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Linear regression, active learning 

We arrived at the logistic regression model when trying to explicitly model the uncertainty 
about the labels in a linear classifier. The same general modeling approach permits us to 
use linear predictions in various other contexts as well. The simplest of them is regression 
where the goal is to predict a continuous response yt ∈ R to each example vector. Here 
too focusing on linear predictions won’t be inherently limiting as linear predictions can be 
easily extended (next lecture). 

So, how should we model continuous responses? The linear function of the input already 
produces a “mean prediction” or θT x + θ0. By treating this as a mean prediction more 
formally, we are stating that the expected value of the response variable, conditioned on 
x, is θT x + θ0. More succinctly, we say that E{y|x} = θT x + θ0. It remains to associate 
a distribution over the responses around such mean prediction. The simplest symmetric 
distribution is the normal (Gaussian) distribution. In other words, we say that the responses 
y follow the normal pdf 

1 1 
N(y; µ, σ2) = √

2πσ2 
exp −

2σ2 
(y − µ)2 (1) 

where µ = θT x + θ0. Our response model is therefore defined as 

P (y|x, θ, θ0) = N(y; θT x + θ0, σ2) (2) 

So, when the input is 1-dimensional, we predict a mean response that is a line in (x, y) 
space, and assume that noise in y is normally distributed with zero mean and variance σ2 . 
Note that the noise variance σ2 in the model does not depend on the input x. Moreover, we 
only model variation in the y-direction while expecting to know x with perfect precision. 
Taking into account the effect of potential noise in x on the responses y would tie parameters 
θ and θ0 to the noise variance σ2, potentially in an input dependent manner. The specifics 
of this coupling depend on the form of noise added to x. We will discuss this in a bit more 
detail later on. 

We can also write the linear regression model in another way to explicate how exactly the 
additive noise appears in the responses: 

y = θT x + θ0 + � (3) 

where � ∼ N(0, σ2) (meaning that noise � is distributed normally with mean zero and 
variance σ2). Clearly for this model E{y|x} = θT x + θ0 since � has zero mean. Moreover, 
adding Gaussian noise to a deterministic prediction θT x + θ0 makes y normally distributed 
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with mean θT x + θ0 and variance σ2, as before. So, in particular, for the training inputs 
x1, . . . , xn and outputs y1, . . . , yn, the model relating them is 

yt = θT xt + θ0 + �t, t = 1, . . . , n (4) 

where et ∼ N(0, σ2) and ei is independent of ej for any i =� i. 

Regardless of how we choose the write the model (both forms are useful) we can find the 
parameter estimates by maximizing the conditional likelihood. Similarly to the logistic 
regression case, the conditional likelihood is written as 

n � �� 1 1 
L(θ, θ0, σ

2) = √
2πσ2 

exp −
2σ2 

(yt − θT xt − θ0)
2 (5) 

t=1 

Note that σ2 is also a parameter we have to estimate. It accounts for errors not captured 
by the linear model. In terms of the log-likelihood, we try to maximize 

l(θ, θ0, σ
2) = 

n� 

t=1 

log 

� 
1 √

2πσ2 
exp 

� 

− 
1 

2σ2 
(yt − θT xt − θ0)

2 

�� 

(6) 

= 
n� � 

− 
1 
2 

log(2π) − 
1 
2 

log σ2 − 
1 

2σ2 
(yt − θT xt − θ0)

2 

� 

(7) 
t=1 

= const. − 
n 
2 

log σ2 − 
1 

2σ2 

n� 
(yt − θT xt − θ0)

2 (8) 
t=1 

where ’const.’ absorbs terms that do not depend on the parameters. Now, the problem of 
estimating the parameters θ and θ0 is nicely decoupled from estimating σ2 . In other words, 
we can find the maximizing θ̂ and θ̂0 by simply minimizing the mean squared error 

n

(yt − θT xt − θ0)
2 (9) 

t=1 

It is perhaps easiest to write the solution based on a bit of matrix calculation. Let X be 
a matrix whose rows, indexed by training examples, are given by [xt

