
6.867 Machine learning 

Mid-term exam 

October 22, 2002 

(2 points) Your name and MIT ID: 

Problem 1 

We are interested here in a particular 1-dimensional linear regression problem. The dataset 
corresponding to this problem has n examples (x1, y1), . . . , (xn, yn), where xi and yi are real 
numbers for all i. Part of the difficulty here is that we don’t have access to the inputs or 
outputs directly. We don’t even know the number of examples in the dataset. We are, 
however, able to get a few numbers computed from the data. 

Let w∗ = [w0
∗, w1

∗]T be the least squares solution we are after. In other words, w∗ minimizes 

n

J(w) = 
1 �

(yi − w0 − w1xi)
2 

n 
i=1 

You can assume for our purposes here that the solution is unique. 

1.	 (4 points) Check each statement that must be true if w∗ = [w0
∗, w1

∗]T is indeed the 
least squares solution 

( ) (1/n) 
�n

i=1(yi − w0
∗ − w1

∗xi)yi = 0 
( ) (1/n) 

�n
i=1(yi − w0

∗ − w1
∗xi)(yi − ȳ) = 0 

( x ) (1/n) 
�

i
n 
=1(yi − w0

∗ − w1
∗xi)(xi − x̄) = 0 

( x ) (1/n) 
�n

i=1(yi − w0
∗ − w1

∗xi)(w0
∗ + w1

∗xi) = 0 

where x̄ and ȳ are the sample means based on the same dataset. 

1 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





� 

� 

� � 

� 

� 
�
 � 

� � 
� 

� 

�


� 

� 

Taking the derivative with respect to w1 and w0 gives us the following conditions of 
optimality (as in the lectures) 

n
∂ 2 

J(w) = (yi − w0 − w1xi) = 0 
∂w0 n 

i=1 
n

∂ 2 
J(w) = (yi − w0 − w1xi)xi = 0 

∂w1 n 
i=1 

This means that the prediction error (yi − w0 − w1xi) does not co-vary with any linear 
function of the inputs (has a zero mean and does not co-vary with the inputs). (xi −x̄) 
and (w0

∗ + w1
∗xi) are both linear functions of inputs. 

2. (4 points) There are several numbers (statistics) computed from the data that we 
can use to infer w∗. These are 

x̄ 
n�1 

= ¯
n�1 

n�1 
= (xi − x̄)2 y =
 Cxxxi, yi, 

n n n 
i=1 i=1 i=1 

n n
1
 1


(yi − ȳ)2Cxy (xi − x̄)(yi − ȳ), Cyy =
 =

n
 n


i=1 i=1 

Suppose we only care about the value of w1
∗. We’d like to determine w1

∗ on the basis 
of only two numbers (statistics) listed above. Which two numbers do we need for 
this? 

We need Cxx (spread of x) and Cxy (linear dependence between x and y). No justi­
fication was necessary as these basic points have appeared repeatedly in the course. 
If we want to derive these more mathematically, we can, for example, look at one of 
the answers to the previous question: 

n
1 

(yi − w0 
∗ − w1

∗xi)(xi − x̄) = 0, which we can rewrite as 
n 

i=1 

n n n
� 

1 
� 

1 
� 

1 
yi(xi − x̄) − w0

∗ (xi − x̄) − w1
∗ xi(xi − x̄) = 0 

n n n 
i=1 i=1 i=1 

By using the fact that (1/n) 
�

i(xi − x̄) = 0 we see that 

n n
1 1 

yi(xi − x̄) = (yi − ȳ)(xi − x̄) = Cxy
n n 

i=1 i=1 
n n

1 1 
xi(xi − x̄) = (xi − x̄)(xi − x̄) = Cxx 

n n 
i=1 i=1 

Substituting these back into our equation above gives Cxy − w1
∗Cxx = 0. 
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3. Here we change the rules governing our access to the data.	 Instead of simply get­
ting the statistics we want, we have to reconstruct these from examples that we 
query. There are two types of queries we can make. We can either request additional 
randomly chosen examples from the training set, or we can query the output corre­
sponding to a specific input that we specify. (We assume that the dataset is large 
enough that there is always an example whose input x is close enough to our query). 

The active learning scenario here is somewhat different from the typical one. Normally 
we would assume that the data is governed by a linear model and choose the input 
points so as to best recover this assumed model. Here the task is to recover the best 
fitting linear model to the data but we make no assumptions about whether the linear 
model is appropriate in the first place. 

