

12.6.1 Timing

The most obvious difference between turn-based and real-time strategy games is the amount of
time that both the computer and the player have to take their turn.

830 Chapter 12 Designing Game AI

Given that we aren’t trying to do a huge number of time-intensive things at the same time
(rendering, physics, networking, etc.), there is less need for an execution management system. It
is common to use operating system threads to run AI processes over several seconds.

This is not to say that timing issues don’t come into play, however. Players can normally take
an unlimited amount of time to consider their moves. If there is a large number of possible
simultaneous moves (such as troop movements, economic management, research, construction,
and so on), then the player can spend time optimizing the combination to get the most of the
turn. To compete with this level of applied thinking, the AI has a tough job. Some of this can be
achieved by game design: making decisions about the structure of the game that make it easier to
create AI tools, choosing physical properties of the level that are easy to tactically analyze, creating
a research tree that can be easily searched, and using turn lengths that are small enough that the
number of movement options for each character is manageable. This will only get you so far,
however. Some more substantial execution management will eventually be needed.

Just like for an RTS game, there is typically a range of different decision making tools operating
on specific aspects of the game: an economics system, a research system, and so on. In a turn-
based game it is worth having these algorithms able to return a result quickly. If additional time
is available, they could be asked to process further. This might be particularly useful for a tactical
analysis system that can take longer to perform its calculations.

12.6.2 Helping the Player

Another function of the AI in turn-based games (which is also used in some RTS games, but to a
much smaller extent) is to help players automate decisions that they don’t want to worry about.

In Master of Orion 3 [Quicksilver Software, Inc., 2003], the player can assign a number of
different decision making tasks to the AI. The AI then uses the same decision making infrastructure
it uses for enemy forces to assist the player.

Supporting assistive AI in this way involves building decision making tools that have little or
no strategic input from higher level decision making tools. If we have an AI module for deciding
on what planet to build a colony, for example, it could make a better decision if it knew in which
direction the side intended to expand first. Without this decision, it might choose a currently safe
location near where war is likely to break out.

With this input from high-level decision making in place, however, when the module is used
to assist the player, it needs to determine what the player’s strategy will be. This is very difficult to
do by observation. We are not aware of any games that have tried to do this. Master of Orion 3 uses
context-free decision making, so the same module can be used for the player or an enemy side.

13
AI-Based Game

Genres

here is an interesting trend in basing gameplay on specific AI techniques. The challengeT in these games comes from manipulating the mind of characters in the game, rather than
performing physical actions.

As yet, there have been relatively few examples based on a limited number of game styles.
This chapter looks at horizons in AI-enabled gameplay. The genres described are represented

by only one or two high-selling titles. All indications suggest that more games will be created
that use similar techniques or that apply similar AI algorithms directly to gameplay in more
mainstream genres.

For each type of gameplay, we will describe a set of technologies that would support the
appropriate gameplay. Although some details of the specific games in each genre are available
in the public domain, the limited number of titles means it is difficult to be general about what
works and what doesn’t. Throughout this chapter we’ll try to indicate alternatives.

13.1 Teaching Characters

Teaching an inept character to act according to your will has been featured in a number of games.
The original game of its kind, Creatures [Cyberlife Technology Ltd., 1997] was released in 1996.
Now the genre is best known for Black and White [Lionhead Studios Ltd., 2001].

A small number of characters (just one in Black and White) have a learning mechanism
that learns to perform actions it has seen, under the supervision of the player’s feedback. The
observational learning mechanism watches the actions of other characters and the player and tries

Copyright © 2009 by Elsevier Inc. All rights reserved. 831

832 Chapter 13 AI-Based Game Genres

to replicate them. When it replicates the action, the player can give positive or negative feedback
(slaps and tickles usually) to encourage or discourage the same action from being carried out again.

13.1.1 Representing Actions

The basic requirement for observational learning is the ability to represent actions in the game
with a discrete combination of data. The character can then learn to mimic these actions itself,
possibly with slight variation.

Typically, the actions are represented with three items of data: the action itself, an optional
object of the action, and an optional indirect object. For example, the action may be “fight,”
“throw,” or “sleep”; the subject might be “an enemy” or “a rock”; and the indirect object might be
“a sword.” Not every action needs an object (sleep, for example), and not every action that has a
subject also has an indirect object (throw, for example).

Some actions can come in multiple forms. It is possible, for example, to throw a rock or
to throw a rock at a particular person. The throw action, therefore, always takes an object, but
optionally can take an indirect object also.

In the implementation there is a database of actions available. For each type of action, the
game records if it requires an object or indirect object.

When a character does something, an action structure can be created to represent it. The
action structure consists of the type of action and details of things in the game to act as the object
and indirect object, if required.

1 Action(fight, enemy, sword)
2 Action(throw, rock)
3 Action(throw, enemy, rock)
4 Action(sleep)

This is the basic structure for representing actions. Different games may add different levels
of sophistication to the action structure, representing more complicated actions (that require a
particular location as well as indirect object and object, for example).

13.1.2 Representing the World

In addition to an action, characters need to be able to build up a picture of the world. This allows
them to associate actions with context. Learning to eat food is good, for example, but not when
you are being attacked by an enemy. That is the right time to run away or fight.

The context information that is presented is typically fairly narrow. Large amounts of context
information can improve performance but dramatically reduce the speed of learning. Since the
player is responsible for teaching the character, the player wants to see some obvious improvement
in a relatively short space of time. This means that learning needs to be as fast as possible without
leading to stupid behavior.

Typically, the internal state of the character is included in the context, along with a handful
of important external data. This may include the distance to the nearest enemy, the distance to

13.1 Teaching Characters 833

safety (home or other characters), the time of day, the number of people watching, or any other
game-dependent quantity.

In general, if the character isn’t provided with a piece of information, then it will effectively
disregard it when making decisions. This means that if a decision would be inappropriate in
certain conditions, those conditions must be represented to the character.

The context information can be presented to the character in the form of a series of parameter
values (a very common technique) or in the form of a set of discrete facts (much like the action
representation).

13.1.3 Learning Mechanism

A variety of learning mechanisms is possible for the character. Published games in this genre have
used neural networks and decision tree learning; from this book, Naive Bayes and reinforcement
learning could also be interesting approaches to try. As an extensive worked example we’ll look at
using a neural network in this section.

For a neural network learning algorithm, there is a blend of two types of supervision: strong
supervision from observation and weak supervision from player feedback.

Neural Network Architecture

While a range of different network architectures can be used for this type of game, we will
assume that a multi-layer perceptron network is being used, as shown in Figure 13.1. This was
implemented in Chapter 7 and can be applied with minimal modification.

The input layer for the neural network takes the context information from the game world
(including the internal parameters of the character).

The output layer for the neural network consists of nodes controlling the type of action and the
object and indirect object of the action (plus any other information required to create an action).

Instrument Object Action

Output layer

Input layer

External
context

Internal
parameters

Figure 13.1 Neural network architecture for creature-teaching games

834 Chapter 13 AI-Based Game Genres

Independent of learning, the network can be used to make decisions for the character by
giving the current context as an input and reading the action from the output.

Inevitably, most output actions will be illegal (there may be no such action possible at that
time or no such object or indirect object available), but those that are legal are carried out. It is
possible to try to discourage illegal actions by passing through a weakly supervised learning step
each time one is suggested. In practice, this may improve performance in the short term but can
lead to problems with pathological states (see Section 13.1.4) in the longer term.

Observational Learning

To learn by observation, the character records the actions of other characters or the player. As
long as these actions are within its vision, it uses them to learn.

First, the character needs to find a representation for the action it has seen and a representation
for the current context. It can then train the neural network with this input–output pattern, either
once or repeatedly until the network learns the correct output for the input.

Making only one pass through the learning algorithm is likely to produce very little difference
in the character’s behavior. On the other hand, running many iterations may cause the network
to forget the useful behaviors it has already learned. It is important to find a sensible balance
between speed of learning and speed of forgetting. The players will be as frustrated with having
to re-teach their creature as they will if it is very slow to learn.

Mind-Reading for Observational Learning

One significant issue in learning by observation is determining the context information to match
with an observed action. If a character that is not hungry observes a hungry character eating,
then it may learn to associate eating with not being hungry. In other words, your own context
information cannot be matched with someone else’s actions.

In games where the player does most of the teaching, this problem does not arise. Typically,
the player is trying to show the character what to do next. The character’s context information
can be used.

In cases where the character is observing other characters, its own context information is
irrelevant. In the real word it is impossible to understand all the motives and internal processes
of someone else when we see their action. We would try to guess, or mind-read, what they must
be thinking in order to carry out that action. In a game situation, we are able to use the observed
characters’ context information unchanged.

Although it is possible to add some uncertainty to represent the difficulty of knowing another’s
thoughts, in practice this does not make the character look more believable and can dramatically
slow down the learning rate.

Feedback Learning

To learn by feedback the character records a list of the outputs it has created for each of its recent
inputs. This list needs to stretch back several seconds, at a minimum.

13.1 Teaching Characters 835

When a feedback event arrives from the player (a slap or tickle, for example), there is no way
to know exactly which action the player was pleased or angry about. This is the classic “credit
assignment problem” in AI: in a series of actions, how do we tell which actions helped and which
didn’t?

By keeping a list of several seconds’ worth of input–output pairs, we assume that the user’s
feedback is related to a whole series of actions. When feedback arrives, the neural network is
trained (using the weakly supervised method) to strengthen or weaken all the input–output pairs
over that time.

It is often useful to gradually reduce the amount of feedback as the input–output pairs are
further back in time. If the character receives feedback, it is most likely to be for an action carried
out a second or so ago (any less time and the user would still be dragging his cursor into place to
slap or tickle).

13.1.4 Predictable Mental Models and Pathological
States

There is a common problem in the AI for this kind of game: it is difficult to understand what effect
a player’s actions will have on the character. At one point in the game it seems that the character
is learning very easily, while at other points it seems to ignore the player completely. The neural
network running the character is too complex to be properly understood by any player, and it
often appears to be doing the wrong thing.

Player expectations are an essential part of making good AI. As discussed in Chapter 2, a
character can be doing something very intelligent, but if it isn’t what the player expected to see, it
will often look stupid.

In the algorithms above, feedback from the player is distributed over a number of input–
output actions. This is a common source of unexpected learning. When players give feedback,
they are unable to say which specific action, or part of an action, they are judging.

If a character picks up a rock and tries to eat it, for example, the player slaps it to teach it
that rocks are bad to eat. A few moments later the character tries to eat a poisonous toadstool.
Again, the player slaps it. It seems logical to the player that they are teaching the character
what is good and bad to eat. The character, however, only understands that “eating rocks” is
bad and “eating toadstools” is bad. Because neural networks largely learn by generalizing, the
player has simply taught the character that eating is bad. The creature slowly starves, never
attempting to eat anything healthy. It never gets the chance to be tickled by the player for eating the
right thing.

These mixed messages are often the source of sudden and dramatic worsening of the
character’s behaviors. While a player would expect the character to get better and better at
behaving in the right way, often it rapidly reaches a plateau and can occasionally seem to
worsen.

There is no general procedure for solving these problems. To some extent it appears to be a
weakness with the approach. It can be mitigated to some extent, however, by using “instincts” (i.e.,
fixed default behaviors that perform fairly well) along with the learning part of the brain.

836 Chapter 13 AI-Based Game Genres

Instincts

An instinct is a built-in behavior that may be useful in the game world. A character can be given
instincts to eat or sleep, for example. These are effectively prescribed input–output pairs that can
never be completely forgotten. They can be reinforced at regular intervals by running through
a supervised learning process, or they may be independent of the neural network and used to
generate the occasional behavior. In either case, if the instinct is reinforced by the player, it will
become part of the character’s learned behaviors and will be carried out much more often.

The Brain Death of a Character

There are combinations of learning that will leave a neural network largely incapable of doing
anything sensible. In both Creatures and Black and White, it is possible to render a taught character
impotent.

Although it may be possible to rescue such a character, the gameplay involved is unpredictable
(because the player doesn’t know the real effect of their feedback) and tedious. Because it seems
to be an inevitable consequence of the AI used, it is worth considering this outcome in the
game design.

13.2 Flocking and Herding Games

Simple herding simulators have been around since the 1980s, but recently a handful of games has
been released that has advanced the state of the art. These games involve moving a group of char-
acters through a (normally hostile) game world. Herdy Gerdy [Core Design Ltd., 2002] is the most
developed, although it did not fare well commercially. Pikmin [Nintendo Entertainment, Analysis
and Development, 2001], Pikmin 2 [Nintendo Entertainment, Analysis and Development, 2004],
and some levels of Oddworld: Munch’s Oddysee [Oddworld Inhabitants, Inc., 1997] use similar
techniques.

