
6.867 Machine learning, lecture 21 (Jaakkola) 

Lecture topics: 

Bayesian networks 

Bayesian networks 

Bayesian networks are useful for representing and using probabilistic information. There 
are two parts to any Bayesian network model: 1) directed graph over the variables and 2) 
the associated probability distribution. The graph represents qualitative information about 
the random variables (conditional independence properties), while the associated proba-
bility distribution, consistent with such properties, provides a quantitative description of 
how the variables relate to each other. If we already have the distribution, why consider 
the graph? The graph structure serves two important functions. First, it explicates the 
properties about the underlying distribution that would be otherwise hard to extract from 
a given distribution. It is therefore useful to maintain the consistency between the graph 
and the distribution. The graph structure can also be learned from available data, i.e., we 
can explicitly learn qualitative properties from data. Second, since the graph pertains to 
independence properties about the random variables, it is very useful for understanding 
how we can use the probability model efficiently to evaluate various marginal and condi-
tional properties. This is exactly why we were able to carry out efficient computations in 
HMMs. The forward-backward algorithms relied on simple Markov properties which are 
independence properties, and these are generalized in Bayesian networks. We can make 
use of independence properties whenever they are explicit in the model (graph). 

Figure 1: A simple Bayesian network over two independent coin flips x1 and x2 and a 
variable x3checking whether the resulting values are the same. All the variables are binary. 

Let's start with a simple example Bayesian network over three binary variables illustrated 
in Figure 1. We imagine that two people are flipping coins independently from each other. 
The resulting values of their unbiased coin flips are stored in binary (011) variables x1 
and x2.Another person checks whether the coin flips resulted in the same value and the 
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outcome of the comparison is a binary (011) variable x3 = 6(x1, x2). Based on the problem 
description we can easily write down a joint probability distribution over the three variables 

where P(xl )  = 0.5, x1 t (0, I ) ,  P(x2) = 0.5, x2 t (0, I ) ,  and P(x3 = l lx l rx2)  = 1 if 
x1 = x2 and zero otherwise. 

We could have read the structure of the joint distribution from the graph as well. We need 
a bit of terminology to do so. In the graph, x1 is a parent of x3 since there's a directed edge 
from x1 to x3 (the value of x3 depends on xl).  Analogously, we can say that x3 is a child of 
xl .  Now, x2 is also a parent of x3 so that the value of x3 depends on both x1 and x2. We 
will discuss later what the graph means more formally. For now, we just note that Bayesian 
networks always define acyclic graphs (no directed cycles) and represent how values of the 
variables depend on their parents. As a result, any joint distribution consistent with the 
graph, i.e., any distribution we could imagine associating with the graph, has to be able to 
be written as a product of conditional probabilities of each variable given its parents. If a 
variable has no parents (as is the case with xl) then we just write P(xl ) .  Eq.(l) is exactly 
a product of conditional probabilities of variables given their parents. 

Marginal independence and induced dependence 

Let's analyze the properties of the simple model a bit. For example, what is the marginal 
probability over x1 and x2? This is obtained from the joint simply by summing over the 
values of x3 

Thus x1 and x2 are marginal ly  independent  of each other. In other words, if we don't know 
the value of x3 then there's nothing that ties the coin flips together (they were, after all, 
flipped independently in the description). This is also a property we could have extracted 
directly from the graph. We will provide shortly a formal way of deriving this type of 
independence properties from the Bayesian network. 

Another typical property of probabilistic models is induced dependence. Suppose now that 
the coins x1 and x2 were flipped independently but we don't know their outcomes. All 
we know is the value of x3, i.e., whether the outcomes where identical or not (say they 
were identical). What do we know about x1 and x2 in this case? We know that either 
x1 = x1 = 0 or x1 = x2 = 1. SO their values are clearly dependent .  The dependence was 
induced by additional knowledge, in this case the value of x3. This is again a property we 
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could have read off directly from the graph (explained below). Note that the dependence 
pertains to our beliefs about the values of x1 and x2. The coins were physically flipped 
independently of each other and our knowledge of the value of x3 doesn't change this. 
However, the value of x3 narrows down the set of possible outcomes of the two coin flips 
for this particular sample o f  x1 and x2. 

