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Massachusetts Institute of Technology 

6.867 Machine Learning, Fall 2006 

Problem Set 4: Solutions 

1. (a) (8 points) We have 

n d

L(D; θ) = P (xri |yr)P (yr) (1) 
r=1 i=1 

where the number of examples is n. We can parameterize P (y) with the parameter ψ, as 

2 2P (y) = ψ 
y+1 

(1 − ψ) 
1−y 

(2) 

This is the same kind of parametrization we have used for P (xi|y). Eqn 1 thus becomes 

n d xri +1 

2L(D; θ, ψ) = 
� � 

θi|yr 
(1 − θi|yr ) 

1−
2 

xri 
ψ 

yr 
2
+1 

(1 − ψ) 
1−

2 
yr 

(3) 
r=1 i=1 

In the above equation, θi|+1 occurs whenever xri = 1 and yr = 1 and (1 − θi|+1) occurs whenever 
xri = −1 and yr = 1. Similarly, ψ occurs whenver yr = 1 and (1 − ψ) occurs whenver yr = −1. 
With this intuition we now have: ⎡ ⎤ 

d � � 
L(D; θ, ψ) = ⎣ θi

n̂
|y 
iy (1,y)(1 − θi|y)

n̂iy (−1,y)⎦ ψn̂y (1)(1 − ψ)n̂y (−1) (4) 
i=1 y={−1,1} 

In the above, we have used the n̂ notation used in the lectures; e.g., n̂iy(1, −1) counts the number 
of examples with xri = 1 and yr = −1. We then have 

L(D; θ, ψ)P (θ, ψ) = L(D; θ, ψ)P (θ)P (ψ) (5) 

We assume a uniform prior on ψ i.e. P (ψ) = 1. Since ψ ∈ [0, 1], this is already normalized. Then 
we have: ⎡ ⎤ 

d � � 
L(D; θ, ψ)P (θ, ψ) = ⎣ θi

n̂
|y 
iy (1,y)(1 − θi|y)

n̂iy (−1,y)⎦ ψn̂y(1)(1 − ψ)n̂y (−1) (6)× 

⎡ 
i=1 y={−1,1} ⎤ 
d� � 1 +⎣ 

B(r+ + 1, r− + 1)
θi

r
|y (1 − θi|y)

r− ⎦ (7) 
i=1 y={−1,1} 

Γ(a+b)where B(a, b) = Γ(a)Γ(a) . We collect the terms togethers ⎡ ⎤ 
d

L(D; θ, ψ)P (θ, ψ) = 
Q

1 

r 

⎣� � 
θi

n̂
|y 
iy (1,y)+r+ 

(1 − θi|y)
n̂iy (−1,y)+r− ⎦ � ψn̂y (1)(1 − ψ)n̂y (−1) 

� 
(8) 

i=1 y={−1,1} 

where Qr = B(r+ + 1, r− + 1)2d . Thus, m + 
i|y = n̂iy(1, y) + r+ and m−

i|y = n̂iy(−1, y) + r−. 
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(b) (8 points) We have
 ⎡ ⎤ 
d + � �� � m

i|y )m−
ny (1)(1 − ψ)n̂y (−1)P (θ, ψ|D) ∝ ⎣ θi|y (1 − θi|y i|y ⎦ ψˆ	 (9) 

i=1 y={−1,1} 

The right-hand side (RHS) consists of a product of Beta distributions. To normalize it, we could 
integrate over each θi|y over the range θi|y = [0, 1], using integration by parts for each such case. 
However, there’s a much simpler method. Since the posterior has the form of a product of Beta 
distributions, we could directly use the corresponding normalization constant. The normalization 
constant for the Beta distribution is described in the problem-set. Using it, we have 

⎡	 ⎤ 
d

+P (D|F) = ⎣ B(mi|y + 1,m−
i|y + 1) ⎦ B(n̂y(1) + 1, n̂y(−1) + 1) (10) 

i=1 y={−1,1} 

i.e., ⎡	 ⎤ 
1	 ⎣ 

d
m + 

i|y )m− ⎦ ψn̂y (1)(1 − ψ)n̂y (−1)P (θ, ψ|D) = θ (1 − θi|y i|y	 (11) 
i=1 

P (D|F) 
y={−1,1} 

i|y 

If you chose to preserve the constant 1/Qr as part of the initial P (θ, ψ|D), your answer in Eqn 10 
should be multiplied by 1/Qr. 