A relatively large number of characters have simple individual behaviors that give rise to larger
scale emergence. A character will flock with others of its kind, especially when exposed to danger,
and respond in some way to the players (either running from them, as if they were predators, or
following after them). Characters will react and run from enemies and perform basic steering and
obstacle avoidance. Different types of characters are often set up in a food chain, or ecosystem,
with the player trying to keep safe one or more species of prey.

13.2.1 Making the Creatures

Each individual character or creature consists of a simple decision making framework controlling
a portfolio of steering behaviors. The decision making process needs to respond to the game world
in a very simple way: it can be implemented as a finite state machine (FSM) or even a decision
tree. A finite state machine for a simple sheep-like creature is given in Figure 13.2.

13.2 Flocking and Herding Games 837

Graze Flock

[Close to flock and calm]

[Too far from others / nervous]

Separate [Close to predator / scared]

[T
oo

 c
lo

se
 to

 o
th

er
s]

[C
lo

se
 to

 p
re

da
to

r
/ s

ca
re

d][Far from
 others and calm

]

[Far from
 predator / nervous]

Flee

[Close to predator / scared]

Figure 13.2 A finite state machine for a simple creature

Steering behaviors, similarly, can be relatively simple. Because games of this kind are usually
set outdoors in areas with few constraints, the steering behaviors can act locally and be combined
without complex arbitration. Figure 13.2 shows the steering behaviors run as the name of each
state in the FSM (graze could be implemented as a slow wander, pausing to eat from time to time).

Apart from graze, each steering behavior is either one of the basic goal-seeking behaviors
(flee, for example) or a simple sum of goal-seeking behaviors (such as flock). See Chapter 3 on
movement for more details.

It is rare to need sophisticated AI for creatures in a herding game, even for predators. Once a
creature is able to navigate autonomously around the game world, it is typically too smart to be
easily manipulated by the player, and the point of the game is compromised.

13.2.2 Tuning Steering for Interactivity

In simulations for animation, or background effects in a game, fluid steering motion adds to
the believability. In an interactive context, however, the player often can’t react fast enough to the
movement of a group. When a flock starts to separate, for example, it is difficult to circle them with
enough speed to bring them back together. Providing the character with this kind of movement
ability would compromise other aspects of the game design.

To avoid this problem, the steering behaviors are typically parameterized to be less fluid.
Characters move in small spurts, and their desire to form cohesive groups is increased.

Adding pauses to the motion of characters slows down their overall progress and allows the
player to circle them and manipulate their actions. This could be achieved by reducing their move-
ment rate, but this often looks artificial and doesn’t allow for full-speed, continuous movement

838 Chapter 13 AI-Based Game Genres

when they are directly being chased. Moving in spurts also gives a creature the air of being furtive
and nervous, which may be beneficial.

In terms of both speed and cohesion, it is important to reduce the inertia of moving characters.
While birds in flocking simulations typically have a lot of inertia (it takes a lot of effort for them to
change speed or direction), creatures that are being manipulated by the player need to be allowed
to stop suddenly and move off in a new direction.

With high inertia, a decision that leads creatures to change direction will have consequences
for many frames and may affect the whole group’s motion. With low inertia, the same decision is
easily reversed, and the consequences are smaller. This may give less believable behavior, but it is
easier (and therefore less frustrating) for the player to control.

It is interesting to note that there are real-world international herding competitions that
require years of training. It is difficult to herd a handful of real sheep. A game probably shouldn’t
require the same level of skill for it to be playable.

13.2.3 Steering Behavior Stability

As the decision making and steering behaviors of a group of creatures is made more sophisticated,
a point often arises when the group doesn’t seem to be able to act sensibly on its own. This is often
characterized by sudden changes in behavior and the appearance of an unstable crowd. These
instabilities are caused by propagation of decisions through a group, often amplified at each step.

A group of sheep, for example, may be grazing quietly. One of them moves too close to its
neighbor, who moves out of the way, causing another to move, and so on.

As in all decision making, a degree of hysteresis is required to avoid instability. A sheep may be
quite content to have others very near to it, but it will only move toward them (i.e., form a flock)
if they move a long way away. This provides a range of distances in which a sheep will not react at
all to a neighbor.

There is, however, a kind of instability that arises in a group of different creatures that cannot
be solved simply with hysteresis in individual behaviors.

A group of creatures can exhibit oscillations as each causes a different group to change beha-
vior. A predator might chase a flock of prey, for example, until they are out of range. The prey stop
moving, they are safe, and there is a delay until the predator stops. The predator is now closer,
and the prey start to move again. This kind of oscillation can easily get out of hand and look
artificial. Cycles that involve only two species can be tweaked easily, but cycles that only show up
when several species are together are difficult to debug.

Most developers place different creatures a distance from each other in the game level or only
use a handful of species at a time to avoid the unpredictability when many species come together
at a time.

13.2.4 Ecosystem Design

Typically, there are more than one species of creature in a herding game, and it is the interactions
of all species that make the game world interesting for the player. As a genre, it provides lots of
room for interesting strategies: one species can be used to influence another, which can lead to

13.2 Flocking and Herding Games 839

unexpected solutions to puzzles in the game. At its most basic, the species can be arranged into a
food chain, where the player often is tasked with protecting a vulnerable group of creatures.

When designing the food chain or ecosystem of a game, unwanted, as well as positive but
unexpected, effects can be introduced. To avoid a meltdown in the game level, where all the
creatures are rapidly eaten, some basic guidelines need to be followed.

Size of the Food Chain

The food chain should have two levels above your primary creatures and possibly one level below.
Here, “primary creatures” refer to the creatures the player is normally concerned with herding.
Having two levels above the creatures allows for predators to be countered by other predators
(much as Jerry the mouse uses Spike the bulldog to get out of scrapes with Tom the cat). Any
more levels and there is the risk of the “helpful predator” not being around to help.

Behavior Complexity

Creatures higher in the food chain should have simpler behavior. Because the player is indirectly
affecting the behavior of other creatures, it becomes more difficult to control as the number of
intermediates increases. Moving a flock of creatures is hard enough. Using that flock to control
the behavior of another creature is adding difficulty, and then in turn using that creature to affect
yet another—that’s a really tall order. By the time you reach the top of the food chain, the creatures
need to have very simple behaviors. Figure 13.3 shows a sample high-level behavior of a single
predator.

Wander Chase

[No prey and at home]

[See prey]

[N
o

pr
ey

 a
nd

 n
ot

 a
t h

om
e]

[S
ee prey]

Return

[At hom
e]

Figure 13.3 The simple behavior of a single predator

840 Chapter 13 AI-Based Game Genres

Creatures higher in the food chain should not work in groups. This follows from the previous
guideline: groups of creatures working together will almost always have more complicated behav-
ior (even if individually they are quite simple). Although many predators in Pikmin, for example,
appear in groups, their behavior is rarely coordinated. They act simply as individuals.

Sensory Limits

All creatures should have well-defined radii for noticing things. Fixing a limit for a creature’s
ability to notice allows the player to predict its actions better. Limiting a predator’s field of view to
10 meters allows the player to take the flock past at a distance of 11 meters. This predictability is
important in complex ecosystems, because being able to predict which creatures will react at what
time is important for strategy. It follows that realistic sense simulation is not normally appropriate
for this kind of game.

Movement Range

Creatures should not move very far on their own accord. The smaller the hinterland of a creature,
the better a level designer can put together a level. If a creature can wander at random, then it
is possible that it will find itself next to a predator before the player arrives. The player will not
appreciate arriving at a location to find the flock has already been eaten. Limiting the range of
creatures (at least until they have been affected by the player) can also be accomplished by imposing
game world boundaries (such as fences, doors, or gates). Typically, however, the creatures simply
sleep or stand around when the player isn’t near.

Putting It All Together

As in all AI, the most important part of getting a playable game is to build and tweak characters.
The emergent nature of herding games means that it is impossible to predict the exact behavior
until you can build and test it.

Providing a great game experience generally requires firm limits on the behavior of creatures
in the game, sacrificing some believability for playability.

A p p e n d i x

References

A.1 Books, Periodicals, and Papers

Abelson, H., & Sussman, G. J. (1996). Structure and interpretation of computer programs (2nd ed.).
Cambridge, MA: MIT Press.

Buckley, J. J., & Eslami, E. (2002). An introduction to fuzzy logic and fuzzy sets. Berlin/New York:
Springer-Verlag.

Eberly, D. (2003). Conversion of left-handed coordinates to right-handed coordinates. <http://www
.geometrictools.com/Documentation/LeftHandedToRightHanded.pdf>. Accessed 2008.

Eberly, D. (2004). Game Physics. San Francisco: Morgan Kaufmann. <http://www
.geometrictools.com/Books.html>. Accessed 2008.

Ericson, C. (2005). Real-time collision detection. San Francisco: Morgan Kaufmann.

Giarratano, J. C., & Ricley, G. D. (1998). Expert systems: Principles and programming (3rd ed.).
Florence, KY: Course Technology.

Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing (2nd ed.). New York: Prentice
Hall.

Ierusalimschy, R. (2006). Programming in Lua (2nd ed.). Published by lua.org.

Kourkolis, M. (Ed.), (1986). APP-6 Military symbols for land-based systems. NATO Military Agency
for Standardization (MAS).

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:115–133.

Millington, I. (2007). Game physics engine development. San Francisco: Morgan Kaufmann.

Copyright © 2009 by Elsevier Inc. All rights reserved. 841

842 Appendix References

Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search.
Communications of the Association for Computing Machinery, 19:111–126.

Pilone, D., & Pitman, N. (2005). UML 2 in a Nutshell. Sebastopol, CA: O’Reilly Media, Inc.

Russell, S., & Norvig, P. (2002). Artificial intelligence: A modern approach (2nd ed.). Upper Saddle
River, NJ: Prentice Hall.

Schneider, P. J., & Eberly, D. (2003). Geometric tools for computer graphics. San Mateo, CA: Morgan
Kaufmann.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59:433–460.

U.S. Army Infantry School. (Ed.), (1992). FM 7-8 Infantry rifle platoon and squad. Washington
DC: Department of the Army.

U.S. Army Infantry School. (Ed.), (2002). FM 3-06.11 Combined arms operation in urban terrain.
Washington DC: Department of the Army.

van den Bergen, G. (2003). Collision detection in interactive 3D environments. San Mateo, CA:
Morgan Kaufmann.

Waltz, F. M., & Miller, J. W. V. (1998). An efficient algorithm for Gaussian blur using finite-state
machines. In: Proceedings of the SPIE Conference on Machine Vision Systems for Inspection and
Metrology VII.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 1(1):67–82.

A.2 Games

This section gives more comprehensive information on the games mentioned in the book. Games
are provided with their developer and publisher, the platforms on which the game was published,
and its year of release. They are ordered by developer name, after the citation style used throughout
the book.

Developers tend to change their names often, so this list uses the developer’s name as it was
when the game was developed. Many games are released on one or two platforms initially and
then later ported to other platforms. This list indicates the original platform or platforms for
a game’s release. Where the game was released for more than two platforms, it is indicated as
“Multiple platforms.”

2015, Inc. (2002). Medal of Honor: Allied Assault. Electronic Arts. [PC].

Activision Publishing, Inc. (1993). Alien vs. Predator. Activision Publishing, Inc. [SNES].

Atari. (1980). 3D Tic-Tac-Toe. Sears, Roebuck and Co. [Atari 2600].

Bioware Corporation. (2002). Neverwinter Nights. Infogrames, Inc. [PC].

Bizarre Creations. (1996). Formula 1. Psygnosis. [PlayStation and PC].

Blade Interactive. (2004). World Championship Pool 2004. Jaleco Entertainment. [PC].

A.2 Games 843

Blizzard Entertainment. (1994). Warcraft: Orcs and Humans. Blizzard Entertainment. [PC].

Blizzard Entertainment. (2002). Warcraft 3: Reign of Chaos. Blizzard Entertainment. [PC].

Bullfrog Productions Ltd. (1997). Dungeon Keeper. Electronic Arts, Inc. [PC].

Bungie Software. (2001). Halo. Microsoft Game Studios. [Xbox].

Bungie Software. (2004). Halo 2. Microsoft Game Studios. [Xbox].

Bungie Software. (2007). Halo 3. Microsoft Game Studios. [Xbox 360].

Cavedog Entertainment. (1997). Total Annihilation. GT Interactive Software Europe Ltd. [PC].

Core Design Ltd. (1996). Tomb Raider. Eidos Interactive, Inc. [Multiple platforms].

