
�

�

1 6.867 Machine learning, lecture 15 (Jaakkola)

Lecture topics:

• Different types of mixture models (cont’d)

• Estimating mixtures: the EM algorithm

Mixture models (cont’d)

Basic mixture model

Mixture models try to capture and resolve observable ambiguities in the data. E.g., an
m−component Gaussian mixture model

m

P (x; θ) = P (j)N(x; µj , Σj) (1)
j=1

The parameters θ include the mixing proportions (prior distribution) {P (j)}, means of
component Gaussians {µj }, and covariances {Σj }. The notation {P (j)} is a shorthand for
{P (j), j = 1, . . . ,m}.

To generate a sample x from such a model we would first sample j from the prior distribu­
tion {P (j)}, then sample x from the selected component N(x; µj , Σj). If we generated n
samples, then we would get m potentially overlapping clusters of points, where each cluster
center would correspond to one of the means µj and the number of points in the clusters
would be approximately n P (j). This is the type of structure in the data that the mixture
model is trying to capture if estimated on the basis of observed x samples.

Student exam model: 1-year

We can model vectors of exam scores with mixture models. Each x is a vector of scores from
a particular student and samples correspond to students. We expect that the population
of students in a particular year consists of m different types (e.g., due to differences in
background). If we expect each type to be present with an overall probability P (j), then
each student score is modeled as a mixture

m

P (x θ) = P (x θj)P (j) (2) |
j=1

|

where we sum over the types (weighted by P (j)) since we don’t know what type of student
t is prior to seeing their exam score xt.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� � �
� �

�

� � � �
� �

2 6.867 Machine learning, lecture 15 (Jaakkola)

If there are n students taking the exam a particular year, then the likelihood of all the
student score vectors, D1 = {x1, . . . , xn}, would be

n n m

L(D1; θ) = P (xt|θ) = P (x|θj)P (j) (3)
t=1 t=1 j=1

Student exam model: K-years

Suppose now that we have student data from K years of offering the course. In year k we
have nk students who took the course. Let xk,t denote the score vector for a student t in
year k. Note that t is just an index to identify samples each year and the same index does
not imply that the same student took the course multiple years. We can now assume that
the number of student types as well as P (x|θj) remain the same from year to year (the
parameters θj are the same for all years). However, the population of students may easily
change from year to year, and thus the prior probabilities over the types have to be set
differently. Let P (j|k) denote the prior probabilities over the types in year k (all of these
would have to be estimated of course). Now, according to our mixture distribution, we
expect example scores for students in year k be sampled from

m

P (x k, θ) = P (x θj)P (j k) (4) |
j=1

| |

The likelihood of all the data, across K years, D = {D1, . . . , DK }, is given by

�K nk K nk m

L(D; θ) = P (xk,t|k, θ) = P (xk,t|θj)P (j|k) (5)
k=1 t=1 k=1 t=1 j=1

The parameters θ here include the mixing portions {P (j|k)} that change from year to year
in addition to {θj }.

Collaborative filtering

Mixture models are useful also in recommender systems. Suppose we have n users and
m movies and our task is to recommend movies for users. The users have each rated a
small fraction of movies and our task is to fill-in the rating matrix, i.e., provide a predicted
rating for each user across all m movies. Such a prediction task is known as a collaborative
filtering problem (see Figure 1).

Say the possible ratings are rij ∈ {1, . . . , 5} (i.e., how many stars you assign to each movie).
We will use i to index users and j for movies; a rating rij , if provided, specifies how user

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �

3 6.867 Machine learning, lecture 15 (Jaakkola)

rij

2

1

3

5

5

2 2
u
se

rs
 i

movies j

Figure 1: Partially observed rating matrix for a collaborative filtering task.

i rated movie j. Since only a small fraction of movies are rated by each user, we need a
way to index these elements of the user/movie matrix: we say (i, j) ∈ ID if rating rij is
available (observed). D denotes all the observed ratings.

We can build on the previous discussion on mixture models. We can represent each movie
as a distribution over “movie types” zm ∈ {1, . . . , Km}. Similarly, a user is represented
by a distribution over “user types” zu ∈ {1, . . . , Ku}. We do not assume that each movie
corresponds to a single movie type across all users. Instead, we interpret the distribution
over movie types as a bag of features corresponding to the movie and we resample from this
bag in the context of each user. This is analogous to predicting exam scores for students
in a particular year (we didn’t assume that all the students had the same type). We also
make the same assumption about user types, i.e., that the type is sampled from the “bag”
for each rating, resulting potentially in different types for different movies. Since all the
unobserved quantities are summed over, we do not explicitly assign any fixed movie/user
type to a rating.

