
1 6.867 Machine learning, lecture 19 (Jaakkola)

Lecture topics:

• Markov chains (cont’d)

Hidden Markov Models •

Markov chains (cont’d)

In the context of spectral clustering (last lecture) we discussed a random walk over the
nodes induced by a weighted graph. Let Wij ≥ 0 be symmetric weights associated with the
edges in the graph; Wij = 0 whenever edge doesn’t exist. We also assumed that Wii = 0 for
all i. The graph defines a random walk where the probability of transitioning from node
(state) i to node j is given by

Wij
P (X(t + 1) = j|X(t) = i) = Pij = �

Wij�
(1)

j�

Note that self-transitions (going from i to i) are disallowed because Wii = 0 for all i.
We can understand the random work as a homogeneous Markov chain: the probability of
transitioning from i to j only depends on i, not the path that took the process to i. In other
words, the current state summarizes the past as far as the future transitions are concerned.
This is a Markov (conditional independence) property:

P (X(t + 1) = j|X(t) = i, X(t − 1) = it−1, . . . , X(1) = i1) = P (X(t + 1) = j|X(t) = i) (2)

The term “homogeneous” specifies that the transition probabilities are independent of time
(the same probabilities are used whenever the random walk returns to i).

We also defined ergodicity as follows: Markov chain is ergodic if there exist a finite m such
that

P (X(t + m) = j|X(t) = i) > 0 for all i and j (3)

Simple weighted graphs need not define ergodic chains. Consider, for example, a weighted
graph between two nodes 1 − 2 where W12 > 0. The resulting random walk is necessarily
periodic, i.e., 121212 A Markov chain is ergodic only when all the states are communi­
cating and the chain is aperiodic which is clearly not the case here. Similarly, even a graph
1 − 2 − 3 with positive weights on the edges would not define an ergodic Markov chain.
Every other state would necessarily be 2, thus the chain is periodic. The reason here is

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

2 6.867 Machine learning, lecture 19 (Jaakkola)

that Wii = 0. By adding a positive self-transition, we can remove periodicity (random walk
would stay in the same state a variable number of steps). Any connected weighted graph
with positive weights and positive self-transitions gives rise to an ergodic Markov chain.

Our definition of the random walk so far is a bit incomplete. We did not specify how
the process started, i.e., we didn’t specify the initial state distribution. Let q(i) be the
probability that the random walk is started from state i. We will use q as a vector of
probabilities across k states (reserving n for the number training examples as usual).

There are two ways of describing Markov chains: through state transition diagrams or as
simple graphical models. The descriptions are complementary. A transition diagram is a
directed graph over the possible states where the arcs between states specify all allowed
transitions (those occuring with non-zero probability). See Figure 1 for examples. We
could also add the initial state distribution as transitions from a dedicated initial (null)
state (not shown in the figure).

1

1

2

2

3

Figure 1: Examples of transition diagrams defining non-ergodic Markov chains.

In graphical models, on the other hand, we focus on explicating variables and their de­
pendencies. At each time point the random walk is in a particular state X(t). This is a
random variable. It’s value is only affected by the random variable X(t − 1) specifying
the state of the random walk at the previous time point. Graphically, we can therefore
write a sequence of random variables where arcs specify how the values of the variables are
influenced by others (dependent on others). More precisely, X(t − 1) X(t) means that →
the value of X(t) depends on X(t − 1). Put another way, in simulating the random walk,
we would have to know the value of X(t − 1) in order to sample a value for X(t). The
graphical model is shown in Figure 2.

State prediction

We will cast the problem of calculating the predictive probabilities over states in a form

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� �

�

� �� �

�

3 6.867 Machine learning, lecture 19 (Jaakkola)

Figure 2: Markov chain as a graphical model.

that will be useful for Hidden Markov Models later on. Since

P (X(t + m) = j|X(t) = i) = [P m]ij (4)

we can also write for any n

k k

P (X(n) = j) = q(i)P (X(n) = j|X(1) = i) = q(i)[P n−1]ij (5)
i=1 i=1

In a vector form qT P n−1 is a row vector whose jth component is P (X(n) = j). Note that
the matrix products involve summing over all the intermediate states until X(n) = j. More
explicitly, let’s evaluate the sum over all the states x1, . . . , xn in the matrix form as

n − 1 times � n−1 � �� �
P (X(1) = x1) P (X(t + 1) = xt+1|X(t) = xt) = q T P P · · · P P 1 = 1 (6)

x1,...,xn t=1

This is a sum over kn possible state configurations (settings of x1, . . . , xn) but can be easily
performed in terms of matrix products. We can understand this in terms of recursive eval­
uation of t step probabilities αt(i) = P (X(t) = i). We will write αt for the corresponding
column vector so that

t − 1 times

q T P P P P = αt
T (7) · · ·

Clearly,

q T = α1
T (8)

αt
T
−1P = αt

T , t > 1 (9)
k

αt−1(i)Pij = αt(j) (10)
i=1

. . .