Core Design Ltd. (1998). Tomb Raider III: The Adventures of Lara Croft. Eidos Interactive, Inc.
[Multiple platforms].

Core Design Ltd. (2002). Herdy Gerdy. Eidos Interactive Ltd. [PlayStation 2].

Criterion Software. (2001). Burnout. Acclaim Entertainment. [Multiple platforms].

Cryo Interactive Entertainment. (1992). Dune. Virgin Interactive Entertainment. [Multiple
platforms].

Crytek. (2004). FarCry. Ubisoft. [PC].

Cyberlife Technology Ltd. (1997). Creatures. Mindscape Entertainment. [PC].

DMA Design. (2001). Grand Theft Auto 3. Rockstar Games. [PlayStation 2].

Dynamix. (2001). Tribes II. Sierra On-Line. [PC].

Electronic Arts Canada. (2000). SSX. Electronic Arts. [PlayStation 2].

Electronic Arts Los Angeles. (2007). Medal of Honor: Airborne. Electronic Arts. [Multiple
platforms].

Electronic Arts Tiburon. (2008). Madden NFL 2009. Electronic Arts. [Multiple platforms].

Elixir Studios. (2003). Republic: The Revolution. Eidos, Inc. [PC].

Elixir Studios. (2004). Evil Genius. Sierra Entertainment, Inc. [PC].

Epic Games. (1998). Unreal. GT Interactive. [PC].

Firaxis Games. (2001). Sid Meier’s Civilization III. Infogrames. [PC].

Firaxis Games. (2005). Sid Meier’s Civilization IV. 2K Games. [PC].

id Software. (1992). Wolfenstein 3D. Activision, Apogee, and GT Interactive. [PC].

id Software. (1993). Doom. id Software. [PC].

id Software. (1997). Quake. Activision, Inc. [PC].

id Software. (2004). Doom 3. Activision. [PC].

Incog, Inc., Entertainment. (2003). Downhill Domination. SCEA. [PlayStation 2].

Ion Storm. (2000). Deus Ex. Eidos Interactive. [PC].

Konami Corporation. (1998). Metal Gear Solid. Konami Corporation. [PlayStation].

844 Appendix References

K-D Lab Game Development. (2004). Perimeter. 1C. [PC].

Lionhead Studios Ltd. (2001). Black and White. Electronic Arts, Inc. [PC].

Looking Glass Studios, Inc. (1998). Thief: The Dark Project. Eidos, Inc. [PC].

LucasArts Entertainment Company LLC. (1999). Star Wars: Episode 1—Racer. LucasArts Enter-
tainment Company LLC. [Multiple Platforms].

Manic Media Productions. (1995). Manic Karts. Virgin Interactive Entertainment. [PC].

Maxis. (1989). SimCity. Maxis. [PC].

Maxis Software, Inc. (2000). The Sims. Electronic Arts, Inc. [PC].

Midway Games West, Inc. (1979). Pac-Man. Midway Games West, Inc. [Arcade].

Mindscape. (1998). Warhammer: Dark Omen. Electronic Arts. [PC and PlayStation].

Monolith Productions, Inc. (2002). No One Lives Forever 2. Sierra. [PC].

Monolith Productions, Inc. (2005). F.E.A.R. Vivendi Universal Games. [PC].

Monolith Productions, Inc. (2009). F.E.A.R. 2: Project Origin Warner Bros. Interactive Entertain-
ment, In. [PC].

Naughty Dog, Inc. (2001). Jak and Daxter: The Precursor Legacy. SCEE Ltd. [PlayStation 2].

Nintendo Entertainment, Analysis and Development. (2001). Pikmin. Nintendo Co. Ltd.
[GameCube].

Nintendo Entertainment, Analysis and Development. (2002). Super Mario Sunshine. Nintendo
Co. Ltd. [GameCube].

Nintendo Entertainment, Analysis and Development. (2004). Pikmin 2. Nintendo Co. Ltd.
[GameCube].

Oddworld Inhabitants, Inc. (1997). Oddworld: Munch’s Oddysee. Microsoft Game Studios.
[PlayStation and PC].

Pandemic Studios. (2004). Full Spectrum Warrior. THQ. [PC and Xbox].

Pivotal Games Ltd. (2002). Conflict: Desert Storm. SCi Games Ltd. [Multiple Platforms].

Polyphony Digital. (1997). Gran Turismo. SCEI. [PlayStation].

Psygnosis. (1995). Wipeout. SCEE. [PlayStation].

Quicksilver Software, Inc. (2003). Master of Orion 3. Infogrames. [PC].

Radical Entertainment. (2005). Scarface. Vivendi Universal Games. [Multiple platforms].

Rare Ltd. (1997). Goldeneye 007. Nintendo Europe GmbH. [Nintendo 64].

Raven Software. (2002). Soldier of Fortune 2: Double Helix. Activision. [PC and Xbox].

Rebellion. (1994). Alien vs. Predator. Atari Corporation. [Jaguar].

Rebellion. (2005). Sniper Elite. Namco. [Multiple platforms].

Rebellion. Cyberspace. [Nintendo Game Boy].

A.2 Games 845

Red Storm Entertainment, Inc. (2001). Tom Clancy’s Ghost Recon. Ubisoft Entertainment
Software. [PC].

Reflections Interactive. (1999). Driver. GT Interactive. [PlayStation and PC].

Relic Entertainment. (1999). Homeworld. Sierra On-Line. [PC].

Relic Entertainment. (2006). Company of Heroes. THQ Inc. [PC].

Revolution Software Ltd. (1994). Beneath a Steel Sky. Virgin Interactive, Inc. [PC].

SEGA Entertainment, Inc. (1987). Golden Axe. SEGA Entertainment, Inc. [Arcade].

Sick Puppies Studio and International Hobo Ltd. (2003). Ghost Master. Empire Interactive Enter-
tainment. [PC].

Sony Computer Entertainment. (2002). Otostaz. Sony Computer Entertainment. [PlayStation 2].
(Japanese release only).

Strategic Simulations, Inc. (1980). Computer Bismark. Strategic Simulations, Inc. [Apple].

Team 17. (2003). Worms 3D. Sega Europe Ltd. [Multiple platforms].

TechnoSoft. (1989). Herzog Zwei. TechnoSoft. [Sega Genesis].

The Creative Assembly Ltd. (2004). Rome: Total War. Activision Publishing, Inc. [PC].

The Creative Assembly Ltd. (2009). Empire: Total War. SEGA of America, Inc. [PC].

TimeGate Studios. (2001). Kohan: Ahriman’s Gift. Strategy First. [PC].

Turn 10 Studios. (2005). Forza Motorsport. Microsoft Game Studios. [Xbox].

Ubisoft Montpellier Studios. (2003). Beyond Good and Evil. Ubisoft Entertainment. [Multiple
platforms].

Ubisoft Montreal Studios. (2002). Splinter Cell. Ubisoft Entertainment Software. [Multiple
platforms].

Ubisoft Montreal Studios. (2008). Far Cry 2. Ubisoft Entertainment Software. [Multiple
platforms].

Valve. (1998). Half-Life. Sierra On-Line. [PC].

Valve. (2004). Half-Life 2. [PC].

Warthog Games. (2003). Mace Griffin: Bounty Hunter. Vivendi Universal Games. [Multiple
platforms].

Westwood Studios. (1992). Dune II. Virgin Interactive Entertainment. [PC].

Westwood Studios. (1995). Command and Conquer. Virgin Interactive Entertainment. [PC].

Zipper Interactive. (2002). SOCOM: U.S. Navy SEALs. SCEA. [PlayStation 2].

This page intentionally left blank

Index

A
A* algorithm

cost-so-far calculation for open and closed
nodes, 217–218

current node processing, 216–217
data structures and interfaces

heuristic function, 226–227
pathfinding list

bucketed priority queues, 225–226
implementations, 226
operations, 223–224
priority heaps, 224–225
priority queues, 224

Dijkstra algorithm comparison, 223, 237
gaming applications, 215–216
heuristics

cluster heuristic, 233–235
Euclidean distance, 232–233
fill patterns, 235–236
overestimation, 232
quality, 236–237
underestimation, 231–232

implementation, 228
improvements, 255
low memory algorithms

iterative deepening A*, 273–274
simplified memory-bounded A*, 274

node array A*
keeping a node array, 229
large graph variation, 231
node checking, 229–230
open list implementation, 230
speed, 229

node lists, 217
path retrieval, 219

performance, 228
problem, 216
pseudo-code, 220–223
termination, 218–219

AB pruning
AB negamax, 680, 682–683
alpha pruning, 681
beta pruning, 681–682
data structures and interfaces, 684
performance, 684
pseudo-code, 683–684
search window

aspiration search, 685
move order, 684–685

Abstract polling, pseudo-code, 758–759
Academic artificial intelligence

early days, 5
engineering, 6–7
natural era, 6
symbolic era, 5–6

Action execution
action manager structure, 490–491
action types

animations, 480–481
artificial intelligence requests, 481
movement, 481
state change actions, 480

algorithm, 484–485
components, 481–482
compound actions, 482–483
data structures and interfaces, 487–489
debugging, 490
implementation notes, 489–490
interruption, 482

847

848 Index

Action execution (continued)
overview, 480
performance, 490
pseudo-code, 485–487
scripted actions, 483–484

Action prediction
difficulty, 596
left or right prediction game, 596
N -Gram predictor

combat applications, 605–606
computer science applications, 597–598
data structures and interfaces, 599–600
hierarchical N -Grams

confidence, 605
data structures and implementation, 604
overview, 602–603
performance, 605
pseudo-code, 603–604

implementation notes, 600
performance, 600
principles, 597
pseudo-code, 598–599
window size

memory concerns, 602
performance enhancement, 601–602
sequence length, 602

raw probability, 596–597
string matching, 597

Actor–critic algorithm, reinforcement learning, 645
Actuation, restrictions in motor control

cars and motorcycles, 176–177
human characters, 176
tanks, 178

Actuator, steering pipeline, 111–112, 115
Adaptive resolution, hill climbing, 589–590
AI, see Artificial intelligence
Alarm behavior, hierarchical state machine

expression, 318–321
Algorithm

definition, 12
movement, see Movement
performance characteristics, 13
pseudo-code, 13–15
simplicity advantages, 24–25

Alien vs. Predator, 766, 816
Align

steering behavior
implementation notes, 73

overview, 62–63
performance, 73
pseudo-code, 72–73

three-dimensional movement, 180–181
Align to vector, principles, 181–183
Animation, pathfinding, 282–283
ANN, see Artificial neural network
Annealing

Boltzmann probabilities
optimizations, 595
overview, 594
performance, 595
pseudo-code, 594–595

direct method
implementation notes, 593
overview, 591–592
performance, 593
pseudo-code, 592–593

Anytime algorithms, overview, 731
Arbitration

cooperative arbitration and steering behavior
combining, 107–108

definition, 96
steering pipeline

algorithm
actuator, 111–112
constraints, 110–111
decomposers, 110
structure, 109
targeters, 109–110

data structures and interfaces
actuator, 115
constraint, 114–115
deadlock, 115
decomposer, 114
goal, 115
paths, 116
targeter, 114

efficiency, 15
example

constraint, 118–119
decomposer, 117–118
targeter, 117

performance, 116
pseudo-code, 112–114

Arrive and leave
implementation notes, 62
leave, 62

Index 849

paths, 59–60
performance, 62
pseudo-code, 61–62

Artificial intelligence
academia, see Academic artificial intelligence
definition, 4–5
games, see Game artificial intelligence
importance values, 733

Artificial neural network
algorithm

backpropagation, 652–654
error term, 653
feedforward, 652
gain, 653–654
initial setup and framework, 651–652

applications, 646
architecture, 647
data structures and interfaces, 655–657
decision tree learning comparison, 650
feedforward and recurrence, 647–648
Hebbian learning, 661–662
implementation and caveats, 657–658
learning rule, 649
neuron algorithm, 648–649
perceptron algorithm, 648
performance, 658
problem for solution, 649–650
pseudo-code, 654–655
radial basis function, 658–660
teaching characters, 831–832
weakly supervised learning, 660–661
zoology, 646–647

Aspiration search, AB search window, 685
Avoidance behavior, see Collision avoidance;

