
6.867 Machine learning, lecture 1 (Jaakkola) 1 

Example 

Let’s start with an example. Suppose we are charged with providing automated access 
control to a building. Before entering the building each person has to look into a camera so 
we can take a still image of their face. For our purposes it suffices just to decide based on 
the image whether the person can enter the building. It might be helpful to (try to) also 
identify each person but this might require type of information we do not have (e.g., names 
or whether any two face images correspond to the same person). We only have face images 
of people recorded while access control was still provided manually. As a result of this 
experience we have labeled images. An image is labeled positive if the person in question 
should gain entry and negative otherwise. To supplement the set of negatively labeled 
images (as we would expect only few cases of refused entries under normal circumstances) 
we can use any other face images of people who we do not expect to be permitted to 
enter the building. Images taken with similar camera-face orientation (e.g., from systems 
operational in other buildings) would be preferred. Our task then is to come up with a 
function – a classifier – that maps pixel images to binary (±1) labels. And we only have 
the small set of labeled images (the training set) to constrain the function. 

Let’s make the task a bit more formal. We assume that each image (grayscale) is represented 
as a column vector x of dimension d. So, the pixel intensity values in the image, column by 
column, are concatenated into a single column vector. If the image has 100 by 100 pixels, 
then d = 10000. We assume that all the images are of the same size. Our classifier is a 
binary valued function f : Rd → {−1, 1} chosen on the basis of the training set alone. 
For our task here we assume that the classifier knows nothing about images (or faces for 
that matter) beyond the labeled training set. So, for example, from the point of view 
of the classifier, the images could have been measurements of weight, height, etc. rather 
than pixel intensities. The classifier only has a set of n training vectors x1, . . . , xn with 
binary ±1 labels y1, . . . , yn. This is the only information about the task that we can use to 
constraint what the function f should be. 

What kind of solution would suffice? 

Suppose now that we have n = 50 labeled pixel images that are 128 by 128, and the pixel 
intensities range from 0 to 255. It is therefore possible that we can find a single pixel, 
say pixel i, such that each of our n images have a distinct value for that pixel. We could 
then construct a simple binary function based on this single pixel that perfectly maps the 
training images to their labels. In other words, if xti refers to pixel i in the tth training 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





� 

�	 � � � 

6.867 Machine learning, lecture 1 (Jaakkola) 2 

image, and x�
i is the ith pixel in any image x�, then 

fi(x
�) =	

yt, if xti = x�
i for some t = 1, . . . , n (in this order) 

(1) −1, otherwise 

would appear to solve the task. In fact, it is always possible to come up with such a 
“perfect” binary function if the training images are distinct (no two images have identical 
pixel intensities for all pixels). But do we expect such rules to be useful for images not 
in the training set? Even an image of the same person varies somewhat each time the 
image is taken (orientation is slightly different, lighting conditions may have changed, etc). 
These rules provide no sensible predictions for images that are not identical to those in the 
training set. The primary reason for why such trivial rules do not suffice is that our task is 
not to correctly classify the training images. Our task is to find a rule that works well for 
all new images we would encounter in the access control setting; the training set is merely 
a helpful source of information to find such a function. To put it a bit more formally, we 
would like to find classifiers that generalize well, i.e., classifiers whose performance on the 
training set is representative of how well it works for yet unseen images. 

Model selection 

So how can we find classifiers that generalize well? The key is to constrain the set of 
possible binary functions we can entertain. In other words, we would like to find a class of 
binary functions such that if a function in this class works well on the training set, it is also 
likely to work well on the unseen images. The “right” class of functions to consider cannot 
be too large in the sense of containing too many clearly different functions. Otherwise we 
are likely to find rules similar to the trivial ones that are close to perfect on the training 
set but do not generalize well. The class of function should not be too small either or we 
run the risk of not finding any functions in the class that work well even on the training 
set. If they don’t work well on the training set, how could we expect them to work well on 
the new images? Finding the class of functions is a key problem in machine learning, also 
known as the model selection problem. 

Linear classifiers through origin 

Let’s just fix the function class for now. Specifically, we will consider only a type of linear 
classifiers. These are thresholded linear mappings from images to labels. More formally, 
we only consider functions of the form 

f(x; θ) = sign θ1x1 + . . . + θdxd = sign θT x	 (2) 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





6.867 Machine learning, lecture 1 (Jaakkola) 3 

where θ = [θ1, . . . , θd]
T is a column vector of real valued parameters. Different settings of 

the parameters give different functions in this class, i.e., functions whose value or output 
in {−1, 1} could be different for some input images x. Put another way, the functions in 
our class are parameterized by θ ∈ Rd . 