T , 1] (xt turned into a 
row vector and 1 added at the end). In terms of this matrix, the minimization problem 
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becomes 

n n�T � ��2 ��2 
θ
 θ
xt T 

t , 1 (10)
yt − 
θ0 1

= yt − x 
θ0 

t=1 t=1 
2⎤⎡⎤⎡ 

y1 x1 
T , 1 

θ
⎣
 · · · − · · · 
θ0 yn xn

T , 1

⎣
⎦
 ⎦
 (11)
=


2 

y − X

θ

θ0 

(12)
=
 �T �T 

= y T y − 2 
θ 

XT y + 
θ 

XT X 
θ 

(13) 
θ0 θ0 θ0 

where y = [y1, . . . , yn]T is a vector of training responses. Solving it yields 

θ̂ 


θ̂0 
= (XT X)−1XT y (14) 

Note that the optimal parameter values are linear functions of the observed responses y. We 
will make use of this property later on. The dependence on the training inputs x1, . . . , xn 

(or the matrix X) is non-linear, however. 

The noise variance can be subsequently set to account for the remaining prediction errors. 
Indeed, the the maximizing value of σ2 is given by 

σ̂2 1

n

= 
n 

t=1 

(yt − θ̂T xt − θ̂0)
2 (15)


which is the average squared prediction error. Note that we cannot compute σ̂2 before 
knowing how well the linear model explains the responses. 

Bias and variance of the parameter estimates 

We can make use of the closed form parameter estimates in Eq.(14) to analyze how good 
these estimates are. For this purpose let’s make the strong assumption that the actual 
relation between x and y follows a linear model of the same type that we are estimating 
(we just don’t know the correct parameter values θ∗, θ0

∗, and σ∗2). We can therefore describe 
the observed responses yt as 

yt = θ∗T xt + θ0 
∗ + �t, t = 1, . . . , n (16) 
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where �t ∼ N(0, σ∗2). In a matrix form 

θ∗ 

y = X + e (17) 
θ0 
∗ 

where e = [�1, . . . , �n]T , E{e} = 0 and E{eeT } = σ∗2 I. The noise vector e is also indepen­
dent of the inputs or X. Plugging this form of responses into Eq.(14) we get 

θ̂ θ∗ 

θ̂0 
= (XT X)−1XT (X 

θ0 
∗ + e) (18) 

= (XT X)−1XT X 
θ∗ 

+ (XT X)−1XT e (19) 
θ0 
∗ 

= 
θ∗ 

+ (XT X)−1XT e (20) 
θ0 
∗ 

In other words, our parameter estimates can be decomposed into the sum of correct under­
lying parameters and estimates based on noise alone (i.e., based on e). Thus, on average 
with fixed inputs 

θ̂ θ∗ θ∗ 

E{ 
θ̂0 

|X} = 
θ0 
∗ + (XT X)−1XT E{e|X} = 

θ0 
∗ (21) 

Our parameter estimates are therefore unbiased or correct on average when averaging is 
over possible training sets we could generate. The averaging here is conditioned on the 
specific training inputs. 

Using Eq.(20) and Eq.(21) we can also evaluate the conditional co-variance of the parameter 
estimates where the expectation is again over the noise in the outputs: 

Cov{ 

� 
θ̂ 
θ̂0 

� 

|X} = E 

��� 
θ̂ 
θ̂0 

� 

− 

� 
θ∗ 

θ∗ 
0 

�� �� 
θ̂ 
θ̂0 

� 

− 

� 
θ∗ 

θ∗ 
0 

��T 

|X 

� 

(22) 

= 

= 

= 

= 

E 
�� 

(XT X)−1XT e 
� � 

(XT X)−1XT e 
�T |X 

� 

E 
� 
(XT X)−1XT ee T X(XT X)−1|X 

� 

(XT X)−1XT E{ee T |X} X(XT X)−1 

(XT X)−1XT (σ∗2 I) X(XT X)−1 

(23) 

(24) 

(25) 

(26) 

= σ∗2(XT X)−1XT X(XT X)−1 (27) 

= σ∗2(XT X)−1 (28) 
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So the way in which the parameters vary in response to noise in the outputs is a function 
of the inputs or X. We will use this property in the next section to select inputs so as to 
improve the quality of the parameter estimates or to reduce the variance of predictions. 

