
� � 

1 6.867 Machine learning, lecture 2 (Jaakkola) 

Perceptron, convergence, and generalization 

Recall that we are dealing with linear classifiers through origin, i.e., 

f(x; θ) = sign θT x (1) 

where θ ∈ Rd specifies the parameters that we have to estimate on the basis of training 
examples (images) x1, . . . , xn and labels y1, . . . , yn. 

We will use the perceptron algorithm to solve the estimation task. Let k denote the number 
of parameter updates we have performed and θ(k) the parameter vector after k updates. 
Initially k = 0 and θ(k) = 0. The algorithm then cycles through all the training instances 
(xt, yt) and updates the parameters only in response to mistakes, i.e., when the label is 
predicted incorrectly. More precisely, we set θ(k+1) = θ(k) + ytxt when yt(θ

(k))T xt < 0 
(mistake), and otherwise leave the parameters unchanged. 

Convergence in a finite number of updates 

Let’s now show that the perceptron algorithm indeed convergences in a finite number of 
updates. The same analysis will also help us understand how the linear classifier generalizes 
to unseen images. To this end, we will assume that all the (training) images have bounded 
Euclidean norms, i.e., �xt� ≤ R for all t and some finite R. This is clearly the case for any 
pixel images with bounded intensity values. We also make a much stronger assumption 
that there exists a linear classifier in our class with finite parameter values that correctly 
classifies all the (training) images. More precisely, we assume that there is some γ > 0 such 
that yt(θ

∗)T xt ≥ γ for all t = 1, . . . , n. The additional number γ > 0 is used to ensure that 
each example is classified correctly with a finite margin. 

The convergence proof is based on combining two results: 1) we will show that the inner 
product (θ∗)T θ(k) increases at least linearly with each update, and 2) the squared norm 
�θ(k)�2 increases at most linearly in the number of updates k. By combining the two 
we can show that the cosine of the angle between θ(k) and θ∗ has to increase by a finite 
increment due to each update. Since cosine is bounded by one, it follows that we can only 
make a finite number of updates. 

Part 1: we simply take the inner product (θ∗)T θ(k) before and after each update. When 
making the kth update, say due to a mistake on image xt, we get 

(θ∗)T θ(k) = (θ∗)T θ(k−1) + yt(θ
∗)T xt ≥ (θ∗)T θ(k−1) + γ (2) 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





2 6.867 Machine learning, lecture 2 (Jaakkola) 

since, by assumption, yt(θ
∗)T xt ≥ γ for all t (θ∗ is always correct). Thus, after k updates, 

(θ∗)T θ(k) ≥ kγ (3) 

Part 2: Our second claim follows simply from the fact that updates are made only on 
mistakes: 

�θ(k) 2 = �θ(k−1) + ytxt�2	 (4) �
=	 �θ(k−1) 2 + 2yt(θ

(k−1))T xt + �xt�2 (5) 

�θ(k−1)

�
2 2≤

�θ(k−1)

�
2 

+ �xt� (6) 

≤ � + R2 (7) 

since yt(θ
(k−1))T xt < 0 whenever an update is made and, by assumption, �xt� ≤ R. Thus,


�θ(k)�2 ≤ kR2 (8)


We can now combine parts 1) and 2) to bound the cosine of the angle between θ∗ and θ(k):


kγ kγ 
cos(θ∗, θ(k)) = 

(θ∗)T θ(k) 1) 2) 
(9) 

�θ(k)� �θ∗�
≥
�θ(k)� �θ∗�

≥ √
kR2 �θ∗� 

Since cosine is bounded by one, we get 

kγ R2 2 

1 ≥ √
kR2 �θ∗� 

or k ≤ �
γ

θ
2 

∗�	
(10) 

Margin and geometry 

It is worthwhile to understand this result a bit further. For example, does �θ∗�2/γ2 relate 
to how difficult the classification problem is? Indeed, it does. We claim that its inverse, 
i.e., γ/�θ∗� is the smallest distance in the image space from any example (image) to the 
decision boundary specified by θ∗. In other words, it serves as a measure of how well the 
two classes of images are separated (by a linear boundary). We will call this the geometric 
margin or γgeom (see figure 1). γ−1 is then a fair measure of how difficult the problem is: geom 

the smaller the geometric margin that separates the training images, the more difficult the 
problem. 