Both marginal independence and induced dependence are typical properties of realistic 
models. Consider, for example, a factorial Hidden Markov Model in Figure 2c). In this 
model you have two marginally independent Markov models that conspire to generate the 
observed output. In other words, the two Markov models are tied only through observations 
(induced dependence). To sample values for the variables in the model, we would be 
sampling from the two Markov models independently and just using the two states at each 
time point to sample a value for the output variables. The joint distribution over the 
variables for the model in Figure 2c) is again obtained by writing a product of conditional 
probabilities of each variable given its parents: 

where, e.g., P(yl  x i ,  xl) could be defined as N(y;  p(xi) + p(xl),  0'). Such a model could, 
for example, capture how two independent subprocesses in speech production generate the 
observed acoustic signal, model two speakers observed through a common microphone, 
or with a different output model, capture how haplotypes generate observed genotypes. 
Given the model and say an observed speech signal, we would be interested in inferring 
likely sequences of states for the subprocesses. 

Figure 2: Different models represented as Bayesian networks: a) mixture model, b) HMM, 
c) factorial HMM. 

Explaining away 

Cite as: Tommi laakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare 
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month W]. 

(http://ocw.mit.edu/)


6.867 Machine learning, lecture 21 (Jaakkola) 

E="earthquake" B = "bmglr~y" E="earthquake" B = "bmglr~y" 

a) R = "radio report" A="alrn" b) R = 'i-adio report" A="alrn" 

Figure 3: Network structure exhibiting explaining away. a) basic model, b) alarm went off, 
c) we have also heard a radio report about an earthquake 

Another typical phenomenon that probabilistic models can capture is ercplaining away. 
Consider the following typical example (Pearl 1988) in Figure 3. We have four variables A, 
B ,  E, and R capturing possible causes for why a burglary alarm went off. All the variables 
are binary (011) and, for example, A = 1 means that the alarm went off (Figure 3b). 
Shaded nodes indicate that we know something about the values of these variables. In our 
example here all the observed values are one (property is true). We assume that earthquakes 
(E = 1) and burglaries ( B  = 1) are equally unlikely events P(E = 1) = P ( B  = 1) zz 0. 
Alarm is likely to go off only if either E = 1 or B = 1 or both. Both events are equally 
likely to trigger the alarm so that P ( A  = 1 E , B )  zz A or B .  An earthquate (E = 1) is 
likely to be followed by a radio report ( R  = I ) ,  P ( R  = 1 E  = 1) zz 1, and we assume that 
the report never occurs unless an earthquake actually took place: P ( R  = 1 E  = 0) = 0. 

What do we believe about the values of the variables if we only observe that the alarm 
went off (A = I)? At least one of the potential causes E = 1 or B = 1 should have 
occured. However, since both are unlikely to occur by themselves, we are basically left 
with either E = 1 or B = 1 but (most likely) not both. We therefore have two alternative 
or competing explanations for the observation and both explanations are equally likely. If 
we know hear, in addition, that there was a radio report about an earthquake, we believe 
that E = 1. This makes B = 1 unnecessary for explaining the alarm. In other words, 
the additional observation about the radio report ercplained away the evidence for B = 1. 
Thus, P(E = 1lA = 1,R = 1) zz 1 whereas P ( B  = 1lA = 1,R = 1) zz 0. 

Note that we have implicitly captured in our calculation here that R and B are dependent  
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given A = 1. If they were not, we would not be able to learn anything about the value 
of B as a result of also observing R = 1. Here the effect is drastic and the variables are 
strongly dependent. We could have, again, derived this property from the graph. 

Bayesian networks and conditional independence 

We have claimed in several occasions that we could have derived useful properties about 
the probability model directly from the graph. How is this done exactly? Since the graph 
encodes independence properties about the variables, we have to define a criterion for 
extracting independence properties between the variables directly from the graph. For 
Bayesian networks (acyclic graphs) this is given by so called D-separation criterion. 

