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Lecture topics: 

• Kernel form of linear regression 

• Kernels, examples, construction, properties 

Linear regression and kernels 

Consider a slightly simpler model where we omit the offset parameter θ0, reducing the 
model to y = θT φ(x) + � where φ(x) is a particular feature expansion (e.g., polynomial). 
Our goal here is to turn both the estimation problem and the subsequent prediction task 
into forms that involve only inner products between the feature vectors. 

We have already emphasized that regularization is necessary in conjunction with mapping 
examples to higher dimensional feature vectors. The regularized least squares objective to 
be minimized, with parameter λ, is given by 

n

J(θ) = 
�� 

yt − θT φ(xt) 
�2 

+ λ�θ�2 (1) 
t=1 

This form can be derived from penalized log-likelihood estimation (see previous lecture 
notes). The effect of the regularization penalty is to pull all the parameters towards zero. 
So any linear dimensions in the parameters that the training feature vectors do not pertain 
to are set explicitly to zero. We would therefore expect the optimal parameters to lie in 
the span of the feature vectors corresponding to the training examples. This is indeed the 
case. 

As before, the optimality condition for θ follows from setting the gradient to zero: 

αt 

dJ(θ)
= −2 

n �� 
yt − θT φ(xt) 

�� 
φ(xt) + 2λθ = 0 (2) 

dθ 
t=1 

We can therefore construct the optimal θ in terms of prediction differences αt and the 
feature vectors: 

n
1 � 

θ = αtφ(xt) (3) 
λ 

t=1 

The implication is that the optimal θ (however high dimensional) will lie in the span of the 
feature vectors corresponding to the training examples. This is due to the regularization 
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penalty we added. But how do we set αt? The values for αt can be found by insisting that 
they indeed can be interpreted as prediction differences: 

n
1 � 

αt = yt − θT φ(xt) = yt − αt� φ(xt� )
T φ(xt) (4) 

λ 
t�=1 

Thus αt depends only on the actual responses yt and the inner products between the 
training examples, the Gram matrix : ⎡ ⎤ 

φ(x1)
T φ(x1) φ(x1)

T φ(xn)· · · 
K = ⎣ ⎦ (5) · · · · · · · · · 

φ(xn)T φ(x1) . . . φ(xn)T φ(xn) 

In a vector form, 

a = [α1, . . . , αn]T , (6) 

y = [y1, . . . , yn]T , (7) 
1 

a = Ka (8) y − 
λ 

the solution is 
−1 

â = λ λI + K y (9) 

Note that finding the estimates α̂t requires inverting a n × n matrix. This is the cost of 
dealing with inner products as opposed to handing feature vectors directly. In some cases, 
the benefit is substantial since the feature vectors in the inner products may be infinite 
dimensional but never needed explicitly. 

As a result of finding α̂t we can cast the predictions for new examples also in terms of inner 
products: 

n n

y = θ̂T φ(x) = (α̂t/λ)φ(xt� )
T φ(x) = α̂tK(xt� , x) (10) 

t=1 t=1 

where we view K(xt� , x) as a kernel function, a function of two arguments xt� and x. 

Kernels 

So we have now successfully turned a regularized linear regression problem into a kernel 
form. This means that we can simply substitute different kernel functions K(x, x�) into the 
estimation/prediction equations. This gives us an easy access to a wide range of possible 
regression functions. Here are a couple of standard examples of kernels: 
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• Polynomial kernel 

K(x, x�) = (1 + x T x�)p, p = 1, 2, . . . (11) 

Radial basis kernel • 

β 
K(x, x�) = exp − 

2 
�x − x��2 , β > 0 (12) 

We have already discussed the feature vectors corresponding to the polynomial kernel. The 
components of these feature vectors were polynomial terms up to degree p with specifically 
chosen coefficients. The restricted choice of coefficients was necessary in order to collapse 
the inner product calculations. 