Obstacle and wall avoidance

B
Backgammon

artificial intelligence applications, 667
ending databases, 703

Bayes rule, 609
Behavioral level of detail

behavior compression, 735–736
data structures and interfaces, 738–739
entry and exit processing, 735
hysteresis, 736–737

implementation notes, 739
performance, 740
pseudo-code, 737–738

Behavior trees, 334–371
adding data to, 361–365
concurrency and timing, 351–352

intra-task behavior, 357–360
parallel task, 352–354

for condition checking, 356–357
policies for, 354–355

using parallel, 355–356
waiting, 352

decorators, 345–348
guarding resources with, 348–351

example, 336–340
implementing, 340
limitations of, 370–371
pseudo-code, 341–342

implementation notes, 342
non-deterministic composite tasks, 343–345
performance, 342

reusing trees, 365
instantiating trees, 365–367
sub-trees, 368–370
whole trees, 367–368

task, 334–340
Beneath a Steel Sky, 7
Beyond Good and Evil, 819
Black and White, 8, 20, 831
Blackboard system, see Decision making
Blending

definition, 96
priorities in behavior blending

algorithm, 103–104
data structures and interfaces, 104
equilibria fallback, 105
implementation, 105
overview, 103
performance, 105
pseudo-code, 104
variable priorities, 106
weaknesses, 105–106

weighted blending
algorithm, 97
data structures, 98
flocking and swarming, 98–99
performance, 98

850 Index

Blending (continued)
problems in steering behavior blending
constrained environments, 101–102
nearsightedness, 102–103
stable equilibria, 100–101

pseudo-code, 97
Board games

AB pruning
AB negamax, 682–683
alpha pruning, 681
beta pruning, 681–682
data structures and interfaces, 684
performance, 684
pseudo-code, 683–684
search window

aspiration search, 685
move order, 684–685

artificial intelligence applications, 667
game theory, see Game theory
memory-enhanced test algorithms, see

Memory-enhanced test algorithms
minimaxing

algorithm
data structures and interfaces, 677
multiple players, 678
performance, 678
pseudo-code, 676–677

combining scoring functions, 673
range of function, 673
score maximization/minimization, 674–675
simple move choice, 673–674
static evaluation function, 672–674

negamaxing
data structures and interfaces, 679–680
implementation notes, 680
performance, 680
principles, 678
pseudo-code, 679–680
static evolution function, 678–679

negascout
data structures and interfaces, 688
move ordering, 688–689
overview, 686
performance, 688
principal variation search, 689
pseudo-code, 686–687

opening book, see Opening book

optimization for turn-based artificial intelligence
iterative deepening, 704–705
variable depth approaches, 705–706

temporal difference algorithm applications, 645
transposition table, see Transposition table
turn-based strategy games

impossible tree size, 706–708
real-time artificial intelligence, 708

Bounded region, knowledge finding for
pathfinding, 789

Bounding overwatch, tactical movement, 169, 171
Broadcasting, event casting, 753–754
Burnout, 822

C
C++, popularity in game programming, 16
Camouflage, sense management, 772–773
Cellular automata

applications, 552–553
complexity of behavior, 551–552
overview, 549–550
rules, 550
running, 550–551

Character teaching, see Teaching characters
Checkers, ending databases, 703
Checking engine, event manager, 748–749
Chess

artificial intelligence applications, 667
ending databases, 703

Collision avoidance
cones, 84–86
performance, 89
pseudo-code, 87–89
time of closest approach calculation, 87

Combs method, fuzzy decision making, 387–390
Command and Conquer, 824
Complexity fallacy

behavior changes, 21
complex things looking bad, 20–21
perception window, 21
simple things looking good, 19–20

Computer Bismark, 828
Condition–action rule, rule-based decision

making, 430
Connect Four, artificial intelligence applications,

667

Index 851

Constraint, steering pipeline, 110–111, 114–115,
118–119

Continuous time pathfinding
algorithm

graph creation, 279–281
graph size, 278–279
nodes as states, 277–278
program selection, 281

implementation, 281
performance, 281
problem for solution, 276–277
weaknesses, 282

Convolution filter
algorithm, 538–539
applications, 538
boundaries, 540
data structures and interfaces, 542
Gaussian blur, 543–544
implementation notes, 542
influence calculations in influence maps, 522
performance, 542
pseudo-code, 541–542
separable filters, 544–547

Coordinated action
emergent cooperation

predictability, 568
principles, 565–566
scalability, 566–568

military tactics
case study, 574–576
resources, 573

multi-tier artificial intelligence
example, 559–560
explicit player orders, 564–565
group decisions, 561
group movement, 561
group pathfinding, 561–562
structuring, 565
team control by player, 559–560, 562–564

scripting of group actions
creating scripts, 573
data structures and interfaces, 572
implementation notes, 572
overview, 568
performance, 572
primitives

action sequence, 570
animation action, 570

artificial intelligence action, 570
compound action, 570
signal, 570
state change action, 570
wait, 570

pseudo-code, 570–572
Coordinated movement, see Formation movement
Corner trap, solutions, 93–95
Cost function

continuous time pathfinding, 251
tactical pathfinding, 553–554
world representations, 251

Cover point
generation, 508–510
tactical movement, 169–170

Creatures, 8, 831

D
Data mining, knowledge finding for pathfinding

applications, 795
character movement, 794
connection calculation, 794
limitations, 794–795
node calculation, 793–794

Database rewriting rule, rule-based decision
making, 430–431

Decision learning, see also Artificial neural network;
Decision tree learning; Reinforcement
learning

detail of learning, 607
potential, 606
structure, 606–607
weak versus strong supervision, 606–607

Decision making
action execution, see Action execution
blackboard architecture

action extraction, 461
algorithm, 460–461
data structures and interfaces, 462–463
finite state machines, 465–466
overview, 459
performance, 464–465
problem for solution, 459–460
pseudo-code, 461–462
rule-based systems, 465

decision tree, see Decision tree
evaluation in game design, 810

852 Index

Decision making (continued)
fuzzy logic, see Fuzzy logic
game artificial intelligence model, 10, 294
goal-oriented behavior, see Goal-oriented action

planning; Goal-oriented behavior
knowledge finding

concrete actions, 798–799
object types, 798

Markov systems, see Markov systems
overview, 293–295
real-time strategy game design, 826–827
rule-based systems, see Rule-based decision

making
scripting

building your own language, 474–479
embedding, 468
language facilities

compilation and interpretation, 467
extensibility and integration, 467–468
re-entrancy, 468
speed, 467

language processing
compiling, 477–478
interpreting, 478
just-in-time compiling, 478
parsing, 476–477
tokenizing, 475

language selection
commercial language advantages and

disadvantages, 468–469, 479–480
Java, 474
Javascript, 474
Lua, 470–471
open source languages, 469–470
Python, 472–473
Ruby, 474
Scheme, 471–472
Tcl, 473–474

overview, 466
shooter game design, 816–817
state machine, see State machine

Decision tree
algorithm

branching, 298–300
combinations of decisions, 297–298
data types and decisions, 296–297
decision complexity, 298

decision points, 295–296
pseudo-code, 300–302

balancing, 304–305
implementation nodes, 303
knowledge representation, 303
merging branches, 305
pathological tree, 306
performance, 304
problem for solution, 295
random trees

applications, 309
overview, 306–307
pseudo-code, 307–308
timing out, 308–309

state machine combination
overview, 331–332
pseudo-code, 332–333

tactical information, 504
Decision tree learning

ID3
algorithm, 614
continuous attributes

data structures and interfaces,
625

multiple categories, 625–626
performance, 625
pseudo-code, 623–625
single splits, 622–623

data structures and interfaces, 621
entropy and information gain, 614–616
functions

entropy, 619–620
entropy of sets, 620–621
split by attribute, 618–619

initiation, 621
more than two actions, 616
non-binary discrete attributes, 616–617
pseudo-code, 617–621

incremental learning
heuristic algorithms, 631
ID4

algorithm, 627–628
limitations, 629–630
walk through, 628–629

overview, 626–627
overview, 613

Decomposer, steering pipeline, 110, 114,
117–118

Index 853

Designing game artificial intelligence
artificial intelligence model, 807–808
behavior evaluation

decision making, 810
movement, 809–810
tactical and strategic artificial intelligence,

810–811
driving games

driving-like games, 823
movement, 821–822
pathfinding and tactical artificial intelligence,

822–823
example, 808–809, 811
real-time strategy games

architecture, 824
decision making, 826–827
group movement, 825
pathfinding, 824
tactical and strategic artificial intelligence,

825–826
shooters

decision making, 816–817
movement and firing, 814–816
pathfinding and tactical artificial intelligence,

818
perception, 817–818
shooter-like games

massively multi-player online games,
819–820

platform and adventure games, 819
simplicity advantages, 813–814
sports games

physics prediction, 827
playbooks and content creation, 828

turn-based strategy games
architecture, 828–829
player assistance, 830
timing, 829–830

Developers, list, 842–845
Dijkstra algorithm

A* algorithm comparison, 223, 237
cost-so-far calculation for open and closed

nodes, 207–208
current node processing, 206–207
data structures and interfaces

graph, 213–214
pathfinding list, 213
simple list, 212

gaming applications, 204–205
node lists, 207
origins, 204
path cost minimization, 205
path retrieval, 209
performance, 214
pseudo-code, 210–212
termination, 208–209
weaknesses, 214–215

Dirichlet domain
division scheme, 241–243
knowledge finding for pathfinding,

788
quantization and localization, 243
usefulness, 244
validity, 243–244

Discontentment, see Goal-oriented behavior
Doom, 814
Downhill Domination, 823
Drag, modeling, 126–128
Draughts, artificial intelligence applications, 667
Driver, 823
Dune II, 823
Dungeon Keeper, 809
Dynamic pathfinding, principles, 272

E
Ecosystem, see Flocking and herding games
Emergent cooperation, see Coordinated action
Empire Earth, 825
Empire: Total War, 826
Engine, artificial intelligence

integration, 34
structure, 32–33
toolchain concerns, 33–34

Evade, see Pursue and evade
Event manager

data structures and interfaces, 752–753
elements

checking engine, 748
event dispatcher, 750
event queue, 749
registry of listeners, 749

event casting
broadcasting, 753–754
compromising, 755
narrowcasting, 754–755

854 Index

Event manager (continued)
implementation notes, 753
inter-agent communication, 755–756
knowledge acquisition in world interfacing, 747
performance, 753
pseudo-code, 750–752

Evil Genius, 809
Extensions, variable depth approaches, 705–706

F
Face

behavior pseudo-code, 71–72
steering behavior, 71–72
three-dimensional movement, 183–185

Far Cry, 785, 816
F.E.A.R., 817
F.E.A.R. 2: Project Origin, 814
Feedback learning, teaching characters, 834–835
FEM sense manager, see Finite element model

sense manager
Finite element model sense manager

algorithm, 779–782
dispatching, 782
finite element model overview, 775–776
implementation notes, 782–783
intensity calculation from node to node, 781
iterations, 782
sense graph, 776–777
sight, 777–779, 780
smell, 781
sound, 780–781
weaknesses, 783

Finite state machine, see State machine
Firing solution

equations, 123–124
firing vector implementation, 125–126
iterative targeting

algorithm, 129–130
data structures and interfaces, 132
performance, 132
problem, 128
pseudo-code, 130–132
targeting without motion equations, 133

long-time versus short-time trajectory, 124–125
Flee, see Seek and flee
Flocking and herding games

creatures, 836–837

ecosystem design
behavior complexity, 839–840
food chain size, 839
movement range, 840
sensory limits, 840
tweaking, 840

steering behavior
interactivity tuning, 837–838
stability, 838

Flocking and swarming, modeling, 98–99
Footfalls, movement planning, 287–288
Formation movement

emergent formations, 146–147
fixed formations, 144–145
nesting formations, 157–159
scalable formations, 146
slots

assignment
costs, 163
data structures and interfaces, 165–166
implementation, 163–165
overview, 162–163
performance, 166

dynamic slots and sports plays, 166–168
hard roles, 159–161
soft roles, 159–161

tactical movement
anchor point moderation, 170–171
bounding overwatch, 169, 171
cover points, 169–171

two-level formation steering
data structures and interfaces, 154
drift, 150–151
implementation, 151–153
leader removal, 148–149
movement moderation, 149–150
overview, 147–148
performance, 155
sample formation pattern, 155–157