Based on the bias and variance calculations we can evaluate the mean squared error of 
the parameter estimates. To this end, we use the fact that the expectation of the squared 
norm of any vector valued random variable can be decomposed into a bias and variance 
components as follows: 

E �z − z∗�2 = E �z − E{z} + E{z} − z∗�2 (29) 

= E �z − E{z}�2 + 2(z − E{z})T (E{z} − z∗) + �E{z} − z∗�2 (30) 

= E �z − E{z}�2 + 2E (z − E{z})T (E{z} − z∗) + �E{z} − z∗�2 

variance � �� � bias2 � � � �� � 
= E �z − E{z}�2 + �E{z} − z∗�2 (31) 

where we have assumed that z∗ is fixed. Make sure you understand how this decomposition 
is derived. We will further elaborate the variance part to better use the result in our context: 

E �z − E{z}�2 = E (z − E{z})T (z − E{z}) (32) 

= E Tr (z − E{z})T (z − E{z}) (33) 

= E Tr (z − E{z})(z − E{z})T (34) 

= Tr E (z − E{z})(z − E{z})T (35) 

= Tr [Cov{z}] (36) 

where Tr[ ] is the matrix trace, the sum of its diagonal components, and therefore a linear ·
operation (exchangeable with the expectation). We have also used the fact that Tr[aT b] = 
Tr[abT ] for any vectors a and b. 
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Now, adapting the result to our setting, we get 

variance bias2 
=0 ��� � � ��2 

� � � ���� � ��� �� �� � ��� � ��� 2 

E ��� 

θ̂

θ̂

0 
− 

θ
θ

∗

∗ 
��� 
|X = Tr Cov 

θ̂

θ̂

0 
|X + ��� 

E
θ̂

θ̂

0 
|X − 

θ
θ

∗

∗ 
��� 

0 0 

= σ∗2 Tr (XT X)−1 (37) 

Let’s understand this result a bit further. How does it depend on n, the number of training 
examples? In other words, how quickly does the mean squared error decrease as the number 
of training examples increases, assuming the input examples x are sampled independently 
from some underlying distribution P (x)? To answer this let’s start by analyzing what 
happens to the matrix XT X: 

n � � 

XT X = 
xt [x Tt , 1] (38) 
1 

t=1 
n � � 

1 � xt T = n [xt , 1] (39) · 
n 1 

t=1 

≈ n · Ex∼P 
x 

[x T , 1] = n · C (40) 
1 

where for large n the average will be close to the corresponding expected value. For large 
n the mean squared error of the parameter estimates will therefore be close to 

σ∗2 

Tr[C−1] (41) 
n 

· 

The variance of simply averaging the (noise in the) outputs would behave as σ∗2/n. Since 
we are estimating d + 1 parameters where d is the input dimension, this dependence would 
have to be in Tr[C−1]. Indeed it is. This term, a trace of a (d + 1) × (d + 1) matrix C−1 , 
is directly proportional to d + 1. 

Penalized log-likelihood and Ridge regression 

When the number of training examples is small, i.e., not too much larger than the number 
of parameters (dimension of the inputs), it is often beneficial to regularize the parameter 
estimates. We will derive the form of regularization here by assigning a prior distribution 
over the parameters P (θ, θ0). The purpose of the prior is to prefer small parameter values 
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(predict values close to zero) in the absence of data. Specifically, we will look at simple 
zero mean Gaussian distributions � � � � d

θ 0 � 
P (θ, θ0; σ

�2) = N( 
θ0 

;
0 

, σ�2I) = N(θ0; 0, σ
�2) N(θj ; 0, σ

�2) (42) 
j=1 

where the variance parameter σ�2 in the prior distribution specifies how strongly we wish 
to bias the parameters towards zero. 