We can also understand these linear classifiers geometrically. The classifier changes its 
prediction only when the argument to the sign function changes from positive to negative 
(or vice versa). Geometrically, in the space of image vectors, this transition corresponds to 
crossing the decision boundary where the argument is exactly zero: all x such that θT x = 0. 
The equation defines a plane in d-dimensions, a plane that goes through the origin since 
x = 0 satisfies the equation. The parameter vector θ is normal (orthogonal) to this plane; 
this is clear since the plane is defined as all x for which θT x = 0. The θ vector as the 
normal to the plane also specifies the direction in the image space along which the value of 
θT x would increase the most. Figure 1 below tries to illustrate these concepts. 

images labeled +1 
θT x > 0 

x x 
decision boundary 

θ θT x = 0 
x 

xxx 

x 
x images labeled -1 

x θT x < 0 
xx 

Figure 1: A linear classifier through origin. 

Before moving on let’s figure out whether we lost some useful properties of images as a 
result of restricting ourselves to linear classifiers? In fact, we did. Consider, for example, 
how nearby pixels in face images relate to each other (e.g., continuity of skin). This 
information is completely lost. The linear classifier is perfectly happy (i.e., its ability 
to classify images remains unchanged) if we get images where the pixel positions have 
been reordered provided that we apply the same transformation to all the images. This 
permutation of pixels merely reorders the terms in the argument to the sign function in Eq. 
(2). A linear classifier therefore does not have access to information about which pixels are 
close to each other in the image. 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





6.867 Machine learning, lecture 1 (Jaakkola) 4 

Learning algorithm: the perceptron 

Now that we have chosen a function class (perhaps suboptimally) we still have to find a 
specific function in this class that works well on the training set. This is often referred to 
as the estimation problem. Let’s be a bit more precise. We’d like to find a linear classifier 
that makes the fewest mistakes on the training set. In other words, we’d like to find θ that 
minimizes the training error 

Ê(θ) = 
1 
n 

n� � 

1 − δ(yt, f(xt; θ)) 

� 

= 
1 
n 

n� 
Loss(yt, f(xt; θ)) (3) 

t=1 t=1 

where δ(y, y�) = 1 if y = y� and 0 otherwise. The training error merely counts the average 
number of training images where the function predicts a label different from the label 
provided for that image. More generally, we could compare our predictions to labels in 
terms of a loss function Loss(yt, f(xt; θ)). This is useful if errors of a particular kind are 
more costly than others (e.g., letting a person enter the building when they shouldn’t). For 
simplicity, we use the zero-one loss that is 1 for mistakes and 0 otherwise. 

What would be a reasonable algorithm for setting the parameters θ? Perhaps we can just 
incrementally adjust the parameters so as to correct any mistakes that the corresponding 
classifier makes. Such an algorithm would seem to reduce the training error that counts 
the mistakes. Perhaps the simplest algorithm of this type is the perceptron update rule. 
We consider each training image one by one, cycling through all the images, and adjust 
the parameters according to 

θ� ← θ + ytxt if yt =� f(xt; θ) (4) 

In other words, the parameters (classifier) is changed only if we make a mistake. These 
updates tend to correct mistakes. To see this, note that when we make a mistake the sign 
of θT xt disagrees with yt and the product ytθ

T xt is negative; the product is positive for 
correctly classified images. Suppose we make a mistake on xt. Then the updated parameters 
are given by θ� = θ + ytxt, written here in a vector form. If we consider classifying the 
same image xt after the update, then 

ytθ
�T x t = yt(θ + ytxt)

T xt = ytθ
T xt + yt 

2 x Tt xt = ytθ
T xt + �xt�2 (5) 

In other words, the value of ytθ
T xt increases as a result of the update (becomes more 

positive). If we consider the same image repeatedly, then we will necessarily change the 
parameters such that the image is classified correctly, i.e., the value of ytθ

T xt becomes 
positive. Mistakes on other images may steer the parameters in different directions so it 
may not be clear that the algorithm converges to something useful if we repeatedly cycle 
through the training images. 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





6.867 Machine learning, lecture 1 (Jaakkola) 5 

Analysis of the perceptron algorithm 

The perceptron algorithm ceases to update the parameters only when all the training 
images are classified correctly (no mistakes, no updates). So, if the training images are 
possible to classify correctly with a linear classifier, will the perceptron algorithm find such 
a classifier? Yes, it does, and it will converge to such a classifier in a finite number of 
updates (mistakes). We’ll show this in lecture 2. 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

(


