
6.867 Machine learning 

Mid-term exam 

October 8, 2003 

(2 points) Your name and MIT ID: 

Problem 1 

In this problem we use sequential active learning to estimate a linear model 

y = w1x + w0 + � 

where the input space (x values) are restricted to be within [−1, 1]. The noise term � 
is assumed to be a zero mean Gaussian with an unknown variance σ2 . Recall that our 
sequential active learning method selects input points with the highest variance in the 
predicted outputs. Figure 1 below illustrates what outputs would be returned for each 
query (the outputs are not available unless specifically queried). 

We start the learning algorithm by querying outputs at two input points, x = −1 and 
x = 1, and let the sequential active learning algorithm select the remaining query points. 

1.	 (4 points) Give the next two inputs that the sequential active learning method would 
pick. Explain why. 
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Figure 1: Samples from the underlying relation between the inputs x and outputs y. The 
outputs are not available to the learning algorithm unless specifically queried. 

2.	 (4 points) In the figure 1 above, draw (approximately) the linear relation between 
the inputs and outputs that the active learning method would find after a large 
number of iterations. 

3.	 (6 points) Would the result be any different if we started with query points x = 0 
and x = 1 and let the sequential active learning algorithm select the remaining query 
points? Explain why or why not. 
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Problem 2
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Figure 2: Log-probability of labels as a function of regularization parameter C 

Here we use a logistic regression model to solve a classification problem. In Figure 2, we have 
plotted the mean log-probability of labels in the training and test sets after having trained 
the classifier with quadratic regularization penalty and different values of the regularization 
parameter C. 

1. (T/F – 2 points) In training a logistic regression model by maximizing 
the likelihood of the labels given the inputs we have multiple locally 
optimal solutions.


2. (T/F – 2 points) A stochastic gradient algorithm for training logistic 
regression models with a fixed learning rate will find the optimal setting 
of the weights exactly.


3. (T/F – 2 points) The average log-probability of training labels as in 
Figure 2 can never increase as we increase C. 
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4. (4 points) Explain why in Figure 2 the test log-probability of labels decreases for 
large values of C. 

5.	 (T/F – 2 points) The log-probability of labels in the test set would 
decrease for large values of C even if we had a large number of training 
examples. 

6.	 (T/F – 2 points) Adding a quadratic regularization penalty for the 
parameters when estimating a logistic regression model ensures that 
some of the parameters (weights associated with the components of the 
input vectors) vanish. 

Problem 3 

Consider a training set consisting of the following eight examples: 

Examples labeled “0” Examples labeled “1” 
3,3,0 2,2,0 
3,3,1 1,1,1 
3,3,0 1,1,0 
2,2,1 1,1,1 

The questions below pertain to various feature selection methods that we could use with 
the logistic regression model. 

1. (2 points) What is the mutual information between the third feature 
and the target label based on the training set? 

2. (2 points) Which feature(s) would a filter feature selection method 
choose? You can assume here that the mutual information criterion is 
evaluated between a single feature and the label. 

4 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





3. (2 points) Which two feature(s) would a greedy wrapper process 
choose? 

4.	 (4 points) Which features would a regularization approach with a 1-norm penalty �3 
i=1 |wi| choose? Explain briefly. 

Problem 4 

1.	 (6 points) Figure 3 shows the first decision stump that the AdaBoost algorithm 
finds (starting with the uniform weights over the training examples). We claim that 
the weights associated with the training examples after including this decision stump 
will be [1/8, 1/8, 1/8, 5/8] (the weights here are enumerated as in the figure). Are 
these weights correct, why or why not? 

Do not provide an explicit calculation of the weights. 

2.	 (T/F – 2 points) The votes that AdaBoost algorithm assigns to the 
component classifiers are optimal in the sense that they ensure larger 
“margins” in the training set (higher majority predictions) than any 
other setting of the votes. 

3.	 (T/F – 2 points) In the boosting iterations, the training error of each 
new decision stump and the training error of the combined classifier 
vary roughly in concert 

5 

.


Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





x x o x

+1

+1 +1 −1 +1
−1

4321

Figure 3: The first decision stump that the boosting algorithm finds. 

Problem 5 
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Figure 4: Training set, maximum margin linear separator, and the support vectors (in 
bold). 

1. (4 points) What is the leave-one-out cross-validation error estimate for 
maximum margin separation in figure 4? (we are asking for a number) 

2. (T/F – 2 points) We would expect the support vectors to remain 
the same in general as we move from a linear kernel to higher order 
polynomial kernels.


3. (T/F – 2 points) Structural risk minimization is guaranteed to find

the model (among those considered) with the lowest expected loss
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4. (6 points) What is the VC-dimension of a mixture of two Gaussians model in the 
plane with equal covariance matrices? Why? 

Problem 6 

Using a set of 100 labeled training examples (two classes), we train the following models: 

GaussI A Gaussian mixture model (one Gaussian per class), where the covariance matrices 
are both set to I (identity matrix). 

GaussX A Gaussian mixture model (one Gaussian per class) without any restrictions on 
the covariance matrices. 

LinLog A logistic regression model with linear features. 

QuadLog A logistic regression model, using all linear and quadratic features. 

1.	 (6 points) After training, we measure for each model the average log probability of 
labels given examples in the training set. Specify all the equalities or inequalities that 
must always hold between the models relative to this performance measure. We are 
looking for statements like “model 1 ≤ model 2” or “model 1 = model 2”. If no such 
statement holds, write “none”. 
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2.	 (4 points) Which equalities and inequalities must always hold if we instead use the 
mean classification error in the training set as the performance measure? Again use 
the format “model 1 ≤ model 2” or “model 1 = model 2”. Write “none” if no such 
statement holds. 
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Another set of figures
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Figure 1. Samples from the underlying relation between the inputs x and outputs y. The 
outputs are not available to the learning algorithm unless specifically queried 
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Figure 2. Log-probability of labels as a function of regularization parameter C
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Figure 3. The first decision stump that the boosting algorithm finds.
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Figure 4. Training set, maximum margin linear separator, and the support vectors (in 
bold). 
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