
�

� �
|�

�

1 6.867 Machine learning, lecture 20 (Jaakkola)

Lecture topics:

• Hidden Markov Models (cont’d)

Hidden Markov Models (cont’d)

We will continue here with the three problems outlined previously. Consider having given
a set of sequences of observations y1, . . . , yn. The observations typically do not contain the
hidden state sequence and we are left with the following problems to solve:

1. Evaluate the probability of observed data or

P (y1, . . . , yn) = P (x1, . . . , xn, y1, . . . , yn) (1)
x1,...,xn

2. Find the most likely hidden state sequence x∗
1, . . . , x

∗
n given observations y1, . . . , yn,

i.e.,

{x∗
1, . . . , x

∗
n} = arg max P (x1, . . . , xn, y1, . . . , yn) (2)

x1,...,xn

3. Estimate the parameters of the model from multiple sequences of y1
(l)

, . . . , yn
(l

l

)
, l =

1, . . . , L.

We have already solved the first problem. For example, this can be done with the forward
algorithm

q(j)P (y1 j) = α1(j) (3)
k

αt−1(i)Pij P (yt|j) = αt(j) (4)
i=1

where αt(j) = P (y1, . . . , yt, X(t) = j) so that P (y1, . . . , yn) = j αn(j).

Problem 2: most likely hidden state sequence

The most likely hidden state sequence can be found with a small modification to the forward
pass algorithm. The goal is to first evaluate “max-probability” of data

max P (y1, . . . , yn, x1, . . . , xn) = P (y1, . . . , yn, x
∗
1, . . . , xn

∗) (5)
x1,...,xn

 Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

2 6.867 Machine learning, lecture 20 (Jaakkola)

and subsequently reconstruct the maximizing sequence x∗
1, . . . , x

∗
n. The max operation is

similar to evaluating

P (y1, . . . , yn, x1, . . . , xn) = P (y1, . . . , yn) (6)
x1,...,xn

which we were able to do with just the forward algorithm. In fact, we can obtain the
max-probability of data by merely changing the ’sum’ in the forward algorithm to a ’max’:

�
q(j�)P (y1|j) = d1(j) (7)

max dt−1(i)Pij P (yt j) = dt(j) (8)
i

|

where

dt(j) = max P (y1, . . . , yt, x1, . . . , xt−1, X(t) = j) (9)
x1,...,xt−1

In the forward algorithm we finally summed over the last state j in αn(j) to get the
probability of observations. Analogously, here we need to maximize over that last state so
as to get the max-probability:

max P (y1, . . . , yn, x1, . . . , xn) = max dn(j) (10)
x1,...,xn j

We now have the maximum value but not yet the maximizing sequence. We can easily
reconstruct the sequence by backtracking search, i.e., by sequentially fixing states starting
with the last one:

x∗
n = arg max dn(j) (11)

j

xt = arg max dt(i)Pi,x∗ (12)
i t+1

In other words, the backward iteration simply finds i that attains the maximum in Eq.(8)
when j has already been fixed to the maximizing value x∗

t+1 for the next state. The resulting
algorithm that evaluates dt(j) through the above recursive formula, and follows up with
the backtracking search to realize (one of) the most likely hidden state sequences, is known
as the Viterbi algorithm.

Consider an HMM with two underlying states and transition probabilities as described in
Figure 1. Note that the model cannot return to state 1 after it has left it. Each state
j = 1, 2 is associated with a Gaussian output distribution P (y|j) = N(y; µj , σ

2), where

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

3 6.867 Machine learning, lecture 20 (Jaakkola)

µ1 = 3, µ2 = 1, and the variances are assumed to be the same. We are given 8 observations
y1, . . . , y8 shown in the figure. Now, for any specific value of σ2, we can find the most likely
hidden state sequence x∗

1, . . . , x
∗
8 with the Viterbi algorithm.