Formula 1, 821
Frag-map, learning in tactical artificial intelligence,

527–528
Full Spectrum Warrior, 8, 564, 825, 826
Fuzzy logic

combining facts, 378–380
decision making

algorithm, 381–384
Combs method, 387–380

Index 855

data structures and interfaces, 386
implementation, 386
performance, 386–387
problem for solution, 381
pseudo-code, 384–385
rule structure, 383–384

warning, 371
weaknesses, 387

defuzzification
approach selection, 377–378
blending based on membership, 376
Boolean value defuzzification, 378
center of gravity, 377
enumerated value defuzzification, 378
highest membership utilization, 375–376
overview, 374–375

fuzzification
Boolean value fuzzification, 374
enumerated value fuzzification, 374
numeric fuzzification, 373–374

fuzzy rules, 380
fuzzy sets, 372
membership of multiple sets, 372–373
state machines

algorithm, 391–392
data structures and interfaces, 393–394
implementation notes, 394
multiple degrees of transition, 394–395
performance, 394
problem for solution, 391
pseudo-code, 392–393

tactical information in decision making, 505–506

G
Game artificial intelligence

designing, see Designing game artificial
intelligence

historical perspective, 7–8
model

agent-based artificial intelligence, 11
decision making, 10
infrastructure, 11
movement, 9–10
overview, 8–9
strategy, 10, 493

programming languages, 16

Game development
information resources, 3
programming differences compared with

other fields, 3
Game theory

algorithms for turn-based games, 669
game tree

branching factor and depth, 670–671
overview, 669–670
transposition, 671

goal of game, 668–669
information, 669
number of players, 668
plies, moves, and turns, 668

Gaussian blur, tactical analyses, 543–544
Geometric analysis, knowledge finding for

pathfinding
arbitrary bounding regions, 791–792
connection calculation, 790–792
cost calculation, 790
mesh representations, 792
node calculation, 792–793
point-based representations, 790–791
visibility approach limitations, 792

Ghost Master, 402, 809
Ghost Recon, 10, 763, 764, 817
Go, artificial intelligence applications, 667
Goal-oriented action planning

algorithm, 414–415
data structures and interfaces, 417
implementation notes, 417
iterative deepening A* utility

advantages, 419
algorithm, 419–421
data structures and interfaces, 423–425
heuristic, 419
implementation notes, 425
performance, 425
pseudo-code, 421–423

overview, 413–414
performance, 417–418
pseudo-code, 415–416
weaknesses, 418

Goal-oriented behavior
actions, 403–404
discontentment score

data structures and interfaces, 408
overview, 406

856 Index

Goal-oriented behavior (continued)
performance, 408
pseudo-code, 407–408

goals, 402–403
overview, 401–402
simple selection

data structures and interfaces, 405
performance, 405
principles, 404
pseudo-code, 404–405
weaknesses, 406

smelly goal-oriented behavior
compound actions

action-based signals, 426–427
character-specific signals, 427

overview, 425–426
timing

components, 409
data structures and interfaces, 410–411
goal change over time calculation, 411–412
performance, 411
planning needs, 412–413
pseudo-code, 410
utility involving time, 409–410

GOAP, see Goal-oriented action planning
GOB, see Goal-oriented behavior
Golden Axe, 7
Goldeneye 007, 8, 817
Gran Turismo, 822
Grand Theft Auto 3, 11, 743, 821, 822
Graphics level of detail, overview, 732
Group action, see Coordinated action
Group level of detail

overview, 740
probability distributions, 740–741, 742

H
Hacking, game development, 22–23
Half-life, 10, 818
Half-life 2, 10
Halo, 309, 816
Halo 2, 334, 817
Hashing, see Transposition table
Hearing, see Sense management
Hebbian learning, artificial neural network,

661–662
Herding, see Flocking and herding games

Herdy Gerdy, 20, 836
Heuristics

A* algorithm
cluster heuristic, 233–235
Euclidean distance, 232–233
fill patterns, 235–236
function, 226–227
overestimation, 232
quality, 236–237
underestimation, 231–232

common heuristics, 24
overview, 23–24
turn-based strategy games, 708

Hierarchical N -Gram, see N -Gram
Hierarchical pathfinding

graph
connection costs

average minimum distance, 259
heuristics, 259
maximum distance, 258
minimum distance, 258
overview, 257–258

connections, 257
nodes, 256–257
pathfinding on graph

algorithm, 259–260
data structures and interfaces, 261–262
performance, 262
pseudo-code, 260–261

hierarchy effects on pathfinding, 263–265
instanced geometry

algorithm
instance graph, 266
world graph, 266–267

data structures and interfaces, 270
implementation nodes, 270
overview, 265
performance, 270–271
pseudo-code, 267–270
setting node offsets, 271
weaknesses, 271

pathfinding on exclusions, 262–263
principles, 255–256

Hierarchical scheduling
behaviors

overview, 726–727
selection, 728

data structures and interfaces, 727

Index 857

Hierarchical state machine, see State machine
Hill climbing

data structures and interfaces, 587
extensions

adaptive resolution, 589–590
global optimum finding, 590–591
momentum, 589
multiple trials, 590
overview, 588–589

performance, 588
principles, 585
pseudo-code, 585–587

Hole fillers, jumpable gaps, 143–144
Homeworld, 146, 825
Horizon effect, board games, 705–706
Hyper-threading, processor speed, 26–27
Hysteresis, behavioral level of detail, 736–737

I
ID3, decision tree learning

algorithm, 614
continuous attributes

data structures and interfaces, 625
multiple categories, 625–626
performance, 625
pseudo-code, 623–625
single splits, 622–623

data structures and interfaces, 621
entropy and information gain, 614–616
functions

entropy, 619–620
entropy of sets, 620–621
split by attribute, 618–619

initiation, 621
more than two actions, 616
non-binary discrete attributes, 616–617
pseudo-code, 617–621

ID4, incremental learning
algorithm, 627–628
limitations, 629–630
walk through, 628–629

IDA*, see Iterative deepening A*
Influence mapping, see Tactical analyses
Instanced geometry, hierarchical pathfinding

algorithm
instance graph, 266
world graph, 266–267

data structures and interfaces, 270
implementation nodes, 270
overview, 265
performance, 270–271
pseudo-code, 267–270
setting node offsets, 271
weaknesses, 271

Interruptible pathfinding, principles,
274–275

Iterative deepening A*
goal-oriented action planning

advantages, 419
algorithm, 419–421
data structures and interfaces,

423–425
heuristic, 419
implementation notes, 425
performance, 425
pseudo-code, 421–423

overview, 273–274
Iterative targeting

algorithm, 129–130
data structures and interfaces, 132
performance, 132
problem, 128
pseudo-code, 130–132
targeting without motion equations, 133

J
Jak and Daxter, 9, 249
Jak and Daxter: The Precursor Legacy, 763, 819
Java, scripting of decision making, 474
Javascript, scripting of decision making, 474
Jumping

hole fillers and jumpable gaps, 143–144
jump points

achieving of jump, 137
overview, 135–136

landing pads
data structures and interfaces, 141–142
implementation, 142
jump links, 142–143
overview, 138
performance, 142
pseudo-code, 140–141
trajectory calculation, 139

steering algorithm limitations, 134, 137–138

858 Index

K
Kinematic movement algorithms

orientation of character, 49
seek

arriving, 51–53
data structures and interfaces, 50–51
flee, 51
orientation algorithm, 49–50
performance, 51

wandering
data structures, 54
implementation notes, 54
overview, 53
pseudo-code, 53–54

Knowledge finding, see Decision making;
Movement; Pathfinding; Waypoint tactics

Kohan: Ahriman’s Gift, 825

L
Landing pad, see Jumping
Learning artificial intelligence

action prediction, see Action prediction
approaches

inter-behavior learning, 581
intra-behavior learning, 580
online versus offline, 579–580

balance of effort, 582–583
decision learning, see also Artificial neural

network; Decision tree learning;
Reinforcement learning

detail of learning, 607
potential, 606
structure, 606–607
weak versus strong supervision, 606–607

over-learning, 582
parameter modification

annealing, see Annealing
hill climbing, see Hill climbing
landscape

energy and fitness values, 584
visualization, 583–584

potential, 579
reproducibility and quality control limitations,

581–582
Leave, see Arrive and leave

Level of detail
artificial intelligence level of detail, 732–733
behavioral level of detail

behavior compression, 735–736
data structures and interfaces, 738–739
entry and exit processing, 735
hysteresis, 736–737
implementation notes, 739
performance, 740
pseudo-code, 737–738

graphics level of detail, 732
group level of detail

overview, 740
probability distributions, 740–741, 742

importance values, 733
overview, 732
scheduling

combined scheduling, 734
frequency schedulers, 734
priority schedulers, 734

Lex, tokenizer building, 479
Load-balancing scheduler

data structures, 726
performance, 726
principles, 724
pseudo-code, 724–726

LOD, see Level of detail
Look

steering behavior, 72–73
three-dimensional movement, 186

Lua, scripting of decision making, 470–471

M
Mace Griffin: Bounty Hunter, 816
Madden NFL 2005, 827
Manic Karts, 822
Map flooding

algorithm, 534–535
data structures and interfaces, 537
influence calculations, 522–523
overview, 533–534
performance, 537–538
pseudo-code, 535–537

Markov systems
nomenclature, 396
processes

applications, 397

Index 859

conservative processes, 396
iterated processes, 397–398
overview, 396

state machine
algorithm

actions, 399
default transitions, 399

data structures and interfaces, 401
pseudo-code, 399–401

Massively multi-player online games, design,
819–820

Master of Orion 3, 830
Medal of Honor: Airborne, 816
Memory

cache, 28–29
console constraints, 29–30
handheld consoles, 31
limitations in gaming, 25, 28
personal computer constraints, 29
rendering hardware, 30–31

Memory-enhanced test algorithms
algorithm, 699–700
iterative deepening, 704–705
memory size, 700
performance, 701
pseudo-code, 700–701
test function implementation

overview, 697
pseudo-code, 697–699
transposition table, 699

variations, 700
Metal Gear Solid, 8, 759, 765, 818
Military tactics, see Coordinated action; Tactical

and strategic artificial intelligence
Mind-reading, teaching characters, 834
Minimaxing

algorithm
data structures and interfaces, 677
multiple players, 678
performance, 678
pseudo-code, 676–677

combining scoring functions, 673
range of function, 673
score maximization/minimization, 674–675
simple move choice, 673–674
static evaluation function, 672–674

MMOGs, see Massively multi-player online games
Momentum, hill climbing, 589

Motor control
actuation restrictions

cars and motorcycles, 176–177
human characters, 176
tanks, 178

capability-sensitive steering, 174–175
output filtering, 172–174
overview, 171–172

Movement
algorithms

kinematics, see also Kinematic movement
algorithms

angular velocity, 45–46
forces and actuation, 48–49
independent facing, 46
linear velocity, 45–46
updating position and orientation, 47–48
variable frame rates, 48

statics and mathematics, 42–45
steering behavior, see Steering behavior
structure, 40–41
two-dimensional movement, 41–42

coordinated movement, see Formation
movement

driving game design, 820–823
evaluation in game design, 809–811
game artificial intelligence model, 9–10, 39
jumping, see Jumping
knowledge finding

high-level staging, 797
obstacles

obstacle representation, 796–797
walls, 796

motor control
actuation restrictions

cars and motorcycles, 176–177
human characters, 176
tanks, 178

capability-sensitive steering, 174–175
output filtering, 172–174
overview, 171–172

planning, see Pathfinding
projectiles, see Firing solution; Projectile

trajectory
real-time strategy game design, 825
shooter game design, 814–816
three-dimensional movement

align, 180–181

860 Index

Movement (continued)
align to vector, 181–183
face, 183–185
looking, 186
overview, 178
rotation, 178–180
rotation axes faking

aircraft example, 188–189
algorithm, 190
data structures and interfaces, 191–192
implementation, 192
performance, 192
pseudo-code, 190–191

steering behavior conversion
angular steering behaviors, 180
linear steering behaviors, 180

wander, 186–188
MT algorithms, see Memory-enhanced test

algorithms
Multi-core processing, processor speed, 26–27

N
Naive Bayes classifier, 608–613

implementation notes, 612–613
pseudo-code, 611–612

Narrowcasting, event casting, 754–755
Navigation meshes

edges as nodes, 249–250
knowledge finding for pathfinding, 789
overview, 246–247
quantization and localization, 248–249
usefulness, 249
validity, 249

Negamaxing
AB negamax, 682–683
data structures and interfaces, 680
implementation notes, 680
performance, 680
principles, 678
pseudo-code, 679–680
static evolution function, 678–679

Neural network, see Artificial neural network
Neverwinter Nights, 816
N -Gram predictor

combat applications, 605–606
computer science applications, 597–598
data structures and interfaces, 599–600

hierarchical N -Grams
confidence, 605
data structures and implementation, 604
overview, 602–603
performance, 605
pseudo-code, 603–604

implementation notes, 600
performance, 600
principles, 597
pseudo-code, 598–599
window size

memory concerns, 602
performance enhancement, 601
sequence length, 602

No One Lives Forever 2, 815, 817, 818

O
Observational learning, teaching characters, 834
Obstacle and wall avoidance

collision detection problems, 92–95
data structures and interfaces, 91–92
overview, 90
performance, 92
pseudo-code, 90–91