As an example, consider a slightly extended version of the previous model in Figure 4a, 
where we have added a binary variable L (whether we "leave work" as a result of hear- 
ingllearning about the alarm). We will define a procedure for answering questions such as: 
are R and B independent given A? 

The general procedure involves three graph transformation steps that we will illustrate in 
relation to the graph in Figure 4a. 

1. Construct ancestral graph of the variables of interest. The variables we care about 
here are R, B,  and A. The ancestral graph includes these variables as well as all 
the variables (ancestors) you can get to by starting from one of these variables and 
following the arrows in the reverse direction (their parents, their parents' parents, 
and so on). The ancestral graph in our case is given in Figure 4b. 

The motivation for this step is that unobserved effects of random variables cannot 
lead to dependence and can be therefore removed. 

2 .  	Moralize the resulting ancestral graph. This operation simply adds an undirected edge 
between any two variables in the ancestral graph that have a common child ("marry 
the parents"). In case of multiple parents, they are connected pairwise, i.e., by adding 
an edge between any two parents. See Figure 4c. 

Moralization is needed to take into account induced dependences discussed earlier 

3. 	Change all the direct edges into undirected edges. This gives the resulting undirected 
graph in Figure 4d. 

We can now read off the answer to the original question from the resulting undirected graph. 
R and B are independent given A (they are D-separated given A) if they are separated by 
A in the undirected graph. In other words, if they become disconnected in the undirected 
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graph by removing the conditioning variable A and its associated edges. They clearly 
remain connected in our example and thus, from the point of view of the Bayesian network 
model, would have to be assumed to be dependent. 

Let's go back to the previous examples to make sure we can read off the properties we 
claimed from the graphs. For example, if we are interested in asking whether x1 and x2 
are marginally independent (i.e., given nothing) in the model in Figure 1,we would create 
the graph transformations shown in Figure 5. The nodes are clearly separated. Similarly, 
to establish that x1 and x2 become dependent with the observation of x3,we would ask 
whether x1 and x2 are independent given x3 and get the transformations in Figure 6. The 
nodes are not separated by x3 and therefore not independent. 

E="earthquake" B = "b~rglary" 

n n 

E="earthquake" B = "b~rglary" E="earthquake" B = "b~rglary" 

C) R = "radio report" A="alarm" d) R = "radio report" A="alarm" 

Figure 4: a) Burglary model, extended, b) ancestral graph of R, B,  and A, c) moralized 
ancestral graph, d) resulting undirected graph. 

Graph and the probability distribution 

The graph and the independence properties we can derive from it are useful to us only if 
the probability distribution we associate with the graph is consistent with the graph. By 
consistency we meant that all the independence properties we can derive from the graph 
should hold for the associated distribution. In other words, if the graph is an explicit 
representation of such properties, then clearly whatever we can infer from it, should be 
true. There are actually a large number of possible independence properties that we can 
derive from any typical graph, even in the context of HMMs. How is it that we can ever 
hope to find and deal with distributions that are consistent with all such properties? While 
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Figure 5: a) Bayesian network model, b) ancestral graph of x1 and x2,  already moralized 
and undirected. 

Figure 6: a) Bayesian network model, b) ancestral graph of x1 and x2 given x3, C) moralized 
ancestral graph, d) resulting undirected graph. 

the task is hard, the answer is simple. In fact, given an acyclic graph G over d variables, 
the most general form of the joint distribution consistent with all the properties we can 
derive from the graph is given by 

where xPai refers to the set of variables that are the parents of variable xi (e.g., x,,, = 

{ x l r x 2 )for x3 in the above models). So, we can just read off the answer from the graph: 
look a t  each variable and include a term in the joint distribution of that variable given its 
parents (those that directly influence it). 

Note that some distributions may satisfy more independence properties that are represented 
in the graph. For example, a distribution where all the variables are independent of each 
other is consistent with every acyclic graph. It clearly satisfies all the possible independence 
properties (edges in the graph only indicate possible dependences; they may actually be 
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weak or non-existent). We typically would use a graph representation that tries to capture 
most if not all of the independence properties that hold for the associated distribution. 
Not all independence properties can be captured (are representable) by our D-separation 
criterion. 
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