By combining the log-likelihood criterion with the prior we obtain a penalized log-likelihood 
function (penalized by the prior): 

n � � ��� 1 1 
l�(θ, θ0, σ

2) = log √
2πσ2 

exp −
2σ2 

(yt − θT xt − θ0)
2 + log P (θ, θ0; σ

�2) (43) 
t=1


n

n 1 � 

= const. − 
2 

log σ2 − 
2σ2 

(yt − θT xt − θ0)
2 

t=1 

d
1 � d + 1 −

2σ�2 
(θ0

2 + θj 
2) − 

2 
log σ�2 (44) 

j=1 

It is convenient to tie the prior variance σ�2 to the noise variance σ2 according to σ�2 = σ2/λ. 
This has the effect that if the noise variance σ2 is large, we penalize the parameters very 
little (permit large deviations from zero by assuming a large σ�2). On the other hand, if 
the noise variance is small, we could be over-fitting the linear model. This happens, for 
example, when the number of training examples is small. In this case most of the responses 
can be explained directly by the linear model making the noise variance very small. In such 
cases our penalty for the parameters will be larger as well (prior variance is smaller). 

Incorporating this parameter tie into the penalized log-likelihood function gives 
n

n 1 � 
l�(θ, θ0, σ

2) = const. − 
2 

log σ2 − 
2σ2 

(yt − θT xt − θ0)
2 

t=1 

d
λ � d + 1 −

2σ2 
(θ0

2 + θj 
2) − 

2 
log(σ2/λ) (45) 

j=1 

n + d + 1 d + 1 
= const. − log σ2 + log λ (46) 

2 2 
n d

1 � � 
−

2σ2 
(yt − θT xt − θ0)

2 + λ(θ0
2 + θj 

2) (47) 
t=1 j=1 
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where again the estimation of θ and θ0 separates from setting the noise variance σ2 . Note 
that this separation is achieved because we tied the prior and noise variance parameters. 
The above regularized problem of finding the parameter estimates θ̂ and θ̂0 is known as 
Ridge regression. 

As before, we can get closed form estimates for the parameters (we omit the analogous 
derivation): 

θ̂
= (λI + XT X)−1XT y (48) 

θ̂0 

It is now useful to understand how the properties of these parameter estimates depend on 
λ. For example, are the parameter estimates unbiased? No, they are not: 

E 

�� 
θ̂ 
θ̂0 

� 

|X 

� 

= (λI + XT X)−1XT X 

� 
θ∗ 

θ∗ 
0 

� 

� � 

(49) 

= (λI + XT X)−1(XT X + λI − λI) 
θ∗ 

θ∗ 
0 

(50) 

� � � bias�� � �� 

= 

= 

θ∗ 

θ̂∗ 
0 

−λ(λI + XT X)−1 θ∗ 

θ∗ 
0 � 

I − λ(λI + XT X)−1 
� � 

θ∗ 

θ∗ 
0 

� 

(51) 

(52) 

� � 
It is straightforward to check that I − λ(λI + XT X)−1 is a positive definite matrix with 
eigenvalues all less than one. The parameter estimates are therefore shrunk towards zero 
and more so the larger the value of λ. This is what we would expect since we explicitly 
favored small parameter values with the prior penalty. What do we gain from such biased 
parameter estimates? Let’s evaluate the mean squared error, starting with the covariance: 

θ̂
Cov ˆ |X = σ∗2(λI + XT X)−1XT X(λI + XT X)−1 (53) 

θ0 

= σ∗2(λI + XT X)−1(λI + XT X − λI)(λI + XT X)−1 (54) 