The feature “vectors” corresponding to the radial basis kernel are infinite dimensional! 
The components of these “vectors” are indexed by z ∈ Rd where d is the dimension of the 
original input x. More precisely, the feature vectors are functions: 

φz(x) = c(β, d) N(z; x, 1/2β) (13) 

where N(z; x, (1/β)) is a normal pdf over z and c(β, d) is a constant. Roughly speaking, 
the radial basis kernel measures the probability that you would get the same sample z (in 
the same small region) from two normal distributions with means x and x� and a common 
variance 1/2β. This is a reasonable measure of “similarity” between x and x� and kernels 
are often defined from this perspective. The inner product giving rise to the radial basis 
kernel is defined through integration 

K(x, x�) = φz(x)φz(x
�)dz (14) 

We can also construct various types of kernels from simpler ones. Here are a few rules to 
guide us. Assume K1(x, x�) and K2(x, x�) are valid kernels (correspond to inner products 
of some feature vectors), then 

1. K(x, x�) = f(x)K1(x, x�)f(x�) for any function f(x), 

2. K(x, x�) = K1(x, x�) + K2(x, x�), 

3. K(x, x�) = K1(x, x�)K2(x, x�) 
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are all valid kernels. While simple, these rules are quite powerful. Let’s first understand 
these rules from the point of view of the implicit feature vectors. For each rule, let φ(x) be 
the feature vector corresponding to K and φ(1)(x) and φ(2)(x) the feature vectors associated 
with K1 and K2, respectively. The feature mapping for the first rule is given simply by 
multiplying with the scalar function f(x): 

φ(x) = f(x)φ(1)(x) (15) 

so that φ(x)T φ(x�) = f(x)φ(1)(x)T φ(1)(x�)f(x�) = f(x)K1(x, x�)f(x�). The second rule, 
adding kernels, corresponds to just concatenating the feature vectors 

φ(1)(x)
φ(x) = 

φ(2)(x) 
(16) 

The third and the last rule is a little more complicated but not much. Suppose we use a 
double index i, j to index the components of φ(x) where i ranges over the components of 
φ(1)(x) and j refers to the components of φ(2)(x). Then 

(1) (2)
φi,j (x) = φi (x)φj (x) (17) 

It is now easy to see that 

K(x, x�) = φ(x)T φ(x�)� 
(18) 

= φi,j (x)φi,j(x
�) (19) 

i,j� 
= φ

(1) 
i (x)φ

(2) 
j (x)φ

(1) 
i (x�)φ

(2) 
j (x�) (20) 

i,j� � 
= [ φ

(1) 
i (x)φ

(1) 
i (x�)][ φ

(2) 
j (x)φ

(2) 
j (x�)] (21) 

i j 

= [φ(1)(x)T φ(1)(x�)][φ(2)(x)T φ(2)(x�)] (22) 

= K1(x, x�)K2(x, x�) (23) 

These construction rules can also be used to verify that something is a valid kernel. As an 
example, let’s figure out why a radial basis kernel 

K(x, x�) = exp{−
2

1 �x − x��2} (24) 
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is a valid kernel. 

exp{− 
1 
2
�x − x��2} = exp{− 

1 
2 
x T x + x T x� − 

1 
2 
x�T x�} (25) 

� f(x)�� � � f(x�)�� � 
= exp{− 

1 
2 
x T x} · exp{x T x�} · exp{− 

1 
2 
x�T x�} (26) 

Here exp{xT x�} is a sum of simple products xT x� and is therefore a kernel based on the 
second and third rules; the first rule allows us to incorporate f(x) and f(x�). 

String kernels. It is often necessary to make predictions (classify, assess risk, determine 
user ratings) on the basis of more complex objects such as variable length sequences or 
graphs that do not necessarily permit a simple description as points in Rd . The idea of 
kernels extends to such objects as well. Consider, for example, the case where the inputs x 
are variable length sequences (e.g., documents or biosequences) with elements from some 
common alphabet A (e.g., letters or protein residues). One way to compare such sequences 
is to consider subsequences that they may share. Let u ∈ Ak denote a length k sequence 
from this alphabet and i a sequence of k indexes. So, for example, we can say that u = x[i] 
if u1 = xi1 , u2 = xi2 , . . ., uk = xik . In other words, x contains the elements of u in 
positions i1 < i2 < < ik. If the elements of u are found in successive positions in x,· · · 
then ik − i1 = k − 1. A simple string kernel corresponds to feature vectors with counts of 
occurences of length k subsequences: 

φu(x) = δ(ik − i1, k − 1) (27) 
i:u=x[i] 

In other words, the components are indexed by subsequences u and the value of u-
component is the number of times x contains u as a contiguous subsequence. For example, 

φon(the common construct) = 2 (28) 

The number of components in such feature vectors is very large (exponential in k). Yet, 
the inner product 

φu(x)φu(x�) (29) 
u∈Ak 

can be computed efficiently (there are only a limited number of possible contiguous subse­
quences in x and x�). The reason for this difference, and the argument in favor of kernels 
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more generally, is that the feature vectors have to aggregate the information necessary to 
compare any two sequences while the inner product is evaluated for two specific sequences. 