Oddworld: Munch’s Oddysee, 819, 836
Open goal pathfinding, principles, 272
Opening book

implementation, 702
learning, 702–703
overview, 701–702
set play books, 703

Open source software, scripting languages for
decision making, 469–470

Othello, artificial intelligence applications, 667
Otostaz, 553

P
Pac-Man, 7–8, 19, 39
Parameter modification,

see Learning artificial intelligence
Parsing

language processing, 476–477
Yacc, 479

Pathfinding
algorithms, see A* algorithm; Dijkstra algorithm
artificial intelligence model, 197–198

Index 861

continuous time pathfinding,
see Continuous time pathfinding

driving game design, 823
dynamic pathfinding, 272–273
graph data structure

principles, 198–199
representation, 203–204
terminology, 203
weighted graphs

costs, 199–200
direct weighted graphs, 202–203
non-negative constraint, 201–202
representative points in a region, 200–201

groups, see Coordinated action
hierarchical pathfinding, see Hierarchical

pathfinding
interruptible pathfinding, 274–275
jump incorporation, 142
knowledge finding

automatic graph creation, 789
data mining

character movement, 794
connection calculation, 794
limitations, 794–795
node calculation, 793–794

geometric analysis
arbitrary bounding regions, 791–792
connection calculation, 790–792
cost calculation, 790
mesh representations, 792
node calculation, 792–793
point-based representations, 790–791
visibility approach limitations, 792

manual region data creation
bounded regions, 789
Dirichlet domains, 788
navigation meshes, 789
tile graphs, 787

movement planning
animations, 282–283
example, 286–287
footfalls, 287–288
implementation, 285
infinite graph, 285
planning graph, 284

open goal pathfinding, 272
pooling planners, 275
real-time strategy game design, 824

shooter game design, 818–819
tactical information, see Tactical pathfinding;

Waypoint tactics
world representations

cost functions, 251
Dirichlet domains, 241–244
generation, 238
navigation meshes, 246–250
non-translational problems, 251
path smoothing, 251–253
points of visibility, 244–246
quantization and localization, 238
tile graphs, 239–241
validity, 238–239

Path following behavior
data structures and interfaces, 80
overview, 76–77
parameter tracking, 81
path types, 80
performance, 81
pseudo-code, 77–79

Path smoothing, world representations
algorithm, 253
data structures and interfaces, 254–255
performance, 255
pseudo-code, 254

Perception, see Sense management
Perception window, overview, 21
Physics simulation

aiming and shooting, 121
firing solution

equations, 123–124
firing vector implementation, 125
iterative targeting

algorithm, 129–130
data structures and interfaces, 132
performance, 132
problem, 128
pseudo-code, 130–132
targeting without motion equations, 133

long-time versus short-time trajectory, 125
projectile trajectory

drag modeling, 126–128
equations, 121
landing spot prediction, 122–123
prediction applications, 133–134
rotation and lift, 128

sports game design, 827

862 Index

Pikmin, 836
Pikmin 2, 836
Playbook, sports game design, 828
Ply, game theory, 668
Points of visibility, world representation

division scheme, 244–245
quantization and localization, 245–246
usefulness, 246

Polling station
abstract polling, 758–759
implementation notes, 757–758
overview, 746, 756
performance, 757
pseudo-code, 756–757
sense management, 761
world interfacing, 746

Polymorphism, definition, 27
Pong, 7, 39
Principal variation search, negascout, 689
Priority scheduling

performance, 730
policies, 730
priority problems, 731
pseudo-code, 728–730

Probability
conditional, 609, 610
conditional independence, 609
log-likelihood, 613
prior, 610

Processor speed
flexibility versus indirect function calls, 27
hyper-threading, 26–27
limitations in gaming, 25
multi-core processing, 26
single instruction multiple data processing,

25–26
Projectile trajectory, see also Firing solution

drag modeling, 126–128
equations, 121
landing spot prediction, 122–123
prediction applications, 133–134
rotation and lift, 128

Pseudo-code
conventions, 14
definition, 13

Pursue and evade
evade, 71
implementation notes, 70
overshooting, 71
paths, 68
performance, 70
pseudo-code, 69–70

PVS, see Principal variation search
Python

pseudo-code similarity, 15
scripting of decision making, 472–473

Q
Q-learning

applications, 641–644
convergence and ending, 634–635
data structures and interfaces, 636–637
doing learning, 633
exploration strategy, 634
implementation notes, 637
performance, 637
principles, 633–634
pseudo-code, 635–636
tactical defense location selection case

study, 643
tailoring parameters

discount rate gamma, 638
learning rate alpha, 638
length of walk nu, 639–640
randomness for exploration rho, 639
reward selection, 640–641

weaknesses, 641–642
world representation, 632–633

Quake, 468
Quake II, 22
Quiescence pruning, variable depth approaches,

706

R
Radial basis function, artificial neural network,

658–660
Reinforcement learning

actor–critic algorithm, 465–646
neural networks for storage, 645
on-policy algorithms, 644
overview, 631

Index 863

problem for solution, 631–632
Q-learning

applications, 641–644
convergence and ending, 634–635
data structures and interfaces, 636–637
doing learning, 633
exploration strategy, 634
implementation notes, 637
performance, 637
principles, 633–634
pseudo-code, 635–636
tactical defense location selection case study,

643
tailoring parameters

discount rate gamma, 638
learning rate alpha, 638
length of walk nu, 639–640
randomness for exploration rho, 639
reward selection, 640–641

weaknesses, 641–642
world representation, 632–633

temporal difference algorithm, 644
Representations, overview, 15–16
Rete algorithm

applications, 445–446
database matching, 447–451
example, 446
fact addition, 452
fact removal, 452
nodes, 446–447
performance, 454–455
update management, 453

Reversi, see Othello
Reynolds, Craig, 40–41
Rotation axes, faking

aircraft example, 188–189
algorithm, 190
data structures and interfaces, 191–192
implementation, 192
performance, 192
pseudo-code, 190–191

Ruby, scripting of decision making, 474
Rule-based decision making

algorithm, 433
blackboard architecture, 465
components, 427–428
data structures and interfaces

database, 434–435

IF clauses, 435–436
item matching

data group matching, 438–439
datum matching, 437–438
matches function, 437

rules, 435
implementation, 441
justification in expert systems,

457–458
large rule set management, 456–457
problem

chaining, 431
condition–action rules, 430
database matching, 429
database rewriting rules, 430–431
data format in database, 431–433

pseudo-code, 433–434
Rete algorithm

applications, 445–446
database matching, 447–451
example, 446
fact addition, 452
fact removal, 452
nodes, 446–447
performance, 454–455
update management, 453

rule arbitration
dynamic priority arbitration, 442–443
first applicable rule, 441–442
least recently used rule, 442
most specific conditions, 442
random rule, 442

unification
overview, 443–444
performance, 444–445

S
Scheduling

hierarchical scheduling
behaviors

overview, 726–727
selection, 728

data structures and interfaces,
727–728

interruptible processes
hyper-threads, 723
micro-threads, 723

864 Index

Scheduling (continued)
software threads, 722
threads, 722
quality of service, 723–724

level of detail, 733–734
load-balancing scheduler

data structures, 726
performance, 726
principles, 724
pseudo-code, 724–726

overview, 714
priority scheduling

performance, 730
policies, 730
priority problems, 731
pseudo-code, 728–730

schedulers, 694
artificial intelligence slicing, 714–715
automatic phasing

analytic method, 721
Wright’s method, 720

direct access algorithm
applications, 718
data structures and interfaces, 719
performance, 719–720
pseudo-code, 718–719

frequencies, 715–716
implementation notes, 717–718
performance, 718
phase, 716
phase quality, 720
pseudo-code, 716–717
single task spikes, 721

Scheme, scripting of decision making,
471–472

Scripting
decision making

building your own language, 474–479
embedding, 468
language facilities

compilation and interpretation, 467
extensibility and integration,

467–468
re-entrancy, 467
speed, 467

language processing
compiling, 477–478
interpreting, 478

just-in-time compiling, 478
parsing, 476–477
tokenizing, 475

language selection
commercial language advantages and

disadvantages, 469
Java, 474
Javascript, 474
Lua, 470–471
open source languages, 469–470
Python, 472–473
Ruby, 474
Scheme, 471–472
Tcl, 473–474

overview, 466–467
group actions

creating scripts, 573
data structures and interfaces, 572
implementation notes, 572
overview, 568
performance, 572
primitives

action sequence, 570
animation action, 570
artificial intelligence action, 570
compound action, 570
signal, 568–569
state change action, 570
wait, 568–569

pseudo-code, 570–572
Seek and flee

kinematic movement algorithm
arriving, 51–53
data structures and interfaces, 50–51
flee, 51
orientation algorithm, 49–50
performance, 51

steering behavior
data structures and interfaces, 59
flee, 59
maximum speed, 56–57
performance, 59
pseudo-code, 57–59

Sense management
faking it, 760
fantasy modalities, 766–767
finite element model sense manager

algorithm, 779–782

Index 865

dispatching, 782
finite element model overview, 775–776
implementation notes, 783–784
intensity calculation from node to node,

781
iterations, 782
sense graph, 776–777
sight, 777–779
smell, 781
sound, 780–781
weaknesses, 783

hearing, 765
knowledge sources, 760–761
polling and notification, 761
regional sense manager

algorithm, 767–769
camouflage and shadows, 772–773
data structures and interfaces, 771–772
performance, 772
pseudo-code, 769–771
weaknesses, 773–774

shooter game design, 818–819
sight

brightness, 764
cones, 762–763
differentiation, 764–765
distance, 763–764
line of sight, 763
speed of light, 762

smell, 766
touch, 766
trends in games, 759

Separation behavior
attraction, 84
implementation notes, 83–84
independence, 84
overview, 82
performance, 84
pseudo-code, 82–83

Shadow point, generation, 511
Sid Meier’s Civilization III, 10, 829
Sight, see Sense management
Sim City, 553
SIMD, see Single instruction multiple data
Simplified memory-bounded A*, overview, 274
The Sims, 8, 10, 22, 401
Single instruction multiple data, speed, 25–26
Slots, see Formation movement

SMA*, see Simplified memory-bounded A*
Smell, see Sense management
Sniper Elite, 816, 818
Soldier of Fortune 2: Double Helix, 818
Space Invaders, 7
Splinter Cell, 9, 759, 817
SSX, 823
Star Wars: Episode 1 Racer, 22
State machine

algorithm, 311
data structures and interfaces, 312–313
decision machine combination

overview, 331–332
pseudo-code, 332–333

finite state machines, 310, 465–466
fuzzy state machines

algorithm, 391–392
data structures and interfaces, 393–394
implementation notes, 394
multiple degrees of transition, 394–395
performance, 394
problem for solution, 391
pseudo-code, 392–393

hard-coded finite state machine
performance, 318
pseudo-code, 316–317
weaknesses, 318

hierarchical state machine
alarm behavior expression, 318–320
algorithm, 321–323
examples, 323–325
implementation, 330
performance, 330
problem for solution, 321
pseudo-code, 325–330

implementation, 316
Markov state machine

algorithm, 391–392
data structures and interfaces, 393–394
implementation notes, 394
multiple degrees of transition, 394–395
performance, 394
problem for solution, 391
pseudo-code, 392–393

overview, 309
performance, 316
problem for solution, 311
pseudo-code, 311–312

866 Index

State machine (continued)
toolchain designers, 800–801
transition implementation, 313–315
transition states, 482
weaknesses, 315

Steering behavior
align

implementation notes, 65
overview, 62–63
performance, 66
pseudo-code, 64–65

arrive and leave
implementation notes, 62
leave, 62
paths, 60
performance, 62
pseudo-code, 61–62

capability-sensitive steering, 174–174
collision avoidance

cones, 84–86
performance, 89
pseudo-code, 87–89
time of closest approach calculation, 87

combining, see Arbitration; Blending
delegated behaviors, 67
face behavior, 71
flocking and herding games

interactivity tuning, 837–838
stability, 838

looking where you are going, 72–73
obstacle and wall avoidance

collision detection problems, 92–95
data structures and interfaces, 91–92
overview, 90
performance, 92
pseudo-code, 90–91

overview, 55
path following behavior

data structures and interfaces, 80
overview, 76–77
parameter tracking, 81
path types, 80
performance, 81
pseudo-code, 77–79

pursue and evade
evade, 71
implementation notes, 70

overshooting, 71
paths, 68
performance, 70
pseudo-code, 69–70

seek and flee
data structures and interfaces, 59
flee, 59
maximum speed, 56–57
performance, 59
pseudo-code, 57–59

separation behavior
attraction, 84
implementation notes, 83–84
independence, 84
overview, 82
performance, 84
pseudo-code, 82–83

three-dimensional conversion
angular steering behaviors, 180
linear steering behaviors, 180

two-level formation steering, see Formation
movement

variable matching, 56
velocity matching

performance, 67
pseudo-code, 66–67

wandering
data structures and interfaces, 76
overview, 73–74
performance, 76
pseudo-code, 74–75