(2 points) Suppose in our case the input points are constrained to lie in the interval 
[0, 1]. If we followed the typical active learning approach, where we assume that the 
true model is linear, what are the input points we would query? 

We would query the extreme points x = 0 and x = 1 as they constrain the linear 
function the most. 

(3 points) In the new setting, where we try to recover the best fitting linear model 
or parameters w∗, we should (choose only one): 

(	 ) Query inputs as you have answered above 

( x ) Draw inputs and corresponding outputs at random from the dataset 

(	 ) Use another strategy since neither of the above choices would yield satisfactory 
results 
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(4 points) Briefly justify your answer to the previous question


The objective is to recover the least squares solution. This solution depends on the 
frequency of inputs and outputs in the dataset. Without additional assumptions, the 
best thing to do is to draw a representative set of examples from the dataset so that 
the resulting least squares solution would approximate the solution based on the full 
dataset. 

Problem 2 

In this problem we will refer to the binary classification task depicted in Figure 1(a), which 
we attempt to solve with the simple linear logistic regression model 

1 
P̂ (y = 1 x, w1, w2) = g(w1x1 + w2x2) = |	

1 + exp(−w1x1 − w2x2) 

(for simplicity we do not use the bias parameter w0). The training data can be separated 
with zero training error - see line L1 in Figure 1(b) for instance. 

(a) The 2-dimensional data set used in Prob-	 (b) The points can be separated by L1 (solid 
lem 1	 line). Possible other decision boundaries are 

shown by L2, L3, L4. 
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1.	 (6 points) Consider a regularization approach where we try to maximize 

n

2
� 

log p(yi|xi, w1, w2) − 
C 
2 

w2 
i=1 

for large C. Note that only w2 is penalized. We’d like to know which of the four 
lines in Figure 1(b) could arise as a result of such regularization. For each potential 
line L2, L3 or L4 determine whether it can result from regularizing w2. If not, explain 
very briefly why not. 

L2 • 

No. When we regularize w2, the resulting boundary can rely less on the value of x2 

and therefore becomes more vertical. L2 here seems to be more horizontal than the . 
unregularized solution so it cannot come as a result of penalizing w2 

L3 • 
Yes. Here w2

2 is small relative to w1
2 (as evidenced by high slope), and even though 

it would assign a rather low log-probability to the observed labels, it could be forced 
by a large regularization parameter C. 

L4 • 
No. For very large C, we get a boundary that is entirely vertical (line x1 = 0 or 
the x2 axis). L4 here is reflected across the x2 axis and represents a poorer solution 
than it’s counter part on the other side. For moderate regularization we have to get 
the best solution that we can construct while keeping w2 small. L4 is not the best 
and thus cannot come as a result of regularizing w2. 

2.	 (4 points)If we change the form of regularization to one-norm (absolute value) and 
also regularize w1 we get the following penalized log-likelihood 

n� 
log p(yi|xi, w1, w2) − 

C 
2

(|w1| + |w2|) . 
i=1 

Consider again the problem in Figure 1(a) and the same linear logistic regression 
model P̂ (y = 1 x, w1, w2) = g(w1x1 + w2x2). As we increase the regularization |
parameter C which of the following scenarios do you expect to observe (choose only 
one): 

( x ) First w1 will become 0, then w2. 

(	 ) w1 and w2 will become zero simultaneously 
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( ) First w2 will become 0, then w1. 

( ) None of the weights will become exactly zero, only smaller as C increases 

The data can be classified with zero training error and therefore also 
with high log-probability by looking at the value of x2 alone, i.e. making 
w1 = 0. Initially we might prefer to have a non-zero value for w1 but it 
will go to zero rather quickly as we increase regularization. Note that we 
pay a regularization penalty for a non-zero value of w1 and if it doesn’t 
help classification why would we pay the penalty? The absolute value 
regularization ensures that w1 will indeed go to exactly zero. 
As C increases further, even w2 will eventually become zero. We pay 
higher and higher cost for setting w2 to a non-zero value. Eventually 
this cost overwhelms the gain from the log-probability of labels that we 
can achieve with a non-zero w2. Note that when w1 = w2 = 0, the 
log-probability of labels is a finite value n log(0.5). · 
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Figure 1: A 2-dim classification problem, the resulting SVM decision boundary with a 
radial basis kernel, as well as the support vectors (indicated by larger circles around them). 
The numbers next to the support vectors are the corresponding coefficients α̂. 

