
6.867 Machine learning 

Mid-term exam 

October 18, 2006 

(2 points) Your name and MIT ID: 
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Figure 1: Plots of linear regression results with different types of regularization 

Problem 1 

Figure 1 plots linear regression results on the basis of only three data points. We used 
various types of regularization to obtain the plots (see below) but got confused about 
which plot corresponds to which regularization method. Please assign each plot to one 
(and only one) of the following regularization method. 
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� 

1.1 (2 points) 
�3 

t=1(yt − θxt − θ0)
2 + λθ2 where λ = 1 c 

1.2 (4 points) 
�3 

t=1(yt − θxt − θ0)
2 + λθ2 where λ = 10 b 

Briefly explain why 
The slope is strongly regularized making the regression function flat. Since we don’t 
regularize the offset parameter it is still possible to lift the flat function in the middle 
of the responses. 

Note: since θ0 is not regularized, the sum of positive and negative errors will be 
exactly zero at the optimal setting of the parameters 

3

θxt − θ̂0) = 0 
t=1 

(yt − ˆ

�31.3 (2 points) (yt − θxt − θ0)
2 + λ(θ2 + θ0

2) where λ = 1 at=1

�31.4 (2 points) (yt − θxt − θ0)
2 + λ(θ2 + θ2) where λ = 10 dt=1 0

Problem 2 

We are trying to solve a regression problem with kernel linear regression models using 
different degree polynomial kernels. Our regression problem is a little unusual in the sense 
that the training input points are 1-dimensional and fixed, x1, . . . , xn (all distinct). Our 
task is to find the underlying function values at the same points and specifically at x1. 
The underlying function is f∗(x) = |x}, where the expectation is over the underlying E{y
distribution (pdf) p(y x) governing how y depends probabilistically on x. We have no|
knowledge of f ∗(x) or p(y x) beyond real valued training responses y1, . . . , yn, sampled |
from p(y x) at the training inputs. |
Let’s assume that our linear regression model (not in the kernel form) is given by 

f(x; θ, θ0) = θT φ(x) + θ0 

where φ(x) is the feature vector corresponding to our choice of the kernel function. We will 
estimate the parameter θ and θ0 (or α and θ0 in a kernel form) by minimizing the mean 
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squared prediction error without regularization:


n � �2
1 � 

yi − f(xi; θ, θ0) 
n 

i=1 

We will then use f(x1; θ, ˆ θ̂0) as an estimator of f ∗(x1). In other words, all we care about is 
the prediction at x1. Assume that n = 3. 

2.1 (3 points) Write down an expression for the bias of this estimator. Your expression 
should involve just f(x1; θ, ˆ θ̂0), E{·}, and f ∗(x1), as well as an explanation for what the 
expectation is over. 

Bias at x1 = E{ f(x1; θ, ˆ θ̂0) } − f ∗(x1) 

where the expectation is over the responses y1, y2, and y3 corresponding to the three 
fixed training points x1, x2, and x3. Each response is sampled from p(yi xi), inde­|
pendently from the others. 

2.2 (2 points) Which degree polynomial kernel would we need to get zero 
training error, i.e., fit the three training responses perfectly? 

You need a quadratic feature vector to perfectly fit three points. 

2.3 (2 points) Would we get an unbiased estimator at x1 if we achieve Y 
zero training error (Y/N)? 

Since we are fitting the responses perfectly, our estimator f(x1; θ, ˆ θ̂0) 
simply returns y1, the training response. The expected value of this 
response is by definition f ∗(x1). The estimator is therefore unbiased. 

2.4 (3 points) Suppose the noise variance at x1 is E{(y1 − f ∗(x1))
2} = σ2 . What is the 

variance of our “zero training error estimator”, again at x1? 

Since the estimator returns the observed training response y1 at x1, f(x1; θ, ˆ θ̂0) = y1, 
and is unbiased so that E{f(x1; θ, ˆ θ̂0)} = f ∗(x1), we have �� �2 

� 

E f(x1; θ, ˆ θ̂0) − E{f(x1; θ, ˆ θ̂0)} = E{(y1 − f ∗(x1))
2} = σ2 

which is just the noise variance. So our estimator is as noisy as the responses 
(seriously overfitting). 
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Problem 3 

We are trying to solve a classification problem with support vector machines. In our prob­
lem there are only a few positive training examples and we are certain that they are classified 
correctly. We also have a large number of negative training examples, some of which may 
be misclassified. We’d like to modify the basic dual form of the SVM optimization problem, 

n� 1 
n� 

(1) maximize αi − 
2 

αiαj yiyj K(xi, xj ) 
i=1 i,j=1 

n� 
(2) subject to αi ≥ 0, αiyi = 0 

i=1 

to better solve this type of problem. We would like to ensure that we won’t misclassify any 
of the positive examples but could misclassify some of the negative examples. We believe 
you have to introduce additional parameter(s) (or constants for the purpose of solving the 
quadratic programming problem) in order to achieve this. 

In your solution, please use I+ to index positively labeled examples (yi = +1) and I− for 
negative examples (yi = −1). In other words, i ∈ I+ means that yi = +1, and |I+| is the 
number of positive examples. 

3.1 (6 points) Your solution must be in the dual form. You can refer to (1) and (2) above. 