Steering pipeline
algorithm

actuator, 111–112
constraints, 110–111
decomposers, 110
structure, 108–109
targeters, 109–110

data structures and interfaces
actuator, 115
constraint, 114–115
deadlock, 115
decomposer, 114
goal, 115
paths, 116
targeter, 114

Index 867

examples
constraint, 118–120
decomposer, 117–118
targeter, 117

performance, 116
pseudo-code, 112–114

Strategic artificial intelligence,
see Tactical and strategic artificial
intelligence

String matching, action prediction, 597
Super Mario Sunshine, 9
Swarming, see Flocking and swarming

T
Tablebase, ending databases for board games, 703
Tactical analyses

cellular automata
applications, 552–553
complexity of behavior, 551–552
overview, 549–550
rules, 550
running, 550–551

convolution filters
algorithm, 538–539
applications, 538
boundaries, 540
data structures and interfaces, 542
Gaussian blur, 543–544
implementation notes, 542
performance, 542
pseudo-code, 541–542
separable filters, 544–547

game level representation, 518
learning in tactical artificial intelligence with

frag-maps, 527–528
map flooding

algorithm, 534–535
data structures and interfaces, 537
overview, 533–534
performance, 537
pseudo-code, 535–537

sharpening filters, 547–548
simple influence maps

applications, 523–524
influence calculations

convolution filters, 522
equations, 519–520

limited radius of effect, 520–522
map flooding, 522–523

lack of knowledge handling, 525
overview, 519

structure
combining analyses, 532–533
complexity levels, 528–530
multi-layer analysis, 531–532
server building, 533

terrain analysis
difficulty of terrain, 526
visibility map, 526–527

waypoint tactics similarity, 512
Tactical and strategic artificial intelligence

coordinated action, see Coordinated action
evaluation in game design, 810–811
game artificial intelligence model, 10, 493
influence mapping, see Tactical analyses
real-time strategy game design, 825–826
waypoint tactics, see Waypoint tactics

Tactical movement
anchor point moderation, 170–171
bounding overwatch, 169, 171
cover points, 169–171

Tactical pathfinding
cost function, 553–554
heuristic modification, 557
tactical graphs, 557–558
tactical weights and concern blending, 555–557
waypoints, 558–559

Targeter, steering pipeline, 109–110, 114, 117
Tcl, scripting of decision making, 473–474
TD algorithm, see Temporal difference algorithm
Teaching characters

action representation, 832
brain death, 836
instincts, 836
learning mechanism

feedback learning, 834–835
mind-reading, 834
neural network architecture, 833–834
observational learning, 834

player expectations, 835–836
world representation, 832–833

Temporal difference algorithm
board game applications, 645
reinforcement learning, 644–645

868 Index

Terrain analysis, tactical analyses
difficulty of terrain, 526
visibility map, 526–527

Thief: The Dark Project, 8, 759
Threads

hyper-threads, 723
interruptible process implementation, 722
micro-threads, 723
software threads, 722–723

Tic-Tac-Toe
artificial intelligence applications, 667
game tree, 669–670
3D Tic-Tac-Toe, 828

Tile graph
division scheme, 239
generation, 240
knowledge finding for pathfinding, 787
quantization and localization, 240
usefulness, 240–241
validity, 240

Tokenizing
language processing, 475
Lex, 479

Tom Clancy’s Ghost Recon, 10, 763, 764
Tomb Raider III, 819
Toolchain

data-driven editors, 799–800
design tools for artificial intelligence

scripting tools, 800
state machine designers, 800–801

game development importance, 785
limitation on artificial intelligence, 786
plug-ins, 802
remote debugging, 801–802

Total Annihilation, 825
Touch, see Sense management
Transposition table

functions, 689
hashing

game class, 691–692
hash table implementation, 693–694
implementation, 690–691
incremental Zobrist hashing, 691
overview, 689
values stored in hash table, 692–693
Zobrist key, 690

implementation notes, 695
instability, 696

memory-enhanced test algorithms, 697–699
opponent thinking time utilization,

696–697
path dependency, 696
performance, 695
pseudo-code, 695
replacement strategies, 694–695

Tribes II, 814

U
Unification, see Rule-based decision making
Unreal, 468, 816

V
Variable matching, steering behavior, 56
Velocity matching

performance, 67
pseudo-code, 66–67

Visibility point, generation, 510

W
Wall avoidance, see Obstacle and wall avoidance
Wandering

kinematic movement algorithms
data structures, 54
implementation notes, 54
overview, 53
pseudo-code, 53–54

steering behavior
data structures and interfaces, 76
overview, 73–74
performance, 76
pseudo-code, 74–75

three-dimensional movement, 186–188
Warcraft, 8, 23
Warcraft: Orcs and Humans, 824
Warcraft 3: Reign of Chaos, 826
Warhammer: Dark Omen, 8, 825
Waypoint tactics

automatic generation
comparison of approaches, 517
watching human players, 512–513
waypoint grid condensation

Index 869

algorithm, 513–515
data structures and interfaces, 516–517
overview, 513
pseudo-code, 515–516

knowledge finding
automatic graph creation, 789
data mining

applications, 795
character movement, 794
connection calculation, 794
limitations, 794–795
node calculation, 793–794

geometric analysis
arbitrary bounding regions, 791–792
connection calculation, 790–792
cost calculation, 790
mesh representations, 792
node calculation, 792–793
point-based representations, 790–791
visibility approach limitations, 792

manual region data creation
bounded regions, 789
Dirichlet domains, 788
navigation meshes, 789

tile graphs, 787
node pathfinding, 494
tactical information utilization

decision trees, 504
fuzzy logic decision making, 505–506
generating nearby waypoints, 506–507
pathfinding, 507
simple tactical movement, 503–504

tactical locations
complexity levels, 502
compound tactics, 496–497
context sensitivity, 500–502
continuous tactics, 499–500
graphs and topological analysis, 497–499
overview, 494–495
primitive tactics, 496–497
sets, 495–496

tactical pathfinding, 558–559
tactical property generation

compound tactics, 512
cover points, 508–510
overview, 507–508

shadow points, 511
tactical analysis similarity, 512
visibility points, 510–511

Website contents
action manager program, 491
artificial neural network, 658
combining steering program, 105
decision tree learning, 625
decision tree program, 302–303
finite element model sense manager, 782
flocking algorithm, 100
fuzzy state machine program, 395
hierarchical state machine program, 331
kinematic movement algorithm, 55
libraries

optimizations, 17
rendering and mathematics, 17
Web site updates, 17

Markov state machine program, 401
programs, 16
Q-learning, 635, 644
random decision tree program, 309
Rete algorithm, 454
state machine program, 315
steering behavior, 59
steering pipeline program, 116

Weighted blending, see Blending
Wipeout, 823
Wolfenstein 3D, 814
World Championship Pool 2004, 827
World interfacing

communication, 745–746
knowledge acquisition

event manager, see Event manager
events, 747
polling, 746
polling station, see Polling station
selection of technique, 748

sense management, see Sense management
World Rally Championship, 785
World representations

cost functions, 251
Dirichlet domains, 241–244
generation, 238
navigation meshes, 246–250
non-translational problems, 251
path smoothing, 251–253

870 Index

World representations (continued)
points of visibility, 244–246
quantization and localization, 238
teaching characters, 832–833
tile graphs, 239–241
validity, 238–239

Worms 3D, 829

Y
Yacc, parser building, 479

Z
Zelda, 10
Zobrist key, transition table hashing, 690–691

	Title Page
	Copyright Page
	About the Authors
	Contents
	Acknowledgments
	Preface
	About the Website
	Part 1: AI and Games
	Chapter 1. Introduction
	1.1 What Is AI?
	1.1.1 Academic AI
	1.1.2 Game AI

	1.2 Model of Game AI
	1.2.1 Movement
	1.2.2 Decision Making
	1.2.3 Strategy
	1.2.4 Infrastructure
	1.2.5 Agent-Based AI
	1.2.6 In the Book

	1.3 Algorithms, Data Structures, and Representations
	1.3.1 Algorithms
	1.3.2 Representations

	1.4 On the Website
	1.4.1 Programs
	1.4.2 Libraries

	1.5 Layout of the Book

	Chapter 2. Game AI
	2.1 The Complexity Fallacy
	2.1.1 When Simple Things Look Good
	2.1.2 When Complex Things Look Bad
	2.1.3 The Perception Window
	2.1.4 Changes of Behavior

	2.2 The Kind of AI in Games
	2.2.1 Hacks
	2.2.2 Heuristics
	2.2.3 Algorithms

	2.3 Speed and Memory
	2.3.1 Processor Issues
	2.3.2 Memory Concerns
	2.3.3 PC Constraints
	2.3.4 Console Constraints

	2.4 The AI Engine
	2.4.1 Structure of an AI Engine
	2.4.2 Toolchain Concerns
	2.4.3 Putting It All Together

	Part 2: Techniques
	Chapter 3. Movement
	3.1 The Basics of Movement Algorithms
	3.1.1 Two-Dimensional Movement
	3.1.2 Statics
	3.1.3 Kinematics

	3.2 Kinematic Movement Algorithms
	3.2.1 Seek
	3.2.2 Wandering
	3.2.3 On the Website

	3.3 Steering Behaviors
	3.3.1 Steering Basics
	3.3.2 Variable Matching
	3.3.3 Seek and Flee
	3.3.4 Arrive
	3.3.5 Align
	3.3.6 Velocity Matching
	3.3.7 Delegated Behaviors
	3.3.8 Pursue and Evade
	3.3.9 Face
	3.3.10 Looking Where You’re Going
	3.3.11 Wander
	3.3.12 Path Following
	3.3.13 Separation
	3.3.14 Collision Avoidance
	3.3.15 Obstacle and Wall Avoidance
	3.3.16 Summary

	3.4 Combining Steering Behaviors
	3.4.1 Blending and Arbitration
	3.4.2 Weighted Blending
	3.4.3 Priorities
	3.4.4 Cooperative Arbitration
	3.4.5 Steering Pipeline

	3.5 Predicting Physics
	3.5.1 Aiming and Shooting
	3.5.2 Projectile Trajectory
	3.5.3 The Firing Solution
	3.5.4 Projectiles with Drag
	3.5.5 Iterative Targeting

	3.6 Jumping
	3.6.1 Jump Points
	3.6.2 Landing Pads
	3.6.3 Hole Fillers

	3.7 Coordinated Movement
	3.7.1 Fixed Formations
	3.7.2 Scalable Formations
	3.7.3 Emergent Formations
	3.7.4 Two-Level Formation Steering
	3.7.5 Implementation
	3.7.6 Extending to More than Two Levels
	3.7.7 Slot Roles and Better Assignment
	3.7.8 Slot Assignment
	3.7.9 Dynamic Slots and Plays
	3.7.10 Tactical Movement

	3.8 Motor Control
	3.8.1 Output Filtering
	3.8.2 Capability-Sensitive Steering
	3.8.3 Common Actuation Properties

	3.9 Movement in the Third Dimension
	3.9.1 Rotation in Three Dimensions
	3.9.2 Converting Steering Behaviors to Three Dimensions
	3.9.3 Align
	3.9.4 Align to Vector
	3.9.5 Face
	3.9.6 Look Where You’re Going
	3.9.7 Wander
	3.9.8 Faking Rotation Axes

	Exercises

	Chapter 4. Pathfinding
	4.1 The Pathfinding Graph
	4.1.1 Graphs
	4.1.2 Weighted Graphs
	4.1.3 Directed Weighted Graphs
	4.1.4 Terminology
	4.1.5 Representation

	4.2 Dijkstra
	4.2.1 The Problem
	4.2.2 The Algorithm
	4.2.3 Pseudo-Code
	4.2.4 Data Structures and Interfaces
	4.2.5 Performance of Dijkstra
	4.2.6 Weaknesses

	4.3 A*
	4.3.1 The Problem
	4.3.2 The Algorithm
	4.3.3 Pseudo-Code
	4.3.4 Data Structures and Interfaces
	4.3.5 Implementation Notes
	4.3.6 Algorithm Performance
	4.3.7 Node Array A*
	4.3.8 Choosing a Heuristic