We imagine generating the rating rij associated with (i, j) element of the rating matrix as
follows. Sample a movie type from P (zm|j), sample a user type from P (zu|i), then sample
a rating rij with probability P (rij |zu, zm). All the probabilities involved have to estimated
from the available data. Note that we will resample movie and user types for each rating.
The resulting mixture model for rating rij is given by

Ku Km

P (rij i, j, θ) = P (rij zu, zm)P (zu i)P (zm j) (6) |
zu=1 zm=1

| | |

where the parameters θ refer to the mapping from types to ratings {P (r|zu, zm)} and the
user and movie specific distributions {P (zu|i)} and {P (zm|j)}, respectively. The likelihood

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

� �� �

4 6.867 Machine learning, lecture 15 (Jaakkola)

of the observed data D is

L(D; θ) = P (rij|i, j, θ) (7)
(i,j)∈ID

Users rate movies differently. For example, some users may only use a part of the scale
(e.g., 3, 4 or 5) while others may be bi-modal, rating movies either very bad 1 or very good
5. We can improve the model by assuming that each user has a rating style s ∈ {1, . . . , Ks}.
The styles are assumed to be the same for all users, we just don’t know how to assign each
user to a particular style. The prior probability that any randomly chosen user would have
style s is specified by P (s). These parameters are common to all users. We also assume
that the rating predictions P (rij |zu, zm) associated with user/movie types now depend on
the style s as well: P (rij |zu, zm, s).

We have to be a bit careful in writing the likelihood of the data. All the ratings of one user
have to come from one rating style s but we can sum over the possibilities. As a result, the
likelihood of the observed ratings is modified to be

likelihood of user i’s ratings with style s � � ��
n � Ku Km� Ks � � �

L�(D; θ) = P (s) P (rij |zu, zm, s)P (zu|i)P (zm|j) (8)
i=1 s=1 j:(i,j)∈ID zu=1 zm=1

The model does not actually involve that many parameters to estimate. There are exactly

{P (s)} {P (r|zu,zm,s)} {P (zu|i)} {P (zm|j)}� �� � � �� � � �� � � �� �
(Ks − 1) + (5 − 1)KuKmKs + n(Ku − 1) + m(Km − 1) (9)

independent parameters in the model.

A realistic model would include, in addition, a prediction of the “missing elements” in the
rating matrix, i.e., a model of why the entry was missing (a user failed to rate a movie they
had seen, not seen but could, chosen not to see, etc.).

Estimating mixtures: the EM-algorithm

We have seen a number of different types of mixture models. The advantage of mixture
models lies in their ability to incorporate and resolve ambiguities in the data, especially

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

� �

� � �

� �
�	 �

5 6.867 Machine learning, lecture 15 (Jaakkola)

in terms of unidentified sub-groups. However, we can make use of them only if we can
estimate such models easily from the available data.

Complete data. The simplest way to understand how to estimate mixture models is
to start by pretending that we knew all the sub-typing (component) assignments for each
available data point. This is analogous to knowing the label for each example in a clas­
sification context. We don’t actually know these (they are unobserved in the data) but
solving the estimation problem in this context will help us later on.

Let’s begin with the simple Gaussian mixture model in Eq.(1),

m

P (x; θ) = P (j)N(x; µj , Σj)	 (10)
j=1

and pretend that each observation x1, . . . , xn also had information about the component
that was responsible for generating it, i.e., we also observed j1, . . . , jn. This additional
component information is convenient to include in the form of 0-1 assignments δ(j|t) where
δ(jt|t) = 1 and δ(j|t) = 0 for all j �= jt. The log-likelihood of this complete data is

n �	 �

l(x1, . . . , xn, j1, . . . , jn; θ) = log P (jt)N(xt; µjt , Σjt)	 (11)
t=1
n m � �

= δ(j|t) log P (j)N(xt; µj , Σj) (12)
t=1 j=1 �m n

= δ(j|t) log P (j)
j=1 t=1

m n

+	 δ(j|t) log N(xt; µj , Σj) (13)
j=1 t=1

It’s important to note that in trying to maximize this log-likelihood, all the Gaussians can be
estimated separately from each other. Put another way, because our pretend observations
are “complete”, we can estimate each component from only data pertaining to it; the
problem of resolving which component should be responsible for which data points is not

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6 6.867 Machine learning, lecture 15 (Jaakkola)

present. As a result, the maximizing solution can be written in closed form:

P̂ (j) =
n̂(j)
n

, where n̂(j) =
n�

t=1

δ(j|t) (14)

1
n�

µ̂j =
n̂(j)

t=1]

δ(j|t)xt (15)

Σ̂j =
1

n̂(j)

n�

t=1]

δ(j|t)(xt − µ̂j)(xt − µ̂j)
T (16)

In other words, the prior probabilities simply recover the empirical fractions from the “ob­
served” j1, . . . , jn, and each Gaussian component is estimated in the usual way (evaluating
the empirical mean and the covariance) based on data points explicitly assigned to that
component. So, the estimation of mixture models would be very easy if we knew the
assignments j1, . . . , jn.