+(c)	 (9 points) If feature i is included (F2), the corresponding terms in P (D|F) will be B(mi|1 + 

1,m−
i|1 + 1)B(m + 

i|−1 + 1,m−
i|−1 + 1). If it is not included (F1), there will only be one term θi which 

will combine counts for both y = 1 and y = −1, i.e., the term corresponding to feature i will be 
B(n̂i(1) + r+ + 1, n̂i(−1) + r− + 1). 
To choose F1 over F2, we need 

B(n̂i(1) + r+ + 1, n̂i(−1) + r− + 1) 
> 1 or	 (12)

B(m	+ + 1,m− + 1)B(m + + 1,m− + 1) i|1 i|1 i|−1 i|−1 

or, 

log B(n̂i(1) + r + + 1, n̂i(−1) + r− + 1))	 (13) 
+− log B(mi|1 + 1,m−

i|1 + 1)	 (14) 

− log B(m + + 1,m− + 1) > 0	 (15)i|−1 i|−1 

(d)	 (2 points) At the MLE value, the first derivative is zero (the derivative of a differentiable function 
is zero at maxima and minima). As such, a first-order expansion will not buy us much— it will 
only lead to a constant-valued function. 

(e)	 (6 points) From previous part, A1 = 0. Let Σ = (−A2)−1 . Since A2 is the Hessian (i.e. the 
matrix of second derivatives) evaluated at a maxima, it is negative definite, so that the negative of 
its inverse Σ is positive definite. Also, we are given that |Σ| ≈ (nrC(r))−1 . We now have 

L(D; θ)P (θ)dθ = L(D; θ) 1 dθ	 (16)· · 

= exp(log L(D; θ))dθ	 (17) 
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= exp(log L(D; θ̂ML) − 
1
(θ − θ̂ML)T Σ−1(θ − θ̂ML))dθ (18)

2

= 
�� 

L(D; θ̂ML)dθ 
� �� 

exp(
1
(θ − θ̂ML)T Σ−1(θ − θ̂ML))dθ 

� 

(19)
2

(20) 

L(D; θ̂ML) is a constant, i.e., it doesn’t depend on θ. Also, the second term looks a lot like a 
Gaussian distribution. So we have � �� � 1 1 

� 

L(D; θ̂ML) (2π)r/2|Σ|1/2 exp( (θ − θ̂ML)T Σ−1(θ − θ̂ML))dθ (21)
(2π)r/2|Σ|1/2 2

≈ L(D; θ̂ML) · (2π)r/2(n rC(r))−1/2 · 1 (22) 

≈ L(D; θ̂ML) 
� 

2
n

π 
�r/2 

C1(r) (23) 

(f) (2 points) Taking the log of the expression from the previous part, we have: 

log P (D; Fr) ≈ log L(D; θ̂ML) − 
2 
r 

log n +
2 
r 

log 2π + C2(r) (24) 

As n →∞, the terms that depend only on r and not on n can be ignored. So that limn→∞ log P (D; Fr) 
becomes 

log L(D; θ̂ML) − 
r 

log n (25)
2 

2. (a) The likelihood is: 

m tk

L(D; Θ) = N(xi; µk, Σk). (26) 
k=0 i=tk−1 

The log-likelihood is: 

m tk

�(D; Θ) = log N(xi; µk, Σk); (27) 
k=0 i=tk−1 

Furthermore, the number of free variables in m +1, d-dimensional multivariate Gaussians is m(d + 
d(d + 1)/2). Consequently, the BIC is: 

m t�k−1 � � m

BIC = 
� 

log N(xi; µk, Σk) − 
d + d(d 

2
+ 1)/2 � 

log(tk − tk−1). 
k=0 i=tk−1 k=0 

It is worth noting that: 

t�k−1 

log N(xi; µk, Σk) = − 
tk −

2 
tk−1 (log |Σ| + d log(2π) + 1) . (28) 

i=tk−1 

(b) 
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function [bestat,topscore,scores]=split(X)