X(t + 1) X(t − 1) X(t)

. . .

Estimation

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� � �

�

�

4 6.867 Machine learning, lecture 19 (Jaakkola)

Markov models can be estimated easily from observed sequences of states. Given x1, . . . , xn

(e.g., 1212221), the log-likelihood of the observed sequence is given by

n−1

log P (x1, . . . , xn) = log P (X(1) = x1) P (X(t + 1) = xt+1|X(t) = xt) (11)
t=1

n−1

= log q(x1) + log Pxt,xt+1 (12)
t=1

= log q(x1) + n̂(i, j) log Pij (13)
i,j

where n̂(i, j) is the number of observed transitions from i to j in the sequence x1, . . . , xn.
The resulting maximum likelihood setting of Pij is obtained as an empirical fraction

n̂(i, j)
P̂ij = �

j� n̂(i, j�)
(14)

Note that q(i) can only be reliably estimated from multiple observed sequences. For ex­
ample, based on x1, . . . , xn, we would simply set q̂(i) = δ(i, x1) which is hardly accurate
(sample size one). Regularization is useful here, as before.

Hidden Markov Models

Hidden Markov Models (HMMs) extend Markov models by assuming that the states of the
Markov chain are not observed directly, i.e., the Markov chain itself remains hidden. We
therefore also model how the states relate to the actual observations. This assumption of a
simple Markov model underlying a sequence of observations is very useful in many practical
contexts and has made HMMs very popular models of sequence data, from speech recogni­
tion to bio-sequences. For example, to a first approximation, we may view words in speech
as Markov sequences of phonemes. Phonemes are not observed directly, however, but have
to be related to acoustic observations. Similarly, in modeling protein sequences (sequences
of amino acid residues), we may, again approximately, describe a protein molecule as a
Markov sequence of structural characteristics. The structural features are typically not
observable, only the actual residues.

We can understand HMMs by combining mixture models and Markov models. Consider
the simple example in Figure 3 over four discrete time points t = 1, 2, 3, 4. The figure
summarizes multiple sequences of observations y1, . . . , y4, where each observation sequence

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

5 6.867 Machine learning, lecture 19 (Jaakkola)

corresponds to a single value yt per time point. Let’s begin by ignoring the time information
and instead collapse the observations across the time points. The observations form two
clusters are now well modeled by a two component mixture:

P (y) = P (j)P (y|j) (15)
j=1

2

where, e.g., P (y|j) could be a Gaussian N(y; µj , σ
are effectively modeling the data at each time point with the same mixture model. If we

2). By collapsing the observations we
j

generate data form the resulting mixture model we would select a mixture component at
random at each time step and generate the observation from the corresponding component
(cluster). There’s nothing that ties the selection of mixture components in time so that
samples from the mixture yield “phantom” clusters at successive time points (we select the
wrong component/cluster with equal probability). By omitting the time information, we
therefore place half of the probability mass in locations with no data. Figure 4 illustrates
the mixture model as a graphical model.

a)
time

t = 1

x
x
x

x
x
x

xx
x

x
x
x
xx

xx

t = 2 t = 3 t = 4

y

b)
time

t = 1

x
x
x

x
x
x

xx
x

x
x
x
xx

xx

t = 2 t = 3 t = 4

y

Figure 3: a) Example data over four time points, b) actual data and ranges of samples
generated from a mixture model (red ovals) estimated without time information.

The solution is to model the selection of the mixture components as a Markov model, i.e.,
the component at t = 2 is selected on the basis of the component used at t = 1. Put another
way, each state in the Markov model now uses one of the components in the mixture model
to generate the corresponding observation. As a graphical model, the mixture model is a
combination of the two as shown in Figure 5.