Let’s try to understand how this state sequence behaves as a function of the common
variance σ2 . When σ2 is large, the two output distributions, P (y|1) and P (y|2), assign
essentially the same probability to all the observations in the figure. Thus the most likely
hidden state sequence is one that is guided solely by the Markov model (no observations).
The resulting sequence is all 2’s. The probability of this sequence under the Markov model
is just 1/2 (there’s only one choice, the initial selection). The probability of any other state
sequence is at most 1/4. Now, let’s consider the other extreme, when the variance σ2 is
very small. In this case, the state sequence is essentially only guided by the observations
with the constraint that the you cannot transition out of state 2. The most likely state
sequence in this case is five 1’s followed by three 2’s, i.e., 11111222. The two observations
y4 and y5 keep the model in state 1 even though y3 is low. This is because the Markov chain
forces us to either capture y3 or {y4, y5} but not both. If the model could return to state 1,
the most likely state sequence would become 11211222. For intermediate values of σ2 the
most likely state sequence tries to balance the tendency of the Markov chain to choose 2
as soon as possible and the need to assign a reasonable probability to all observations. For
example, if σ2 ≈ 1 then the resulting most likely state sequence is 11222222.

a)

0.5
2

1

0.5

0.5

1

0.5

b)
0.5

2

1

X(1)

2

1

X(4)

2

1

2

1

1 1 1

X(3)X(2)

0.5 0.5 0.5

0.5 0.5 0.5
0.5

Figure 1: a) A two-state markov chain with transition probabilities, b) the same chain
unfolded in time with the corresponding state variables, c) example observations over 8
time points and the output distributions.

c)

y

x x

x

x x

x x x1

3

2

t = 1 t = 8

P (y|2) = N(y; 1, σ2)

P (y|1) = N(y; 3, σ2)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

�	 � �
�	 �

� � �
� �

4 6.867 Machine learning, lecture 20 (Jaakkola)

Problem 3: estimation

In most cases we have to estimate HMMs only on the basis of output sequences such as
y1, . . . , yn without knowing the corresponding states of the Markov chain. This is akin
to mixture models discussed earlier. These are incomplete data estimation problems, i.e.,
we do not have observations for all the variables involved in the model. As before, the
estimation can be performed iteratively via the EM algorithm.

A simple way to derive the EM algorithm is to start with complete observations, i.e., we
assume we have x1, . . . , xn as well as y1, . . . , yn. Note that while typically we would have
multiple observation sequences, we will focus here on a single sequence to keep the equations
simple. Now, we can encode the complete observations by defining

1, if xt = i
δ(i|t) =

0, otherwise	
(13)

1, if xt = i and xt+1 = j
δ(i, j|t) =

0, otherwise	
(14)

The complete log-likelihood then becomes

k	 k n

l({xt}, {yt}) = δ(i|1) log q(i) + δ(i|t) log P (yt|i)
i=1	 i=1 t=1

k k n

+	 δ(i, j|t) log Pij (15)
i=1 j=1 t=1

where the first term simply picks out log q(x1); in the second term, for each i, we consider
all the observations that had to be generated from state i; in the last expression, the term
in the brackets counts how many times each i j transition occurred in the sequence →
x1, . . . , xn. Given the counts δ(), we can now solve for the maximizing parameters as in ·
the case of simple Markov chains (the first and the last expression), and as in mixture
models (second expression).

The EM algorithm now follows directly from replacing the hard counts, δ(i|t) and δ(i, j|t),
with the corresponding posterior probabilities p(i|t) and p(i, j|t), evaluated on the basis of
the current HMM parameters. The posteriors we need are

p(i|t) = P (X(t) = i|y1, . . . , yn) (16)

p(i, j|t) = P (X(t) = i, X(t + 1) = j|y1, . . . , yn) (17)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

5 6.867 Machine learning, lecture 20 (Jaakkola)

It remains to show how these posterior probabilities can be computed. We can start by
writing

P (y1, . . . , yn, X(t) = i) = P (y1, . . . , yt, X(t) = i)P (yt+1, . . . , yn|X(t) = i) (18)

= αt(i)βt(i) (19)

which follows directly from the Markov property (future observations do not depend on the
past ones provided that we know which state we are in currently). The posterior is now
obtained by normalization

αt(i)βt(i)
P (X(t) = i|y1, . . . , yn) = �k αt(i�)βt(i�)

(20)
i�=1

Similarly,

P (y1, . . . , yn, X(t) = i, X(t + 1) = j)

= P (y1, . . . , yt, X(t) = i) Pij P (yt+1|j) P (yt+2, . . . , yn|X(t + 1) = j) (21)

= αt(i)Pij P (yt+1|j)βt+1(j) (22)

The posterior again results from normalizing across i and j:

P (X(t) = i, X(t) = j y1, . . . , yn) = �k �α
k

t(i)Pij P (yt+1|j)βt+1(j)
(23) |

i�=1 j�=1 αt(i�)Pi�j� P (yt+1|j�)βt+1(j�)

It is important to understand that P (X(t) = i, X(t) = j|y1, . . . , yn) are not the transition
probabilities we have as parameters in the HMM model. These are posterior probabilities
that a likely hidden state sequence that had to generate the observation sequence went
through i at time t and transitioned into j; they are evaluated on the basis of the model
and the observed sequence.