Problem 3 

Figure 1 illustrates a binary classification problem along with our solution using support 
vector machines (SVMs). We have used a radial basis kernel function given by 

K(x, x�) = exp{−�x − x�� 2/2 } 

where � · � is a Euclidean distance and x = [x1, x2]
T . The classification decision for any x 

is made on the basis of the sign of 

ŵT φ(x) + ŵ0 =	
� 

yjα̂j K(xj , x) + ŵ0 = f(x; α̂, ŵ0) 

j∈SV 

where ŵ, ŵ0, α̂i are all coefficients estimated from the available data displayed in the figure 
and SV is the set of support vectors. φ(x) is the feature vector derived from x corresponding 
to the radial basis kernel. In other words, K(x, x�) = φ(x)T φ(x�). While technically φ(x) 
is an infinite dimensional vector in this case, this fact plays no role in the questions below. 
You can assume and treat it as a finite dimensional vector if you like. 

The support vectors we obtain for this classification problem (indicated with larger circles 
in the figure) seem a bit curious. Some of the support vectors appear to be far away from 
the decision boundary and yet be support vectors. Some of our questions below try to 
resolve this issue. 
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1.	 (3 points) What happens to our SVM predictions f(x; α̂, ŵ0) with the radial basis 
kernel if we choose a test point xfar far away from any of the training points xj 

(distances here measured in the space of the original points)? 

The radial basis kernel K(xfar, xj ) vanishes as the distance �xfar − xj � to the train­
ing point increases. The value of f(x; α̂, ŵ0) therefore approaches ŵ0 for any point 
xfar sufficiently far from any of the training points. 

2. (3 points) Let’s assume for simplicity that ŵ0 = 0. What equation do all the training 
points xj have to satisfy? Would xfar satisfy the same equation? 

If ŵ0 = 0, then all the training points will satisfy 

yiŵ
T φ(xi) − 1 ≥ 0 

since the problem is separable. xfar cannot satisfy this equation regardless of the 
label associated with this point since ŵT φ(xfar) = f(xfar; α̂, 0) ≈ 0. 

3. (4 points) If we included xfar in the training set, would it become a support vector? 
Briefly justify your answer. 

xfar would have to become a support vector. Our answers to the above questions 
indicate that this point could not satisfy the margin constraints without being included 
in the solution f(x; α̂, ŵ0). 

4. (T/F – 2 points) Leave-one-out cross-validation error is always small F 
for support vector machines. 

The claim is roughly the same as saying that the SVM always has a low generalization 
error – which is false. The question is admittedly a little ambiguous since you could 
have been thinking about a different notion of “small”. 

Note that the number of support vectors is only partially related to the cross-validation 
error. We know that cross-validation error has to be smaller than the relative number 
of support vectors. However, we can have a large number of support vectors and yet 
very small cross-validation error. This happens when many of the support vectors are 
not “essential”. 
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5.	 (T/F – 2 points) The maximum margin decision boundaries that F 
support vector machines construct have the lowest generalization error 
among all linear classifiers 
The maximum margin hyperplane is often a reasonable choice but it is by no means 
optimal in all cases. 

6.	 (T/F – 2 points) Any decision boundary that we get from a generative T 
model with class-conditional Gaussian distributions could in principle 
be reproduced with an SVM and a polynomial kernel of degree less 
than or equal to three 
A polynomial kernel of degree two suffices to represent any quadratic decision bound­
ary such as the one from the generative model in question. 

7.	 (T/F – 2 points) The decision boundary implied by a generative F 
model (with parameterized class-conditional densities) can be optimal 
only if the class-conditional densities are correct for the problem at 
hand 
The decision boundary may not depend on all aspects of the class-conditional den­
sities. For example, in the trivial case where the class-conditional densities are the 
same for the two classes, the optimal decision boundary is based only on the prior 
class frequencies. We can easily reproduce this with any identical class-conditional 
densities. 

Problem 4 

Consider the following set of 3-dimensional points, sampled from two classes: 

x1 x2 x3 x1 x2 x3 

labeled ’1’: 
1, 
0, 

1, 
2, 

−1 
−2 labeled ’0’: 

1, 
0, 

1, 
2, 

2 
1 

0, −1, 1 1, −1, −1 
0, −2, 2 1, −2, −2 

We have included 2-dimensional plots of pairs of features in the “Additional set of figures” 
section (figure 3). 