Incomplete data. What changes if we don’t know the assignments? We can always guess
what the assignments should be based on the current setting of the parameters. Let θ(l)

denote the current (initial) parameters of the mixture distribution. Using these parameters,
we can evaluate for each data point xt the posterior probability that it was generated from
component j:

P (l)(j)N(xt; µj
(l)

, Σj
(l)

) P (l)(j)N(xt; µj
(l)

, Σj
(l)

)
P (j|xt, θ

(l)) = � m P (l)(j�)N(xt; µ
(l) (l)

=
P (xt; θ(l))

(17)
j�=1 j� , Σj�)

Instead of using the 0-1 assignments δ(j t) of data points to components we can use “soft
(l)(j

|
assignments” p |t) = P (j|xt, θ

(l)). By substituting these in the above closed form es­
timating equations we get an iterative algorithm for estimating Gaussian mixtures. The
algorithm is iterative since the soft posterior assignments were evaluated based on the cur­
rent setting of the parameters θ(l) and may have to revised later on (once we have a better
idea of where the clusters are in the data).

The resulting algorithm is known as the Expectation Maximization algorithm (EM for short)
and applies to all mixture models and beyond. For Gaussian mixtures, the EM-algorithm
can be written as

(Step 0) Initialize the Gaussian mixture, i.e., specify θ(0). A simple initialization
(0)

consists of setting P (0)(j) = 1/m, equating each µj with a randomly chosen data
(0)

point, and making all Σj equal to the overall data covariance.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

7 6.867 Machine learning, lecture 15 (Jaakkola)

(E-step) Evaluate the posterior assignment probabilities p(l)(j|t) = P (j|xt, θ
(l))

based on the current setting of the parameters θ(l).

(M-step) Update the parameters according to
n

P (l+1)(j) =
n̂(

n

j)
, where n̂(j) =

�
p(l)(j|t) (18)

t=1
n

µj
(l+1)

=
n̂(

1
j)

�
p(l)(j|t)xt (19)

t=1
n

1 �
Σ

(l+1)
=

n̂(j)
p(l)(j|t)(xt − µ(l+1)

)(xt − µ(l+1)
)T (20) j j j

t=1

Perhaps surprisingly, this iterative algorithm is guaranteed to converge and each iteration
increases the log-likelihood of the data. In other words, if we write

n

l(D; θ(l)) = P (xt; θ
(l)) (21)

t=1

then

l(D; θ(0)) < l(D; θ(1)) < l(D; θ(2)) < . . . (22)

until convergence. The main downside of this algorithm is that we are only guaranteed
to converge to a locally optimal solution where d/dθ l(D; θ) = 0. In other words, there
could be a setting of the parameters for the mixture distribution that leads to a higher
log-likelihood of the data1 . For this reason, the algorithm is typically run multiple times
(recall the random initialization of the means) so as to ensure we find a reasonably good
solution, albeit perhaps only locally optimal.

Example. Consider a simple mixture of two Gaussians. Figure 2 demonstrates how
the EM-algorithm changes the Gaussian components after each iteration. The ellipsoids
specify one standard deviation distances from the Gaussian mean. The mixing proportions
P (j) are not visible in the figure. Note that it takes many iterations for the algorithm to
resolve how to properly assign the data points to mixture components. At convergence,
the assignments are still soft (not 0-1) but nevertheless clearly divide the responsibilities
of the two Gaussian components across the clusters in the data.

1In fact, the highest likelihood for Gaussian mixtures is always ∞. This happens when one of the
Gaussians concentrates around a single data point. We do not look for such solutions, however, and they
can be removed by constraining the covariance matrices or via regularization. The real comparison is to a
non-trivial mixture that achieves the highest log-likelihood.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

8 6.867 Machine learning, lecture 15 (Jaakkola)

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

initialization iteration 1 iteration 2

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

iteration 4 iteration 6 iteration 10

Figure 2: An example of the EM algorithm with a two-component mixture of Gaussians
model.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