Multiple (partial) alignment

As another example of the use of the Viterbi algorithm as well as the EM algorithm for
estimating HMM models, let’s consider the problem of multiple alignment of sequences.
Here we are interested in finding a pattern, a fairly conserved sequence of observations,
embedded in unknown locations in multiple observed sequences. We assume we know very
little about the pattern other than that it appeared once in all the sequences (a constraint
we could easily relax further). For simplicity, we will assume here that we know the length
of the pattern (four time points/positions). The sequences could be speech signals where
a particular word was uttered in each but we don’t know when the word appeared in

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6 6.867 Machine learning, lecture 20 (Jaakkola)

the signal, nor what exactly the word was. The sequences could also be protein or DNA
sequences where we are looking for a sequence fragment that appears in all the available
sequences (e.g., a binding site).

Perhaps the simplest possible HMM model we could specify is given in Figure 2. The states
m1, . . . ,m4 are “match states” that we envision will be used to generate the pattern we
are looking for. States I1 and I2 are “insert states” that generate the remaining parts of
each observation sequence, before and after the pattern. Each state is associated with an
output distribution: P (y|Ii), i = 1, 2, P (y|mi), i = 1, . . . , 4. The parameters p and the
output distributions need to be learned from the available data.

Note that this is a model that generates a finite length sequence. We will first enter the
insert state, spend there on average 1/(1 − p) time steps, then generate the pattern, i.e.,
one observation in succession from each of the match states, and finally spend another
1/(1 − p) time steps on average to generate flanking observations. We have specifically set
the p parameter associated with the first insert state to agree with that of the second. This
tying of parameters (balancing the cost of repeating insert states) ensures that, given any
specific observation sequence, y1, . . . , yn, there is no bias towards finding the pattern in any
particular location of the sequence.

This model is useless for finding a pattern in a single observation sequence. However, it
becomes more useful when we have multiple observation sequences that can all be assumed
to contain the pattern. The stereotypical way that the pattern is generated, one observation
from each successive match states, and the freedom to associate any observation with each
of the match states, encourages the match states to take over the recurring pattern in the
sequences (rather than being generated from the insert states). The output distributions
for the insert states cannot become very specific since they will have to be used to generate
most of the observations in the sequences.

m4
Begin End

1 − p

p

1 − p

p
I1 I2m1 m2 m3

Figure 2: A simple HMM model for the multiple alignment task (only the Markov chain
part shown).

Now, given multiple sequences, we can simply train the parameters in our HMM model via
the EM algorithm to maximize the log-likelihood that the model assigns to those sequences.
At this point we are not concerned about where the patterns actually occur, just interested
in finding appropriate parameter values (output distributions). Similarly to mixture models

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

7 6.867 Machine learning, lecture 20 (Jaakkola)

for clustering, the location of the pattern (and what the pattern is), is resolved in a soft
manner through the posterior assignments of observations to match or insert states.

Once the parameters are found, we can use the Viterbi algorithm to “label” each observation
in a sequence with the corresponding most likely hidden state. So, for example, for a
particular observation sequence, y1, . . . , yn, we might get

I1 I1 . . . I1 m1 m2 m3 m4 I2 I2 . . . I2 (24)
y1 y2 . . . yt−1 yt yt+1 yt+2 yt+3 yt+4 yt+5 . . . yn

as the most likely hidden state sequence. The states in the most likely state sequence are
in one to one correspondence with the observations. So, in this case, the pattern clearly
occurs exactly at time/position t, where the sequence of match states begins.

The sequence fragments in all the observation sequences that were identified with the
pattern can be subsequently aligned as in the figure below.

m1, m2, m3, m4

m1, m2, m3, m4

. . .

m1, m2, m3, m4

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare

(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