1.	 (4 points) Explain briefly why features with higher mutual information with the 
label are likely to be more useful for classification task (in general, not necessarily in 
the given example). 
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A high value of I(feature;label) means that we can substantially reduce our uncer­
tainty about the label by knowing the value of the feature. In other words, we have 
a good idea about the label if we know the value of the feature. For classification we 
want features that tell us most about the label. 

2. (3 points) In the example above, which feature (x1, x2 or x3) has the x1 

highest mutual information with the class label, based on the training

set?

Clearly, both x2 and x3 have zero mutual information with the label ­

their values do not appear to depend on the label. The value of x1 does

seem to provide some information about the label since, for example,

class 0 has a higher chance of x1 = 1 than class 1.


3. (4 points) Assume that the learning is done with quadratic logistic x2, x3 

regression, where 

P (y = 1 x, w) = g(w0 + w1xi + w2xj + w3xixj + w4x 2 + w5xj 
2)i|

for some pair of features (xi, xj ). Based on the training set given above,

which pair of features would result in the lowest training error for the

logistic regression model?

One could refer to plots in Figure 3, or simply analyze the values of the

features. The values of x1, x2 are the same for two pairs examples that

belong to different classes: (1,1,-1)/(1,1,2) and (0,2,-2)/(0,2,1). We

cannot classify all of these correctly no matter what kind of decision

boundary we would have. The same is true for x1, x3 - consider, (1,1,­

1)/(1,-1,-1) and (0,-1,1)/(0,2,1). However, including x2, x3 as features,

all the training points appear distinct (see the plot). They can also be

separated with a quadratic decision boundary. This is clear from the

figure but you can also check that thresholding x2 x3 is sufficient for
· 
correct classification (set all the weights to zero except w3). 

4. (T/F – 2 points) From the point of view of classification it is always F 
beneficial to remove features that have very high variance in the data 
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The feature with the highest variance can still have the high­

est mutual information with the label (as in the figure below).


5.	 (T/F – 2 points) A feature which has zero mutual information with 
the class label might be selected by a greedy selection method, if it 
happens to improve classifier’s performance on the training set 
The mutual information of a single feature and the label measures how 
good the feature is alone. Greedy selection picks features that are useful 
in conjunction with those already selected. It is possible that a feature 
which would be useless alone proves to be useful when combined with 
another. 

Problem 5 

T


Figure 2: h1 is chosen at the first iteration of boosting; what is the weight α1 assigned to 
it? 
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1.	 (3 points) Figure 2 shows a dataset of 8 points, equally divided among 
the two classes (positive and negative). The figure also shows a particu­
lar choice of decision stump h1 picked by AdaBoost in the first iteration. 
What is the weight α1 that will be assigned to h1 by AdaBoost? (Initial 
weights of all the data points are equal, or 1/8.) 

The weighted training error � is 1/8 - thus α = 
2
1 log2

1−
�

� = 
2
1 log2 1

7
/
/
8
8 . 

2.	 (T/F – 2 points) AdaBoost will eventually reach zero training error, 
regardless of the type of weak classifier it uses, provided enough weak 
classifiers have been combined. 
Not if the data in the training set cannot be separated by a linear com­
bination of the specific type of weak classifiers we are using. 

3.	 (T/F – 2 points) The votes αi assigned to the weak classifiers in 
boosting generally go down as the algorithm proceeds, because the 
weighted training error of the weak classifiers tends to go up 
In the course of boosting iterations the weak classifiers are forced to try 
to classify more difficult examples. The weights will increase for exam­
ples that are repeatedly misclassified by the weak component classifiers. 
The weighted training error of the components therefore tends to go up 
and, as a result, their votes go down. 

4.	 (T/F – 2 points) The votes α assigned to the classifiers assembled 
by AdaBoost are always non-negative 

As defined in class, AdaBoost will choose classifiers with training error 
above 1/2. This will ensure that log2(1−�/�), and therefore the vote, is 
positive. Note that if the classifier does worse than 1/2 we can always 
“flip” the sign of its predictions and therefore get a classifier that does 
slightly better than 1/2. The vote assigned to the “flipped” classifier 
would be non-negative. 

log2 

√
7 

F


T


T
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Additional set of figures 
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there’s more ...
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Figure 3: 2-dimensional plots of pairs of features for problem 4. Here ’+’ corresponds to 
class label ’1’ and ’o’ to class label ’0’. 
. 
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