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Massachusetts Institute of Technology 

6.867 Machine Learning, Fall 2006 

Problem Set 5 
Due Date: Thursday, Nov 30, 12:00 noon


You may submit your solutions in class or in the box. 

1. Wilhelm and Klaus are friends, but Wilhelm only speaks English and Klaus only speaks German. Klaus 
has sent Wilhelm an urgent message, and Wilhelm is locked in a room with only the proceedings of 
the European Parliament (in both German and English) to keep him company. Luckily, Wilhelm is a 
machine learning expert. 

He decides to treat Klaus as a “noisy channel”: assume that thoughts in Klaus’s head start out in 
English, but before they are emitted, they pass through a medium that replaces the English words with 
new (German) words and rearranges them from the English word-ordering to a new (German) ordering 
all according to some unkown distributions. Next, he plans to come up with parametrizations for the 
distributions and then to optimize the parameters over the European Parliament data he is conveniently 
locked up with. 

Wilhelm thus achieves the following optimization problem: 

P (e)
arg maxP (e | g) = arg maxP (g | e)

P (g)e e 

= arg maxP (g e)P (e), 
e 

| 

where e and g denote English and German sentences, respectively. This corresponds to Wilhelm’s 
noisy-channel characterization of Klaus’s head. 

Next, Wilhelm decides on parameterizations for the two terms in his optimization criterion. To estimate 
probabilities of English sentences, he will pretend that English is a Markov process (that is, that English 
speakers choose each word in a sentence based only on the last two words they have chosen): 

|e|

P (e) = LM(ei | ei−1, ei−2), (1) 
i=1 

where |e| denotes the length of the English sentence e, ei denotes the ith word of e, and e0 and 
e−1 correspond to start symbols S0 and S−1, respectively, which are before every English sentence for 
simplicity. 

For the other term, Wilhelm is aware that both the words and their order may change, so he introduces 
a hidden variable: the alignment between the words. 

|g|

P (g, a | e) = 
j=1 

T (gj | eaj )D (aj | j, |e|, |g|) (2) 
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Thus, 

P (g | e) = P (g, a | e) 
a 

|g|

= T (gj | eaj )D (aj | j, |e|, |g|) 
a	 j=1 

|g|	 |e|

= T (gj | eaj )D (aj | j, |e|, |g|) . 
j=1 aj =1 

This set-up is known as IBM Model 2. 

(a) To perform the optimization, Wilhelm decides to use the EM algorithm. Derive the updates of the 
parameters LM , T , and D. We place no constraints on these distributions other than that they 
are distributions (cf. regularization below). 

(b) The initial parameter settings are important. Give an example of a bad choice.	 What should you 
choose? 

(c) Insert the updates and initial parameter settings in the provided templates ibm2 train lm.m and 
ibm2 train.m and train the system using the provided data europarl.m. Use the provided decoder 
ibm2 beam decoder.m to use the trained system to decode Klaus’s message klaus.m. The system 
is able to achieve surprisingly good results with a very simple probability model! (Although the 
training is easy, the decoding is non-trivial; check out the source of the decoder.) 

(d) Suppose Wilhelm believes that his model is reordering the German too aggressively.	 He is con­
sidering regularizing the alignments. He has several ideas; what effect do you think each of these 
regularization techniques will have? 

i. Regularize D (aj j, e|, g ) toward a uniform distribution. 

ii. Regularize D (aj | j, |e|, |g|) toward the distribution D aj = j · |
|
g
e|
| | j, |e|, |g| = 1. 

iii.	 Estimate first a simpler distribution D (aj | |e|, |g|) and regularize D (aj | j, |e|, |g|) toward it. 

2. In this problem, we will explore the combined use of regression and Expectation Maximization.	 The 
motivating application is as follows: we’d like to understand how the expression levels of genes (in a 
cell) change with time. The expression level of a gene indicates, roughly, the amount of gene-product in 
the cell. The experimental data we have available are noisy measurements of this level (for each gene) 
at certain time points. More precisely, we have m genes (g1, . . . , gm) and measurements are available 
for r timepoints (t1, . . . , tr). The data matrix is Y = [y1, . . . , ym]T where each row yi

T = [yi1, . . . , yir] 
corresponds to the expression levels of gene gi across the r timepoints. 

Our goal is to estimate continuous functions, each f̂i(t) capturing the expression level of one gene gi. 
We’ll call these expression curves. Clearly, if we treat each gene’s expression as independent from others, 
we would need to perform m unrelated regression tasks. We can do better, however, since we expect 
that there are groups of genes with similar expression curves. 

We hypothesize that the expression curves can be grouped into k classes and that, within each group, 
the functions fi(t) look very similar. When estimating f̂i(t) we can pool together data from all the 
genes in the same class. We have two problems to solve: (1) figure out which class each gene belongs 
to, and (2) given class assignments, estimate the expression curves. As you might guess, we will use the 
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EM algorithm. However, we still need to understand how to estimate continuous curves from discrete 
data-points. 