Probability model

One advantage of representing the HMM as a graphical model is that we can easily write
down the joint probability distribution over all the variables. The graph explicates how the

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

� � �

6 6.867 Machine learning, lecture 19 (Jaakkola)

X(1) X(2) X(3) X(4)

Y (1) Y (2) Y (3) Y (4)

Figure 4: A graphical model view of the mixture model over the four time points. The
variables are indexed by time (different samples would be drawn at each time point) but
the parameters are shared across the four time points. X(t) refers to the selection of the
mixture component while Y (t) refers to the observations.

variables depend on each other (who influences who) and thus highlights which conditional
probabilities we need to write down:

P (x1, . . . , xn, y1, . . . , yn) = P (x1)P (y1 x1)P (x2 x1)P (y2 x2) . . . (16) |
n−1

| |

= P (x1)P (y1 x1) [P (xt+1 xt)P (yt+1 xt+1)] (17) |
t=1

| |

n−1

= q(x1)P (y1|x1) Pxt,xt+1 P (yt+1|xt+1) (18)
t=1

where we have used the same notation as before for the Markov chains.

X(1) X(2) X(3) X(4)

Y (1) Y (2) Y (3) Y (4)

Figure 5: HMM as a graphical model. It is a Markov model where each state is associated
with a distribution over observations. Alternatively, we can view it as a mixture model
where the mixture components are selected in a time dependent manner.

Three problems to solve

We typically have to be able to solve the following three problems in order to use these
models effectively:

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

� �

7 6.867 Machine learning, lecture 19 (Jaakkola)

1. Evaluate the probability of observed data or

P (y1, . . . , yn) = P (x1, . . . , xn, y1, . . . , yn) (19)
x1,...,xn

2. Find the most likely hidden state sequence x1, . . . , x
∗ ∗

n given observations y1, . . . , yn,
i.e.,

{x ∗, . . . , x1
∗

n} = arg

3. Estimate the parameters of the model from multiple sequences of y1
(l)

, . . . , yn
(l

l

)
, l =

1, . . . , L.

Problem 1

As in the context of Markov chains we can efficiently sum over the possible hidden state
sequences. Here the summation means evaluating P (y1, . . . , yn). We will perform this in
two ways depending on whether the recursion moves forward in time, computing αt(j), or
backward in time, evaluating βt(i). The only change from before is the fact that whatever
state we happen to visit at time t, we will also have to generate the observation yt from
that state. This additional requirement of generating the observations can be included via
diagonal matrices ⎡ ⎤

P (y|1) 0
Dy = ⎣ ⎦ (21) · · ·

0 P (y|k)

So, for example,

k

q T Dy1 1 = q(i)P (y1|i) = P (y1) (22)
i=1

Similarly,

k k

q T Dy1 PDy2 1 = q(i)P (y1|i) Pij P (y2|j) = P (y1, y2) (23)
i=1 j=1

max
x1,...,xn

P (x1, . . . , xn, y1, . . . , yn) (20)

We can therefore write the forward and backward algorithms as methods that perform the
matrix multiplications in

q T Dy1 PDy2 P PDyn 1 = P (y1, . . . , yn) (24) · · ·

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

�

8 6.867 Machine learning, lecture 19 (Jaakkola)

either in the forward or backward direction. In terms of the forward pass algorithm:

q T Dy1 = αT
1 (25)

αT PDyt = αT
t , or equivalently (26) � �t−1

k

αt−1(i)Pij P (yt|j) = αt(j) (27)
i=1

These values hold exactly αt(j) = P (y1, . . . , yt, X(t) = j) since we have generated all the
observations up to and including yt and have summed over all the states except for the last
one X(t).

The backward pass algorithm is similarly defined as:

βn = 1 (28)

βt = PDyt+1 βt+1, or equivalently (29)
k

βt(i) = Pij P (yt+1|j)βt+1(j) (30)
j=1

In this case βt(i) = P (yt+1, . . . , yn|X(t) = i) since we have summed over all the possible
values of the state variables X(t + 1), . . . , X(n), starting from a fixed X(t) = i, and the
first observation we have generated in the recursion is yt+1.

By combining the two recursions we can finally evaluate

k

P (y1, . . . , yn) = αt
T βt = αt(i)βt(i) (31)

i=1

which holds for any t = 1, . . . , n. You can understand this result in two ways: either in
terms of performing the remaining matrix multiplication corresponding to the two parts

αT
t βt� �� � � �� �

P (y1, . . . , yn) = (q T Dy1 P PDyt) (PDyt+1 PDyn 1) (32) · · · · · ·

or as an illustration of the Markov property:

αt(i) βt(i)k�� �� � � �� �
P (y1, . . . , yn) = P (y1, . . . , yt, X(t) = i) P (yt+1, . . . , yn|X(t) = i) (33)

i=1

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.867 Machine learning, lecture 19 (Jaakkola) 9

Also, since βn(i) = 1 for all i, clearly

P (y1, . . . , yn) =
k�

i=1

αn(i) =
k�

i=1

P (y1, . . . , yt, X(t) = i) (34)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