N = size(X, 1);· 
d = size(X, 2);· 
λ = 1; · 
s1 = 0 ; s2 = sum(X);· 
S1 = 0 ; S2 = 0; · 
for i = 1 : N· 

S2 = S2 + X(i, :)�X(i, :);· · 
end· 
µ = s2/N ;· 
Σ = S2/N − µ�µ;· 
topscore = −10;· 
bestat = −1;· 
scores = []; · 
for i = 1 : N − 2· 

s1 = s1 + X(i, :);· · 
S1 = S1 + X(i, :)�X(i, :);· · 
s2 = s2 − X(i, :);· · 
S2 = S2 − X(i, :)�X(i, :);· · 
µ1 = s1/i;· · 
Σ1 = S1/i − µ�1µ1;· · 
µ2 = s2/(N − i);· · 
Σ2 = S2/(N − i) − µ2�µ2;· · 
if i > 30 and i < N − 30· · 

score = N log(det(Σ)) − i log(det(Σ1))· · · 
− (N − i) log(det(Σ2))· · · · 
− λ/2(d + d(d + 1)/2) log(N);· · · · 

if score > topscore · · · 
bestat = i;· · · · 
topscore = score; · · · · 

end· · · 
scores(i, :) = [score, det(Σ), det(Σ1), det(Σ2)];· · · 

end· · 
end· 

end 
� load -ascii ‘data1’ 
� C = data1; 
� [bestat,topscore,scores] = split(C); 
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(c) 
� load -ascii ‘cepstra1.mat’ 
� C = cepstra1; 
� multisplit(C) 
ans =


149
· 
194
· 
291
· 
421
· 
492
· 
556
· 
668
· 
738
· 
1470
· 
1587
· 
1693
· 
1751· 
1840· 
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� load -ascii ‘cepstra2.mat’ 
� C = cepstra2; 
� multisplit(C) 
ans 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 
· 

= 
32

198

230

285

449

514

684

813

852

897

1040

1197

1229

1397

1534 
1683 
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3. (a) Take the negative derivative of the loss function to get the weights: 

e−z 

. (29)
1 + e−z 

The numerator and denominator are both positive and the numerator is less than the denominator. 
Thus, the quotient is between 0 and 1. Given that the unnormalized weights are bounded, examples 
that are badly misclassified and those that are just barely misclassified will end up with comparable 
weights after normalization. 

(b) The value of α̂1 is infinite. Increasing α1 will decrease all the training losses since yth(xt; θ̂1) > 0 
for all t. 

(c) There are two ways to show this. First, by construction when β is fixed. It suffices to provide a set 
of points such that an ensemble with the radial basis learners can classify them in all possible ways. 
We will use n base learners, each associated with one training point. The points can be placed 
far enough apart such that the only relevant contribution to the ensemble output comes from the 
base learner associated with each point. Since the base learners reproduce the training labels for 
individual points, so will the ensemble. 
Another way is to use the result in problem set 2 that the gram matrix for the radial basis kernel 
is invertible so that the discriminant function 

n

h(x; θ) = αtyt exp(−β�x − xt�2) (30) 
t=1 

can be chosen to take any values over n-points x1, . . . , xn. Strictly speaking we’d have to show, 
in addition, that αt’s in the above expression can be all non-negative. The product αtyt is not 
constrained if we can choose yt ∈ {−1, 1} for each base learner (yt here need not be the label we 
aim to reproduce with h(xt; θ)). 

(d) It does not overfit; the test error decreases initially, but does not increase again after many iterations 
as it would if it were overfitting. 
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(e) Replace lines 9 and 10 in call boosting.m with: 
[y est,sum of alpha]=eval boost(model(1:k),data.xtrain); · 
err(k)=sum(y est.*data.ytrain/sum of alpha≤0.5)/length(data.ytrain); · 

The margin errors for ρ = 0.1 tend to decrease. 
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