To perform regression, we will use an idea similar to kernel regression. Recall that even if f(t) is some 
non-linear function of t, it is possible to find a feature mapping φ(t) = [φ1(t), . . . , φp(t)]T such that f(t) 
is a linear function of φ’s: f(t) = wj φj (t). In class, we had discussed how to implement this idea to 
perform kernel regression without explicitly constructing the feature mapping. In the current setting, 
we extend this to include a prior over the parameters w = [w1, . . . , wp]T . We set this to be simply a 
spherical multivariate Gaussian N(w; 0, σw

2 I). Now, given any set of time points t1, . . . , tr, we imagine 
generating function values at those time points according to the following procedure 

Step 1: draw one sample w ∼ N(0, σ2 I)w

Step 2: generate function values for the time points of interest 

p

f(tk) = wj φj (tk), k = 1, . . . , r (3) 
j=1 

Since wj are normally distributed, so is f = [f(t1), . . . , f(tr)]T . The distribution of this vector is 
N(f ; 0, K) where Kkl = K(tk, tl) = σ2 φ(tk)T φ(tl). Looks familiar? Let’s try to understand it a bit w

better. We have a distribution over function values at any set of time points. In other words, we 
have defined a prior distribution over functions! The kernel function K(t, t�), where the inputs are the 
time points, gives rise to a Gram matrix Kkl = K(tk, tl) over any finite set of inputs. This probability 
distribution over functions is known as a Gaussian Process (GP for short). 

The choice of the kernel K(t, t�) controls the kind of functions that are sampled. Consider the following 
kernel, similar to the radial basis function kernel seen before 

σ2 (t − t�)2 

K(t, t�) = f exp(−
2ρ2 ) (4) 

The hyperparameter ρ controls the time span at which the function values are strongly coupled. A large 
ρ implies, for example, that the sampled functions would appear roughly constant across a long time 
range. σf scales this correlation by a constant factor. 

(a) Match each of the following four figures, with the four kernels defined below. Each figure describes 
some functions sampled using a particular kernel. Note that these functions are drawn by selecting 
finely spaced time points and drawing a sample from the corresponding function values at these 
points from N(f ; 0, K) where K is the Gram matrix over the same points. 
Here are the kernels: 

i. 3 exp(− (t−t�)2 
)

2(2.1)2 

(t−t�)2 
ii. 2 exp(−

2(0.7)2 ) 

4iii. 2 exp(−sin2( π(t−t�)2 
) )

2(0.3)2 

(t−t�)2iv. 2 exp(−
2(0.05)2 ) + 0.1(tt�)2 
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Figure 1: Each subfigure corresponds to one kernel 

Let us now consider how we will use GP’s to simultaneously perform regression across genes belonging 
to the same class. Since we assume they have similar expression curves we will model them as samples 
from the same Gaussian process. Our model for the data is as follows. There are k classes in the data 
and each gene belongs to a single class. Let the genes in class l be gl1, gl2, . . . , glml where ml is the 
number of genes in that class. The expression curves for these genes are assumed to be samples from 
the same GP. The kernels of the k GP’s (one for each class) all have the same parametric form, but 
different hyperparameters θ = (σf , ρ, σn): 

K(t, t�) = σ2 exp(−(t − t�)2 

) + σ2 δ(t, t�), where (5)f 2ρ2 n

1 if t = t�
δ(t, t�) = (6)

0 otherwise 

This is essentially the same as before except for the second term that accounts for measurement noise. 
In other words, the responses y are modeled as y(t) = f(t) + �t, �t ∼ N(0, σ2 ) and f(t) is a Gaussian n

process with kernel given by Egn 4. Thus, for any time points t1, . . . , tr, the response vector y has a 
distribution N(0, K), where K is the Gram matrix from the kernel in Eqn 5. 

(b) We have provided for you a function log likelihood gp(params, t, Yobs), where params specify 
the hyperparameters of the kernel, t is a vector of r timepoints and Yobs is a q×r matrix of observed 
gene expression values (for q genes) at those timepoints. For each of the q sets of observations, 
the function computes the log-likelihood that observations were generated from the GP specified 
by params. Fill in the missing lines of the code. Attach a printout of your code (you only need to 
show the parts you changed). 

We now go back to our original problem and set up an Expectation Maximization framework to solve it. 
Suppose we know that the genes in the data cluster into k classes (i.e., k is a user-specified parameter). 
We start off by guessing some initial values for the hyperparameters of the k GPs. In each E-step, we 
compute the posterior assignment probability P (k|i) i.e., the probability that gene gi is in class k. To 
simplify the M-step we will turn these probabilities into hard assignments. In each M-step, we compute 
the MLE estimates for the hyperparameters of the GPs associated with the classes. 

(c) To perform EM, we have provided you a function [W,V,L] = em gp(t, Yobs, k, init class). 
The code is missing some steps in the Expectation sub-function. Fill them in. Attach a printout 
of your code for the Expectation function. 
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(d) Using the dataset provided with this problem, run em gp with different choices of k (k = 2, 3, 4, 5). 
We have provided a function plot results(W,V,t,Yobs,k,nn) which you may find useful. You 
can use it to plot nn randomly chosen curves from each of the k classes. What choice of k seems 
most appropriate? 

(e) Gene expression data often has missing values, i.e., you may not know the value yij , the expression 
of gene gi at time tj . With some machine learning methods, handling these missing values can be 
a big hassle. But with our model, the missing values problem can be handled very simply. How? 

(f)	 (Optional: Extra Credit) Our initial choice of hyperparameters is constructed as follows: we 
assign genes to specific classes, either randomly or based upon some insights. Using this class 
assignment, the initial hyperparameters are computed by an MLE approach. Describe a method 
that could be used to generate a good initial class assignment. 

(g)	 (Optional: Extra Credit) Since we have defined a prior over functions we could turn the clus­
tering problem into a Bayesian model selection problem. We assume that each cluster has a single 
underlying expression curve f(t), sampled from a fixed GP model, and the responses for each gene 
in the cluster are subsequently sampled from y(t) = f(t) + �t, �t ∼ N(0, σ2 ), using the same f(t).n

Write an expression for the marginal likelihood of the data corresponding to a fixed assignment of 
genes into clusters. 
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