
�

6.867 Machine learning, lecture 9 (Jaakkola) 1

Lecture topics:

• Kernel optimization

• Model (kernel) selection

Kernel optimization

Whether we are interested in (linear) classification or regression we are faced with the
problem of selecting an appropriate kernel function. A step in this direction might be to
tailor a particular kernel a bit better to the available data. We could, for example, introduce
additional parameters in the kernel and optimize those parameters so as to improve the
performance. These parameters could be simple as the β parameter in the radial basis
kernel, weight each dimension of the input vectors, or more flexible as finding the best
convex combination of basic (fixed) kernels. Key to such an approach is the measure we
would optimize. Ideally, this measure would be the generalization error but we obviously
have to settle for a surrogate measure. The surrogate measure could be cross-validation or
an alternative criterion related to the generalization error such as the geometric margin.

We need additional safeguards if we are to use the geometric margin. For example, simply
multiplying the feature vectors by two would double the geometric margin. So, without
normalization, the margin cannot serve as an appropriate criterion. The simplest way to
normalize the feature vectors prior to estimation would be to require that �φ(x)� = 1
for all x regardless of the kernel. This normalization can be done directly in the kernel
representation as follows

K(x, x�)
K̃(x, x�) = � (1)

K(x, x)K(x�, x�)

Another approach to optimizing the kernel function is kernel alignment. In other words,
we would adjust the kernel parameters so as to make it, or its Gram matrix, more towards
an ideal target kernel. For example, in a classification setting, we could use

Kij
∗ = yiyj (2)

as the Gram matrix of the target kernel. One argument for selecting this as the target is
that if we set αj = 1/n then

n

αj yj Kij
∗ = yi (3)

j=1

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

�

�

2 6.867 Machine learning, lecture 9 (Jaakkola)

and all the training examples are classified correctly with the same margin. (You could
argue that another target should be used instead). Let’s see how we can align the kernel
towards this target. Suppose our parameterized kernel is a convex combination of kernels
(e.g., constructed on the basis of different sources of input data)

m

where θi ≥ 0 and θi = 1. These are the parameters we can adjust. We can now set θ

K(x, x�; θ) = θiKi(x, x�) (4)
i=1 � m

i=1
so as to make the Gram matrix of this kernel, Kij (θ), more similar to the Gram matrix of
the target kernel, Kij

∗ . To do this we view the Gram matrices as vectors and define their
inner product in the usual way

n

�K∗, Kθ� = Kij
∗ Kij (θ) (5)

i,j=1

The parameters θ can be now set so as to maximize the cosine of the angle between the
Gram matrices:

�
�K∗, Kθ�

(6)
�K∗, K∗��Kθ, Kθ�

Model (kernel) selection

Optimizing the kernel in a parameterized form involved little consideration for the com­
plexity of the set of classifiers we are fitting to finite data. It therefore did not address
the problem of over-fitting or fitting too complex a model to too few data points. In many
cases it makes sense to explicitly cast the problem of selecting a kernel as a model selection
problem.

By choosing a kernel we specify the feature vectors on the basis of which linear predictions
are made. Each model1 (class) refers to a set of linear functions (classifiers) based on
the chosen feature representation. In many cases the models are nested in the sense that
the more “complex” model contains the “simpler” one. Consider, for example, solving a
classification problem with either

K1(x, x�) = (1 + x T x�) or (7)

K2(x, x�) = (1 + x T x�)2 (8)

1In statistics, a model is a family/set of distributions or a family/set of linear separators.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� � �

3 6.867 Machine learning, lecture 9 (Jaakkola)

Classifiers making use of the quadratic polynomial kernel can in principle reproduce the
classifiers based on the linear kernel. As a model, i.e., as a set of linear classifiers based on
the quadratic kernel, it therefore contains the simpler linear one. We can state this a bit
more formally in terms of discriminant functions. For example, based on the linear kernel
K1, our discriminant functions are of the form

f1(x; θ, θ0) = θT φ(1)(x) + θ0 (9)

where φ(1)(x) is the feature representation corresponding to K1 such that K1(x, x�) =
φ(1)(x)T φ(1)(x�). By varying the parameters θ and θ0 we can generate the set of possible
discriminant functions corresponding to this kernel:

F1 = {f1(·; θ, θ0) : θ ∈ Rd1 , θ0 ∈ R} (10)

F2 is defined analogously for the quadratic kernel. The fact that the two models are nested
means that F1 ⊆ F2. For purposes of classification, we wouldn’t actually have to assert
that the families of discriminant functions are nested, only that the discriminant functions
in F2 can produce the signs of those in F1.

The formal problem for us to solve is then to select a kernel Ki from a set of possible kernels
K1, K2, . . ., where the models associated with the kernels are nested F1 ⊆ F2 ⊆ This
is a model selection problem in a standard nested form.

From here on we will be referring to discriminant functions rather than kernels so as to
emphasize the point that the discussion applies to other types of classifiers as well.

Model selection preliminaries

Before getting into specific selection criteria let’s understand a bit better what exactly we
are doing here. Recall that our goal is to accurately classify new test examples. Model
selection is intended to facilitate this process. In other words, we switch from one model
(kernel) to another so as to generalize better. The model we select will define how we
will respond to any training data, i.e., which classifier we choose to make predictions on
new examples. Model selection cannot therefore be decoupled from how we find the “best
fitting” classifier from a given model. After all, it is that best fitting classifier that will
determine how well we generalize.

Let Sn = {(x1, y1), . . . , (xn, yn)} denote a training set of n examples and labels. If we chose
model Fi then we would find the best fitting discriminant function f̂

i ∈ Fi by minimizing
n

J(θ, θ0) = Loss yt, f(xt; θ, θ0) + λn�θ�2 (11)
t=1

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

4 6.867 Machine learning, lecture 9 (Jaakkola)

where the loss could be the hinge loss (SVM), logistic, or other. The regularization param­
eter λn would in general depend on the number of training examples. We are interested in
how the classifier f̂

i(x) = f(x; θ, ˆ θ̂0) resulting from our estimation procedure generalizes to
new examples.

Each parameter setting (θ, θ0), i.e., each discriminant function in our set, has an associated
expected loss or risk � � � �

R(θ, θ0) = E(x,y)∼P Loss∗ y, f(x; θ, θ0) (12)

where the new test example and label, (x, y), is sampled from an underlying distribution
P which is typically unknown to us. This is the generalization error we would like to
minimize. Note that we have used Loss∗(·,) above rather than the loss used in training. ·
These need not be the same and often they are not. For example, our goal may be to
minimize classification error so that Loss∗(y, f(x)) = 1 − δ(y, sign(f(x))), i.e., the zero-one
loss. We could still estimate the SVM classifier from the training set in the usual way,
optimizing the hinge loss. The hinge loss can be viewed as a convex surrogate for the
zero-one loss and it behaves much better in terms of the resulting optimization problem we
have to solve during training (quadratic rather than integer programming problem).

The quantity of interest to us is the generalization error R(θ, ˆ θ̂0), or R(f̂
i) for short, corre­

sponding to the classifier or discriminant function we would choose from Fi in response to
the training data Sn. Ideally, we would then select the model Fi that leads to the smallest
generalization error, minimizing � � � �

R(f̂
i) = E(x,y)∼P Loss∗ y, f̂

i(x) (13)

Note that the risk R(f̂
i) is still a random variable as f̂

i depends on the training data that
we assume was also sampled from the same underlying distribution P . If the training data
were sampled from a different distribution, how could we expect to generalize? Actually,
the only thing we really need is that the relationship between the labels and examples is
the same for the training and test samples, along with some guarantee that the training
examples cover the areas of input space that we will be tested on. In theoretical analysis
it is nevertheless much more convenient to assume that the distributions are the same.