We can also relax the requirement that matches must be contiguous. To this end, we define 
the length of the window of x where u appears as l(i) = ik − i1. The feature vectors in a 
weighted gapped substring kernel are given by 

φu(x) = λl(i) (30) 
i:u=x[i] 

where the parameter λ ∈ (0, 1) specifies the penalty for non-contiguous matches to u. The 
resulting kernel ⎛ ⎞⎛ ⎞ 

K(x, x�) = φu(x)φu(x�) = ⎝ λl(i)⎠⎝ λl(i)⎠ (31) 
u∈Ak u∈Ak i:u=x[i] i:u=x�[i] 

can be computed recursively. It is often useful to normalize such a kernel so as to remove 
any immediate effect from the sequence length: 

K̃(x, x�) = � 
K(x�, x�) (32) 

K(x, x) K(x�, x�) 

Appendix (optional): Kernel linear regression with offset 

Given a feature expansion specified by φ(x) we try to minimize 
n�� �2 

J(θ, θ0) = yt − θT φ(xt) − θ0 + λ�θ�2 (33) 
t=1 

where we have chosen not to regularize θ0 to preserve the similarity to classification dis­
cussed later on. Not regularizing θ0 means, e.g., that we do not care whether all the 
responses have a constant added to them; the value of the objective, after optimizing θ0, 
would remain the same with or without such constant. 

Setting the derivatives with respect to θ0 and θ to zero gives the following optimality 
conditions: 

dJ(θ, θ0) 
n � � 

= −2 yt − θT φ(xt) − θ0 = 0 (34) 
dθ0 t=1 

αt 
n

dJ(θ, θ0)
= 2λθ − 2 

��� 
yt − θT φ

�� 
(xt) − θ0 

�� 
φ(xt) = 0 (35) 

dθ 
t=1 
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We can therefore construct the optimal θ in terms of prediction differences αt and the 
feature vectors as before: 

n
1 � 

θ = αtφ(xt) (36) 
λ 

t=1 

Using this form of the solution for θ and Eq.(34) we can also express the optimal θ0 as a 
function of the prediction differences αt: 

n n n
1 �� � 1 � 1 � 

θ0 = yt − θT φ(xt) = yt − αt� φ(xt� )
T φ(xt) (37) 

n n λ 
t=1 t=1 t�=1 

We can now constrain αt to take on values that can indeed be interpreted as prediction 
differences: 

αi = yi − θT φ(xi) − θ0 (38) 
n

1 � 
= yi − 

λ
αt� φ(xt� )

T φ(xi) − θ0 (39) 
t�=1 

n n n
1 � 1 � 1 � 

= yi − αt� φ(xt� )
T φ(xi) − yt − αt� φ(xt� )

T φ(xt) (40) 
λ n λ 

t�=1 t=1 t�=1 

n n n
1 � 1 � 1 � 

= yi − yt − αt� φ(xt� )
T φ(xi) − φ(xt� )

T φ(xt) (41) 
n λ n 

t=1 t�=1 t=1 

With the same matrix notation as before, and letting 1 = [1, . . . , 1]T , we can rewrite the 
above condition as 

C 

1 
a = (I − 11T /n) y − (I − 11T /n)Ka (42) 

λ

where C = I − 11T /n is a centering matrix. Any solution to the above equation has 
to satisfy 1T a = 0 (just left multiply the equation with 1T ). Note that this is exactly 
the optimality condition for θ0 in Eq.(34). Using this “summing to zero” property of the 
solution we can rewrite the above equation as 

1 
a = Cy − CKCa (43) 

λ 
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where we have introduced an additional centering operation on the right hand side. This 
cannot change the solution since Ca = a whenever 1T a = 0. The solution â is then 

â = λ (λI + CKC)−1 Cy (44) 

Once we have â we can reconstruct θ̂0 from Eq.(37). θ̂T φ(x) reduces to the kernel form as 
before. 
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