= σ∗2(λI + XT X)−1 − λσ∗2(λI + XT X)−2 (55) 

The mean squared error in the parameters is therefore given by (we again omit the deriva-
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tion that can be obtained similarly to previous expressions): 

E

2 

|
X

θ̂ 
 θ∗ 

σ∗2 (λI + XT X)−1 − λ(λI + XT X)−2Tr
−
 =

θ̂0 

·

θ0 
∗ �T 

θ∗ 
� ∗θ 

+λ2 (λI + XT X)−2 (56)

θ0 
∗ θ0 

∗ 

Can this be smaller than the mean squared error corresponding to the unregularized esti­
mates σ∗2 Tr (XT X)−1 ? Yes, it can. This is indeed the benefit from regularization: we · 
can reduce large variance at the cost of introducing a bit of bias. We will get back to this 
trade-off in the context of model selection. 

Let’s exemplify the effect of λ on the mean squared error in a context of a very simple 
1-dimensional example. Suppose, we have observed responses for only two points, x = −1 
and x = 1. In this case, 

−1 1 2 0 1/(2 + λ) 0 
X = 

1 1 
, XT X = 

0 2 
, (λI + XT X)−1 = 

0 1/(2 + λ) 
(57) 

The expression for the mean squared error therefore becomes 

E

2 

|
X

θ̂ 
 λ2θ∗ 2 2λ


=
 σ∗2 (θ∗2 + θ0 
∗2)


(2 + λ) 
−
 +


(2 + λ)2 (2 + λ)2
−


θ̂0 θ0 
∗ 

=
4σ∗2 

+ 
λ2 

(θ∗2 + θ0 
∗2) (58) 

(2 + λ)2 (2 + λ)2 

We should compare this to σ∗2Tr (XT X)−1 = σ∗2 obtained without regularization (cor­

responds to setting λ = 0). In the noisy case σ∗2 > θ∗2 + θ0 
∗2 we can set λ = 2 and 

obtain 

E

2 

4σ∗2 4 8σ∗2θ̂ 
 θ∗ 1

(θ∗2 + θ0 

∗2 σ∗2 (59)
|
X
 =
 +

16 16


) <
−
 =

16 2
θ̂0 θ0 

∗ 

The mean squared error of the parameters is therefore clearly smaller than without regu­
larization. 

Active learning 

We can use the expressions for the mean squared error to actively select input points 
x1, . . . , xn, when possible, so as to reduce the resulting estimation error. This is an active 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





�
����


�
 �
 �
 �
����


�
 � � 

� � 

6.867 Machine learning, lecture 5 (Jaakkola) 10 

learning (experiment design) problem. The goal is to get by with as few responses as 
possible without sacrificing the estimation accuracy. For example, in training a classifier 
we would like to minimize the number of training images we would have to label in order 
obtain a certain classification accuracy. In the regression context, we may be selecting 
among possible experiments to carry out (e.g., choosing different operating points for a 
factory or gauging market/customer responses to different strategies available to us). By 
letting the method guide the selection of the training examples (inputs), we will generally 
need far fewer examples in comparison to selecting them at random from some underlying 
distribution, database, or trying available experiments at random. Fewer responses means 
less human effort, less cost, or both. 

To develop this further let’s go back to the unregularized case where 

E

2 

|
X

θ̂ 
 θ∗ 

= σ∗2Tr
 (XT X)−1 (60)
−

θ̂0 θ0 

∗ 

We do not know the noise variance σ∗2 for the correct model but it only appears as a 
multiplicative constant in the above expression and therefore won’t affect how we should 
choose the inputs. When the choice of inputs is indeed up to us (e.g., which experiments to 
carry out) we can select them so as to minimize Tr (XT X)−1 . One caveat of this approach 
is that it relies on the underlying relationship between the inputs and the responses to be 
linear. When this is no longer the case we may end up with clearly suboptimal selections. 

We will discuss next time how we can find say n input examples x1, . . . , xn that minimize 
the criterion. 
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