Now, we clearly do not have access to the underlying distribution and therefore cannot
evaluate R(f̂

i). In fact, the whole model selection problem would go away if had access to
the underlying distribution P (x, y). To classify new instances, we would simply forget about
the training set and use the minimum probability of error classifier ŷ(x) = arg maxy P (y|x)
(see the appendix). No classifier could lead to a lower probability of error. Our task is

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

5 6.867 Machine learning, lecture 9 (Jaakkola)

much more difficult since we have to select f̂
i ∈ Fi as well as the model Fi on the basis of

the training data alone, without access to P .

Let’s try to understand first intuitively what the model selection criterion has to be able
to do. To make this a bit more concrete, consider just choosing between F1 and F2

corresponding to linear or quadratic feature vectors. Since the models are nested, F1 ⊆ F2,
we can always achieve lower classification error on the training set by adopting F2. This
is regardless of whether the true underlying model is linear. So, by choosing F2, we may
be over-fitting. If the true relationship between the labels and examples were linear (the
minimum probability of error classifier is linear), then the quadratic nature of the resulting
decision boundary would simply be due to noise and couldn’t generalize very well. So we
should be able to see an increasing gap between the training and test errors as a function
of the model complexity as in Figure 1 below. Clearly, all things being equal, we should
select F1 as it is a simpler model. The real question is how to balance the “complexity”
of the model, some measure of size or power of Fi, against their fit to the training data.
There are a number of answers to this question depending on your perspective. We will
briefly go over a few possibilities and return to them later on.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

measure of complexity

tra
in

/te
st

 e
rro

rs

training error

test error

Figure 1: Training and test errors as a function of model order (e.g., degree of polynomial
kernel).

Model selection criteria: structural risk minimization

One approach to model selection is to try to directly relate the (expected) risk R(f̂
i) � � � �

R(f̂
i) = E(x,y)∼P Loss∗ y, f̂

i(x) (14)

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

� � �

6 6.867 Machine learning, lecture 9 (Jaakkola)

that we would like to have and the empirical risk Rn(f̂
i)

n

Rn(f̂
i) =

1
Loss∗ yt, f̂

i(xt) (15)
n

t=1

that we can compute. If we can do this, then we have a partial access to R(f̂
i) through its

empirical counterpart Rn(f̂
i). Note that the empirical risk here is computed on the basis

of the available training set Sn = {(x1, y1), . . . , (xn, yn)} and Loss∗() rather than say the ·, ·
hinge loss. For our purposes here, f̂

i ∈ Fi could be any estimate derived from the training
set that approximately tries to minimizing the empirical risk.

We are interested in quantifying how much R(f̂
i) can deviate from Rn(f̂

i). The larger the
deviation the less representative the training error is about the generalization error. This
happens with more complex models Fi. Indeed, we aim to show that

R(f̂
i) ≤ Rn(f̂

i) + C(n, Fi, δ) (16)

where the complexity penalty C(n, Fi) only depends on the model Fi, the number of training
instances, and a parameter δ. The peanalty does not depend on the actual training data.
We will discuss the parameter δ below in more detail. For now, it suffices to say that 1 − δ
specifies the probability that the bound holds. We can only give a probabilistic guarantee
in this sense since the empirical risk (training error) is a random quantity that depends on
the specific instantiation of the data.

For nested models, F1 ⊆ F2 ⊆ . . ., the penalty is necessarily an increasing function of i,
the model order (e.g., the degree of polynomial kernel). Moreover, the penalty should go
down as a function n. In other words, the more data we have, the more complex models
we expect to be able to fit and still have the training error close to the generalization error.

The type of result in Eq.(16) gives us an upper bound guarantee of generalization error.
We can then select the model with the best guarantee, i.e., the one with the lowest bound.
Figure 2 shows how we would expect the upper bound to behave as a function of increasingly
complex models in our nested “hierarchy” of models.

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

7 6.867 Machine learning, lecture 9 (Jaakkola)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VC dimension

Bound

Complexity penalty

Training error

Figure 2: Bound on the generalization error as a function of model order (e.g., degree of
polynomial kernel).

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