To calculate γgeom we measure the distance from the decision boundary θ∗T x = 0 to one of 
the images xt for which ytθ

∗T xt = γ. Since θ∗ specifies the normal to the decision boundary, 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





3 6.867 Machine learning, lecture 2 (Jaakkola) 

θ∗ 

x 

x 

x 
decision boundary 
θ∗T x = 0 

x 

xx 

γgeom 

Figure 1: Geometric margin 

the shortest path from the boundary to the image xt will be parallel to the normal. The 
image for which ytθ

∗T xt = γ is therefore among those closest to the boundary. Now, let’s 
define a line segment from x(0) = xt, parallel to θ∗, towards the boundary. This is given 
by 

ytθ
∗ 

x(ξ) = x(0) − ξ (11) 
�θ∗� 

where ξ defines the length of the line segment since it multiplies a unit length vector. It 
remains to find the value of ξ such that θ∗T x(ξ) = 0, or, equivalently, ytθ

∗T x(ξ) = 0. This 
is the point where the segment hits the decision boundary. Thus � � 

ytθ
∗T x(ξ) = 

= 

= 

= 

ytθ
∗T x(0) − ξ 

ytθ
∗ 

�θ∗� 

ytθ
∗T 

� 

xt − ξ 
ytθ

∗ 

�θ∗� 

� 

ytθ
∗T xt − ξ 

�θ∗�2 

�θ∗� 
γ − ξ�θ∗� = 0 

(12) 

(13) 

(14) 

(15) 

implying that the distance is exactly ξ = γ/�θ∗� as claimed. As a result, the bound on the 
number of perceptron updates can be written more succinctly in terms of the geometric 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





4 6.867 Machine learning, lecture 2 (Jaakkola) 

margin γgeom (distance to the boundary): � �2
R 

k ≤ (16) 
γgeom 

with the understanding that γgeom is the largest geometric margin that could be achieved 
by a linear classifier for this problem. Note that the result does not depend (directly) on 
the dimension d of the examples, nor the number of training examples n. It is nevertheless � �2 

Rtempting to interpret 
γgeom 

as a measure of difficulty (or complexity) of the problem of 

learning linear classifiers in this setting. You will see later in the course that this is exactly 
the case, cast in terms of a measure known as VC-dimension. 

Generalization guarantees 

We have so far discussed the perceptron algorithm only in relation to the training set but 
we are more interested in how well the perceptron classifies images we have not yet seen, 
i.e., how well it generalizes to new images. Our simple analysis above actually provides 
some information about generalization. Let’s assume then that all the images and labels 
we could possibly encounter satisfy the same two assumptions. In other words, 1) �xt� ≤ R 
and 2) ytθ

∗T xt ≥ γ for all t and some finite θ∗. So, in essence, we assume that there is a 
linear classifier that works for all images and labels in this problem, we just don’t know 
what this linear classifier is to start with. Let’s now imagine getting the images and labels 
one by one and performing only a single update per image, if misclassified, and move on. 
The previous situation concerning the training set corresponds to encountering the same 
set of images repeatedly. How many mistakes are we now going to make in this infinite 
arbitrary sequence of images and labels, subject only to the two assumptions? The same 
number k ≤ (R/γgeom)2 . Once we have made this many mistakes we would classify all the 
new images correctly. So, provided that the two assumptions hold, especially the second 
one, we obtain a nice guarantee of generalization. One caveat here is that the perceptron 
algorithm does need to know when it has made a mistake. The bound is after all cast in 
terms of the number of updates based on mistakes. 

Maximum margin classifier? 

We have so far used a simple on-line algorithm, the perceptron algorithm, to estimate a 
linear classifier. Our reference assumption has been, however, that there exists a linear 
classifier that has a large geometric margin, i.e., whose decision boundary is well separated 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





5 6.867 Machine learning, lecture 2 (Jaakkola) 

from all the training images (examples). Can’t we find such a large margin classifier 
directly? Yes, we can. The classifier is known as the Support Vector Machine or SVM for 
short. See the next lecture for details. 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