Maximize 
(1), as above


subject to

(2) and αi ≤ C− for i ∈ I− (negative examples). 

In other words, we limit how strongly the margin constraints are enforced for the 
negative examples. Positive examples have no such limit and the classifier will have 
to satisfy the margin constraints exactly for the positive examples. 

3.2 (6 points) Check (Y/N) which of the following alternative criteria would work for opti­
mizing your new parameters. We have underlined any differences between the alternatives. 
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( ) We train your SVM algorithm |I+| times, each time leaving out one of the positive 
examples, and testing the classifier on the left out example. The parameter(s) are set 
to minimize the resulting number of misclassified examples. 

Since we are only focusing on how well the positive examples are classi­

fied, setting C− = 0 would be optimal. As a result, we wouldn’t enforce

any classification constraints on the negative examples.


( X ) We train your SVM algorithm |I−| times, each time leaving out one of the negative 
examples, and testing the classifier on the left out example. The parameter(s) are set 
to minimize the resulting number of misclassified examples. 

Briefly explain why this would or would not work: 
The optimization problem described above strictly enforces the classification con­
straints for the positive examples. Thus no matter how we set C− it won’t be possi­
ble to misclassify any of them on the training set. However, focusing solely on the 
negative examples will not try to gauge how well we generalize in terms of classify­
ing positive examples. We are simply trying to generalize well in terms of correctly 
classifying negative examples (by optimizing this CV error) with the constraint that 
we still have have to classify all the positive training examples correctly. 

( X ) We train your SVM algorithm n times, each time leaving out one of the examples, 
positive or negative, and testing the classifier on the left out example. The constant 
is set to minimize the resulting number of misclassified examples. 

This is the standard CV error and would work here as well. 

Problem 4 

A student in a machine learning course claimed that the points in Figure 2a can be separated 
with “almost a linear kernel”. Hard to believe, we responded, since the points are clearly 
not linearly separable. But the student insisted. The “almost a linear kernel” they had in 
mind was the following normalized kernel: 

xT x� 
Knorm(x, x�) = 

�x��x�� 

4.1 (2 points) What are the feature vectors corresponding to this kernel? 
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Figure 2: a) Points that should be separable with a normalized linear kernel. b) feature 
space with the original points overlaid with their original coordinate values. 
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The feature vectors are just φ(x) = x/�x�. These are two dimensional vectors 
(although they only vary along the unit circle). 

4.2 (4 points) Using Figure 2b (right), graphically map the points to their new feature 
representation using the figure as the feature space. 

The points are mapped radially to the unit circle (the largest dotted 
circle in the figure) 

4.3 (4 points) Draw the resulting maximum margin decision boundary in the feature 
space. Use the same Figure 2b (right). The student was right, the points are separable! 

See the figure. 
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4.4 (2 points) Does the value of the discriminant function corresponding N 
to your solution change if we scale any point, i.e., evaluate it at s x 
instead of x for some s > 0? (Y/N) 

4.5 (4 points) Draw the decision boundary in the original input space resulting from the 
normalized linear kernel. Use Figure 2a (left). 

The maximum margin boundary in the feature space crosses the unit 
circle in two places. These are the feature vectors right on the boundary. 
Since points that are already normalized map onto themselves in the 
feature space, these are also points right on the boundary in the original 
space. We know that scaling doesn’t affect the discriminant function 
and thus you can simply draw lines from these points on the unit circle 
to/from the origin to get the decision boundary in the original space. 

Problem 5 

There are many criteria for active learning. In particular, in the context of linear regression, 
we derived such criteria by assuming that the underlying model was also linear (in the fea­
ture space). One of the resulting criteria was based on finding points where our predictions 
varied the most (relative to resampled training sets from an assumed underlying model). 

We will focus here on simple active learning methods for classification tasks with the 
perceptron algorithm. We assume that you can only ask labels for the training examples 
x1, . . . , xn (those we don’t already have labels for). The labels are fixed once revealed so 
there’s no reason to query the same point multiple times. The perceptron algorithm, in 
response to mistakes, updates its parameters according to 

θ ← θ + ytxt iff ytθ
T xt ≤ 0 

5.1 (2 points) In our setting, would it be useful to get a label for a point N 
that we can classify correctly? (Y/N) 

There are two plausible ways of applying the perceptron algorithm in this 
context. You either run the algorithm until it converges with the labels 
you already have, or consider each example only once in the order in 
which they were asked to be labeled. In either case, a point that does not 
result in an update, i.e., is not misclassified, won’t have any immediate 
effect on θ and therefore not on the next point to be labeled. 
5.2 (6 points) Given the current θ we have to select which example x1, . . . , xn would be 
the most useful to label. Check all of the following criteria you believe would work as a 
selection criterion. We could select the point xt with 

( ) the largest norm �xt� 

( ) the largest value of |θT xt| 
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( X ) the smallest value of |θT xt|


Briefly explain why your chosen criterion (criteria) would work in our active learning setting:

We are looking for points that are potentially misclassified. These are the ones that 
are close to the boundary. We don’t know whether they are misclassified before seeing 
the label but we can measure how close they are to the boundary, which is what |θT x|
tries to do (you could normalize this by �θ� so as to get an actual distance to the 
current boundary). 
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