	4.4 World Representations
	4.4.1 Tile Graphs
	4.4.2 Dirichlet Domains
	4.4.3 Points of Visibility
	4.4.4 Navigation Meshes
	4.4.5 Non-Translational Problems
	4.4.6 Cost Functions
	4.4.7 Path Smoothing

	4.5 Improving on A*
	4.6 Hierarchical Pathfinding
	4.6.1 The Hierarchical Pathfinding Graph
	4.6.2 Pathfinding on the Hierarchical Graph
	4.6.3 Hierarchical Pathfinding on Exclusions
	4.6.4 Strange Effects of Hierarchies on Pathfinding
	4.6.5 Instanced Geometry

	4.7 Other Ideas in Pathfinding
	4.7.1 Open Goal Pathfinding
	4.7.2 Dynamic Pathfinding
	4.7.3 Other Kinds of Information Reuse
	4.7.4 Low Memory Algorithms
	4.7.5 Interruptible Pathfinding
	4.7.6 Pooling Planners

	4.8 Continuous Time Pathfinding
	4.8.1 The Problem
	4.8.2 The Algorithm
	4.8.3 Implementation Notes
	4.8.4 Performance
	4.8.5 Weaknesses

	4.9 Movement Planning
	4.9.1 Animations
	4.9.2 Movement Planning
	4.9.3 Example
	4.9.4 Footfalls

	Exercises

	Chapter 5. Decision Making
	5.1 Overview of Decision Making
	5.2 Decision Trees
	5.2.1 The Problem
	5.2.2 The Algorithm
	5.2.3 Pseudo-Code
	5.2.4 On the Website
	5.2.5 Knowledge Representation
	5.2.6 Implementation Nodes
	5.2.7 Performance of Decision Trees
	5.2.8 Balancing the Tree
	5.2.9 Beyond the Tree
	5.2.10 Random Decision Trees

	5.3 State Machines
	5.3.1 The Problem
	5.3.2 The Algorithm
	5.3.3 Pseudo-Code
	5.3.4 Data Structures and Interfaces
	5.3.5 On the Website
	5.3.6 Performance
	5.3.7 Implementation Notes
	5.3.8 Hard-Coded FSM
	5.3.9 Hierarchical State Machines
	5.3.10 Combining Decision Trees and State Machines

	5.4 Behavior Trees
	5.4.1 Implementing Behavior Trees
	5.4.2 Pseudo-Code
	5.4.3 Decorators
	5.4.4 Concurrency and Timing
	5.4.5 Adding Data to Behavior Trees
	5.4.6 Reusing Trees
	5.4.7 Limitations of Behavior Trees

	5.5 Fuzzy Logic
	5.5.1 A Warning
	5.5.2 Introduction to Fuzzy Logic
	5.5.3 Fuzzy Logic Decision Making
	5.5.4 Fuzzy State Machines

	5.6 Markov Systems
	5.6.1 Markov Processes
	5.6.2 Markov State Machine

	5.7 Goal-Oriented Behavior
	5.7.1 Goal-Oriented Behavior
	5.7.2 Simple Selection
	5.7.3 Overall Utility
	5.7.4 Timing
	5.7.5 Overall Utility GOAP
	5.7.6 GOAP with IDA*
	5.7.7 Smelly GOB

	5.8 Rule-Based Systems
	5.8.1 The Problem
	5.8.2 The Algorithm
	5.8.3 Pseudo-Code
	5.8.4 Data Structures and Interfaces
	5.8.5 Implementation Notes
	5.8.6 Rule Arbitration
	5.8.7 Unification
	5.8.8 Rete
	5.8.9 Extensions
	5.8.10 Where Next

	5.9 Blackboard Architectures
	5.9.1 The Problem
	5.9.2 The Algorithm
	5.9.3 Pseudo-Code
	5.9.4 Data Structures and Interfaces
	5.9.5 Performance
	5.9.6 Other Things Are Blackboard Systems

	5.10 Scripting
	5.10.1 Language Facilities
	5.10.2 Embedding
	5.10.3 Choosing a Language
	5.10.4 A Language Selection
	5.10.5 Rolling Your Own
	5.10.6 Scripting Languages and Other AI

	5.11 Action Execution
	5.11.1 Types of Action
	5.11.2 The Algorithm
	5.11.3 Pseudo-Code
	5.11.4 Data Structures and Interfaces
	5.11.5 Implementation Notes
	5.11.6 Performance
	5.11.7 Putting It All Together

	Chapter 6. Tactical and Strategic AI
	6.1 Waypoint Tactics
	6.1.1 Tactical Locations
	6.1.2 Using Tactical Locations
	6.1.3 Generating the Tactical Properties of a Waypoint
	6.1.4 Automatically Generating the Waypoints
	6.1.5 The Condensation Algorithm

	6.2 Tactical Analyses
	6.2.1 Representing the Game Level
	6.2.2 Simple Influence Maps
	6.2.3 Terrain Analysis
	6.2.4 Learning with Tactical Analyses
	6.2.5 A Structure for Tactical Analyses
	6.2.6 Map Flooding
	6.2.7 Convolution Filters
	6.2.8 Cellular Automata

	6.3 Tactical Pathfinding
	6.3.1 The Cost Function
	6.3.2 Tactic Weights and Concern Blending
	6.3.3 Modifying the Pathfinding Heuristic
	6.3.4 Tactical Graphs for Pathfinding
	6.3.5 Using Tactical Waypoints

	6.4 Coordinated Action
	6.4.1 Multi-Tier AI
	6.4.2 Emergent Cooperation
	6.4.3 Scripting Group Actions
	6.4.4 Military Tactics

	Exercises

	Chapter 7. Learning
	7.1 Learning Basics
	7.1.1 Online or Offline Learning
	7.1.2 Intra-Behavior Learning
	7.1.3 Inter-Behavior Learning
	7.1.4 A Warning
	7.1.5 Over-Learning
	7.1.6 The Zoo of Learning Algorithms
	7.1.7 The Balance of Effort

	7.2 Parameter Modification
	7.2.1 The Parameter Landscape
	7.2.2 Hill Climbing
	7.2.3 Extensions to Basic Hill Climbing
	7.2.4 Annealing

	7.3 Action Prediction
	7.3.1 Left or Right
	7.3.2 Raw Probability
	7.3.3 String Matching
	7.3.4 N-Grams
	7.3.5 Window Size
	7.3.6 Hierarchical N-Grams
	7.3.7 Application in Combat

	7.4 Decision Learning
	7.4.1 Structure of Decision Learning
	7.4.2 What Should You Learn?
	7.4.3 Four Techniques

	7.5 Naive Bayes Classifiers
	7.5.1 Implementation Notes

	7.6 Decision Tree Learning
	7.6.1 ID3
	7.6.2 ID3 with Continuous Attributes
	7.6.3 Incremental Decision Tree Learning

	7.7 Reinforcement Learning
	7.7.1 The Problem
	7.7.2 The Algorithm
	7.7.3 Pseudo-Code
	7.7.4 Data Structures and Interfaces
	7.7.5 Implementation Notes
	7.7.6 Performance
	7.7.7 Tailoring Parameters
	7.7.8 Weaknesses and Realistic Applications
	7.7.9 Other Ideas in Reinforcement Learning

	7.8 Artificial Neural Networks
	7.8.1 Overview
	7.8.2 The Problem
	7.8.3 The Algorithm
	7.8.4 Pseudo-Code
	7.8.5 Data Structures and Interfaces
	7.8.6 Implementation Caveats
	7.8.7 Performance
	7.8.8 Other Approaches

	Exercises

	Chapter 8. Board Games
	8.1 Game Theory
	8.1.1 Types of Games
	8.1.2 The Game Tree

	8.2 Minimaxing
	8.2.1 The Static Evaluation Function
	8.2.2 Minimaxing
	8.2.3 The Minimaxing Algorithm
	8.2.4 Negamaxing
	8.2.5 AB Pruning
	8.2.6 The AB Search Window
	8.2.7 Negascout

	8.3 Transposition Tables and Memory
	8.3.1 Hashing Game States
	8.3.2 What to Store in the Table
	8.3.3 Hash Table Implementation
	8.3.4 Replacement Strategies
	8.3.5 A Complete Transposition Table
	8.3.7 Using Opponent’s Thinking Time

	8.4 Memory-Enhanced Test Algorithms
	8.4.1 Implementing Test
	8.4.2 The MTD Algorithm
	8.4.3 Pseudo-Code

	8.5 Opening Books and Other Set Plays
	8.5.1 Implementing an Opening Book
	8.5.2 Learning for Opening Books
	8.5.3 Set Play Books

	8.6 Further Optimizations
	8.6.1 Iterative Deepening
	8.6.2 Variable Depth Approaches

	8.7 Turn-Based Strategy Games
	8.7.1 Impossible Tree Size
	8.7.2 Real-Time AI in a Turn-Based Game

	Exercises

	Part 3: Supporting Technologies
	Chapter 9. Execution Management
	9.1 Scheduling
	9.1.1 The Scheduler
	9.1.2 Interruptible Processes
	9.1.3 Load-Balancing Scheduler
	9.1.4 Hierarchical Scheduling
	9.1.5 Priority Scheduling

	9.2 Anytime Algorithms
	9.3 Level of Detail
	9.3.1 Graphics Level of Detail
	9.3.2 AI LOD
	9.3.3 Scheduling LOD
	9.3.4 Behavioral LOD
	9.3.5 Group LOD
	9.3.6 In Summary

	Exercises

	Chapter 10. World Interfacing
	10.1 Communication
	10.2 Getting Knowledge Efficiently
	10.2.1 Polling
	10.2.2 Events
	10.2.3 Determining What Approach to Use

	10.3 Event Managers
	10.3.1 Implementation
	10.3.2 Event Casting
	10.3.3 Inter-Agent Communication

	10.4 Polling Stations
	10.4.1 Pseudo-Code
	10.4.2 Performance
	10.4.3 Implementation Notes
	10.4.4 Abstract Polling

	10.5 Sense Management
	10.5.1 Faking It
	10.5.2 What Do We Know?
	10.5.3 Sensory Modalities
	10.5.4 Region Sense Manager
	10.5.5 Finite Element Model Sense Manager

	Exercises

	Chapter 11. Tools and Content Creation
	11.0.1 Toolchains Limit AI
	11.0.2 Where AI Knowledge Comes from
	11.1 Knowledge for Pathfinding and Waypoint Tactics
	11.1.1 Manually Creating Region Data
	11.1.2 Automatic Graph Creation
	11.1.3 Geometric Analysis
	11.1.4 Data Mining

	11.2 Knowledge for Movement
	11.2.1 Obstacles
	11.2.2 High-Level Staging

	11.3 Knowledge for Decision Making
	11.3.1 Object Types
	11.3.2 Concrete Actions

	11.4 The Toolchain
	11.4.1 Data-Driven Editors
	11.4.2 AI Design Tools
	11.4.3 Remote Debugging
	11.4.4 Plug-Ins

	Exercises

	Part 4: Designing Game AI
	Chapter 12. Designing Game AI
	12.1 The Design
	12.1.1 Example
	12.1.2 Evaluating the Behaviors
	12.1.3 Selecting Techniques
	12.1.4 The Scope of One Game

	12.2 Shooters
	12.2.1 Movement and Firing
	12.2.2 Decision Making
	12.2.3 Perception
	12.2.4 Pathfinding and Tactical AI
	12.2.5 Shooter-Like Games

	12.3 Driving
	12.3.1 Movement
	12.3.2 Pathfinding and Tactical AI
	12.3.3 Driving-Like Games

	12.4 Real-Time Strategy
	12.4.1 Pathfinding
	12.4.2 Group Movement
	12.4.3 Tactical and Strategic AI
	12.4.4 Decision Making

	12.5 Sports
	12.5.1 Physics Prediction
	12.5.2 Playbooks and Content Creation

	12.6 Turn-Based Strategy Games
	12.6.1 Timing
	12.6.2 Helping the Player

	Chapter 13. AI-Based Game Genres
	13.1 Teaching Characters
	13.1.1 Representing Actions
	13.1.2 Representing the World
	13.1.3 Learning Mechanism
	13.1.4 Predictable Mental Models and Pathological States

	13.2 Flocking and Herding Games
	13.2.1 Making the Creatures
	13.2.2 Tuning Steering for Interactivity
	13.2.3 Steering Behavior Stability
	13.2.4 Ecosystem Design

	Appendix
	References
	A.1 Books, Periodicals, and Papers
	A.2 Games

	Index

